
THE UNIVERSITY OF HONG KONG

MASTER THESIS

Intelligent Soft Shape Sensing from

Sparse to Dense in Real Time

MAK Chi Hin

A thesis submitted in fulfillment of the requirements

for the degree of Master of Philosophy

in the

Department of Mechanical Engineering

Faculty of Engineering

August 7, 2023





Abstract of thesis entitled

Intelligent Soft Shape Sensing from Sparse to Dense in

Real Time

Submitted by

MAK Chi Hin

for the degree of Master of Philosophy

at The University of Hong Kong

in August, 2023

Soft sensor, as a key component in wearable devices and soft robots, has

been prevalent recently in various research fields such as smart prosthetics,

surgical manipulators and intelligent robotic system. The inherent mechanical

compliance and adaptability of soft sensor allow data collection over a

deformed medium without any physical mismatches and motion artifacts

commonly occurring in its conventional rigid counterparts. It opens up many

new challenges and opportunities to enhance the sensing capability of human

perception as well as robotic proprioception. The primary motivation of this

thesis initiated from the challenge of designing a high-dimensional soft sensor,

which is capable of sensing 3-D morphological changes. The research gap in

modeling a soft shape sensor is addressed based on literature reviews on the

recent advances of flexible electronics, optical-based sensing, as well as a

machine learning method. Upon developing shape sensing prototypes, this

thesis also investigates how to scale up the sensing area without

compromising sensitivity and update frequency.



In the first study, a data-driven modeling approach was explored to

reconstruct the morphological changes of a thin, A4-sized (210 × 297 × 1 mm)

sensor comprising an optical fiber and silicone rubber. Strain responses in

various sensor designs were simulated using finite element analysis (FEA) to

safeguard 28 fiber Bragg gratings distributed along the single-core fiber. The

simulated environment was further utilized to approximate sensor shape

based on finite ground truths, where sparse 3-D positions were enriched to a

denser nodes array used. An ensemble learning model that utilized fiber

strains as inputs and nodal displacements as outputs were validated with 2.28

mm RMSe at 100 Hz. The hybrid modeling approach was further generalized

to a shape sensing framework in a following study. A self-contained optical

waveguide sensor was developed on top of optomechanical simulations. Light

transmission from simple embedded light-emitting diodes (LEDs) and

photodetectors (PDs) was analyzed in advance of modeling. The

spatiotemporal characteristic in light intensity variations (input) and 3-D nodal

displacements (output) was regarded in an autoregressive model. Underwater

experiments demonstrated by a fish-liked shape sensor showcased enhanced

prediction accuracy of RMSe 0.27 mm. Real-time shape detection was verified

at a update frequency of 150 Hz.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Sensor is indispensable to every control system, detecting and discriminating

physical stimuli as close loop feedback. Research in intelligent sensors has

extended its focus from conventional rigid elements to flexible or even

deformable ones. Mechanical compliance of these soft mediums can be

exploited to obviate low-level sensing, e.g., deformation complies with the

object’s geometry in grasping. With increased damping and flexibility, soft

sensor is much safer to deploy in human-machine interfaces and wearable

devices. These attributes and advantages over its rigid counterpart open up

opportunities in many applications, including but not limited to

proprioception of soft robotics, attachable artificial skin and actuation control

of surgical devices. Soft sensing is emerging to capture signals conventionally

unchecked and unrealized. However, the accompanied challenges require

much more research to explore and resolve. In particular, signal nonlinearity

poses complications to analytical modeling. Closed-form solutions might not

always exist in the real world, and be sufficiently accurate when significant

hysteresis often occurs. Comparatively, data-driven methods that utilize

empirical approximations could represent dynamic responses without much

deviation if a proper mapping had been established. Therefore, knowledge of
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the targeted system and its sensing response is crucial to determine what and

how a model is built. The rationale justifying model selection and model

architecture should be problem-descriptive and self-explanatory rather than

outcome-based.

In this work, model training data revolves around 3-D morphological

changes of a soft sensor during continuous deformation. Processing such high

dimensional data entails innovations in both sensor design and learning

models, which gather interest in multi-discipline research. This thesis aims to

address research gaps and challenges commonly confronted in soft sensor

development by investigating a specialized machine learning-based design

framework for 3-D morphology sensing. In particular, the form factor of all

our prototypes is generally larger than the typical soft sensor without using

overwhelming number of transducers and compromising sensing

performance. Portability and cost-effectiveness are also considered when

compared against some of the state-of-the-art innovations. The integration of

computational mechanics and deep learning towards the problem nature of

shape sensing is also rarely reported previously. On the whole, the primary

contributions are summarized as follows:

1. Design of a large-scale (210 × 297 mm) surface shape sensor with fiber

Bragg gratings(FBGs) and its simulated environment used for design

optimization and data enrichment.

2. Design of a self-contained optical waveguide sensor capable of tracking

morphological changes, which was validated by optomechanical

simulation. Ordinary off-shelf light-emitting devices(LEDs) and

photodiodes(PDs) were used as local transducers and multiplexed

through wireless communication.
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3. Development of a data-driven shape sensing framework based on finite

element analysis and deep learning model.

4. Experimental validation of proposed shape sensors and their

implemented artificial intelligence(AI) models in various environmental

circumstances. Model performance was evaluated regarding accuracy,

repeatability, hysteresis and update frequency.

1.2 Outline

This work begins with a review of the recent development of soft sensing

systems, and illustrates how it shed insights on prototyping two soft shape

sensors. The detailed organized structure is stated as follows:

Chapter 2 presents the rationale for developing a real-time soft sensing

system with upfront examples in flexible electronics and optical-based sensing.

Crucial advances in prior arts will be covered in terms of their sensing

principle, material compliance and overall performance, accompanied by

limitations toward a promising solution. The final section summarises and

addresses the emerging demand in processing sensing feedback, thus

introducing how the integration of computational analysis with a machine

learning-based approach may help.

Chapter 3 presents a flexible, thin, A4-sized (210mm × 297 mm × 1mm)

shape sensor capable of reconstructing high-order deformation in high

frequency (100 Hz). Finite element analysis is extensively utilized for sensor

design optimization and data enrichment. This Chapter aims to introduce a

data-driven modeling framework that takes advantage of computational

analysis and ensembling learning. Experimental validation is supplemented to

demonstrate sensor robustness as a whole, in particular its capability

underwater.
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Chapter 4 presents a self-contained, soft optical waveguide sensor capable

of reconstructing undulating swimming motion, empowered by an

autoregressive model that regards spatial-temporal features in shape sensing.

Light intensities data captured by off-shelf electronics (LED, PD) are mapped

with 3-D kinematics ground truths enriched by finite element analysis(FEA).

As an extended study of Chapter 3, optomechanical simulation is incorporated

to validate the repeatability of waveguide sensing on top of optimizing sensor

design parameterization. The rationale for building an appropriate AI model

for high-dimensional time-series data is also discussed.

Chapter 5 concludes the thesis inclusively with all achievements and

potential research possibilities.

1.3 Publications

The study is further expounded on the following publications:

1. K. Wang, C.H. Mak, J.D.L. Ho, Z. Liu, K.Y. Sze, K.K.Y. Wong, K.

Althoefer, Y.H. Liu, T. Fukuda, K.W. Kwok, “Large-scale surface shape

sensing with learning-based computational mechanics,” Advanced

Intelligent Systems, 2100089, 2021

2. C.H. Mak, Y. Li, K. Wang, M. Wu, J.D.L. Ho, Q. Dou, K.Y. Sze, K.

Althoefer, K.W. Kwok, "Intelligent Shape Decoding of a Soft Optical

Waveguide Sensor," Advanced Intelligent Systems, 2300082, 2023

1.4 Invention Patent

The novel waveguide sensing framework is further protected by the following

patent:
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1. K.W. Kwok, K. Wang, C.H. Mak, Z.Y. Liu, J.D.L. Ho, “Optical soft skin
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Chapter 2

Real-Time Soft Sensing Systems

The proliferation of soft sensing research in recent years has accelerated

breakthroughs in multiple disciplines, including but not limited to artificial

skin, wearable devices, soft robots and surgical manipulators. Thanks to its

mechanical compliance unfound in rigid sensors, the soft sensor becomes an

exciting interface that connects a person to a machine, system, or device. A few

decades before, muscle contraction and continuous kinematics of octopus

tentacles had never been realized since the conventional sensing approach

could barely acknowledge how flexible bodies deform and displace. The

beauty of water jetting from elephant trunks, efficient wing flapping of

hummingbirds, and all locomotion one can conceive are not skeleton-based

behaviors. Only rough estimation can be formulated and utilized in system

integration based on discrete sensing feedback. Our knowledge about the

physical world is limited without reliable data acquisition and accurate

sensing signals. Therefore, reviewing the motivation, capability, and limitation

of upfront soft sensors over their rigid counterpart is the first and most crucial

step to understanding the direction of the next-generation soft sensing system.

The following sessions summarize soft sensors that capture information from

mechanical stimuli. Signals, including pressure, strain, or shape changes are

discussed.
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2.1 Advances in flexible electronics

The use of flexible electronics accounts for a significant portion of soft sensing,

where many research efforts are transiting from the integration of

micro-electromechanical systems(MEMS) and nano-electromechanical

systems(NEMS) with soft medium to a monolithic flexible substrate. From

maturely established transducers and receptors to advanced conductive

materials, electrical signals featuring high bandwidth and sensitivity have

been further enhanced regarding stretchability, scalability, linearity, etc.

2.1.1 Axial Strain and Pressure Sensing

Pressure sensor measures the force exerted on the attached body, with each

transducer concerning only a tiny sensing region. In general, multiple smartly

arranged transducers are used in a pressure sensor to capture pressure changes

over a sufficiently large area. Therefore, the capability of a pressure sensor is

often governed by the transducers’ sensitivity and spatial distribution.

In some flexible MEMS, pressure transducers and other supplementary

electronics are encased by a soft medium. The integration is often

characterized by high sensitivity and bandwidth, taking advantage of the

established industrial-grade transducers. Cheng et al. [1] proposed an

elastomer-based robotic skin for humanoid robots by wirelessly connecting

thousands of multi-modal tactile modules, each of which comprises an

off-shelf proximity and pressure transducer as shown in Figure 2.1(a). In

robotic research, these marketable transducers’ intrinsic spatial and temporal

resolution are sufficient for developing proprioceptive touch sensation.

However, the finite size of the pressure transducer and PCB is not favorable for

flexible deployments [2], and the rigidity of MEMS inherently restricts its use

for complicated motion and body requiring a small bending radius .
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Despite the flexibility of the transducer, the flexibility of wiring

interconnects is of equivalent significance. Lee et al. [3] presented a soft

sensing platform that aims to mimic the human somatosensory system with

breakthroughs in signal transmission protocol. It enables the use of a larger

transducer array (>10,000 pressure transducer) without compromising readout

latencies (1 ms) and temporal precision (<60 ns). These resistive transducers

are fabricated via a soft lithography process, and subsequently assembled with

rigid PCB board (8 mm x 8mm) and flexible interconnects as shown in Figure

2.1(b). This hardware combination slightly improves from the previous

modular structure, where deployment on a curved soft body with an irregular

shape becomes possible, yet with limited resolution and dimensionality. It fails

to differentiate force direction and classify any further stimuli, for instance,

orthogonal pressing/pinching and in-plane slipping. As for larger targets, the

asynchronous transmission method does push forward the scalability of soft

sensing. The burden on configuring sensor design with stable signaling is

partly shifted from hardware consideration to algorithm. It shed lights on

subsequent sensor development, including this study, to bypass many

struggles and repetitive trial-and-error prototyping processes.
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Figure 2.1. Examples of the hybrid pressure sensing system. (a) Modular
robotic skin designed for large-scale humanoid robot perception, which consists
of a PCB-mounted pressure sensor and silicone encapsulation. (b) Resistive
transducer array mounted on a rigid PCB board (8 mm x 8mm) and connected
by flexible serpentine interconnects. (c) Schematic of a wireless pressure sensor
designed to be hybrid (soft and hard) for injury monitoring. (d) Resistive
pressure sensor designed to mimic the afferent nerve system. Image Source:
[1], [3]–[6]

In view of irreducible rigidity in MEMS, advances in flexible functional

material showcase many interesting prepositions in soft sensing [7]–[9]. The

simplest configuration of a monolithic transducer comprises a sensory layer,

sandwiched by two unresponsive substrate layers. Instead of making a

conductive material soft, efforts often put on making a flexible material

conductive, by synthesizing electrically active particles in an elastomer. The

elastic modulus of the resulting entangled conductive composite network is

generally larger than the substrate layer, enabling flexible out-of-plane

deformation as a continuous monolithic body (Figure 2.2). One of the most

promising electrode candidates, carbon nanocomposites usually contribute a
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certain level of stiffness to the sensory layer with elastic modulus > 0.5 TPa,

while that of the silicone layer is usually <1,000 kPa [10]. These functional

materials can be categorized by working principles as capacitive, piezoelectric,

piezoresistive, triboelectric, iontronic and magnetic types. Through

nano/microstructure engineering and top-notched fabrication methods, the

soft sensor can exhibit various kinds of properties. Some pioneering research

efforts are comparable to, or even outperforming the conventional pressure

sensor.

Figure 2.2. Elastic modulus and strain limit of materials commonly used in soft
sensing. Image Source: [10]

A recent achievement from Wu et al. [11] demonstrated a tactile skin with

a novel engineering material Co-based amorphous wire illustrated in Figure

2.3(a), which makes use of the “giant magneto-impedance effect” . During

subtle pressure (<1 Pa), a silicone polydimethylsiloxane (PDMS) layer with

embedded magnetic particles deforms, resulting in small changes in the

magnetic field. Consequently, the impedance of this material vastly increases.

Experimental validation shows that the tactile skin exhibits high sensitivity

(4.4 kPa−1) in case of a very small loading and contact area (0.5 mN on 40

mm2), which is beyond the human sense of touch ( 1 mN). The author

suggested the potential for its use in smart prosthetics, but the real integration

seems to be distant without any substantial verification. Upon in-depth

integration, sensitivity is one of the many performance indices to be evaluated,

and more analytical exploration should be discussed.
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Figure 2.3. Examples of advanced flexible electronics. (a) Pressure sensor
using giant magneto-impedance effect, where small deformation leads to
massive impedance variations. (b) Capacitive skin built from layers of silver
nanowire and dielectric polyurethane, endowed with ultrahigh sensitivity and
low detection limit. (c) Polymeric tactile sensor array made by PVDF and PDMS
layers detecting the weight of a wooden stick and pressure from the fingertip.
Image Source: [11]–[13]

For example, Yu et al. [12] proposed a capacitive skin comprising of the

silver nanowire (AgNW)-based electrode arrays and two dielectric

polyurethane (TPU) layers. Both the grid-patterned electrode arrays and the

fabric material are flexible by nature as shown in Figure 2.3(b), and the

assembled structure is capable of simple bending, twisting and stretching. The

ultra-thin soft sensor(≈ 36µm) is breathable and naturally conformable to

human skin, while also exhibiting an exceptionally low detection limit (0.5 Pa)

and ultra-high sensitivity (8.31 kPa−1 under 1 kPa). This breakthrough in

permeability is a step forward for an application such as a wearable device,
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with essential experimental validation of on-skin deployment. Fingertip

pressure over a curved surface was acknowledged, as well as fundamental

throat muscle activity detection. The enhanced sensing capability comes with a

cost of update frequency (<4 Hz), which may fall short of the requirement in

real-time sensing system.

A more responsive piezoelectric pressure sensor by Lin et al. [12] utilized

two polyvinylidene fluoride (PVDF) films and PDMS layers as shown in

Figure 2.3(c). Repeatability test was carried out for 80 000 cycles under a

normal force of an amplitude of 15N and frequency of 30 Hz. To further mimic

human skin, the sensitivity of this polymeric configuration was optimized by

finite-element analysis by adjusting layer thicknesses, similar to that in human

fingertips and palms. The optimal sensitivity can reach up to 0.007 VkPa−1,

which is possible to detect the take-off and landing movement of a 5 mg

spider. However, a spatial resolution of ≈5cm2 is not convincing to be

migrated as wearable devices or any other application. The primary parameter

contributing to such low resolution is probably the finite size of each

transducing grid. One possible resolution is to reduce the size of each

transducer and represent the equivalent area with a higher array density,

which may be hindered by the prototyping process and technology.

Another challenge in scaling up density and increasing spatial resolution

is the electromagnetic interference between each transducer, often regarded as

“crosstalk “. Noises stemming from this phenomenon inevitably escalate when

more and more transducers are used and closely arranged. It also explains

why most soft pressure sensors are not experimentally validated on stimuli

over a large area without compromising other performance indexes, such as

bandwidth and temporal stability. More critically, soft pressure sensors are

transducing mechanical energy over a defined area, implying that the 2-D/3-D

force is only represented by a single value. The aggregated pressure matrix is
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basically an approximation of the full picture. The continuous pressure profile

becomes a discrete representation with a lower dimension than the original

stimuli, and the loss of information is eternally unknown and unutilized.

Regarding a dynamically varying pressure acting on a soft body (e.g. touch

and rub your skin cyclically in natural frequency), current sensing technology

fails to capture inclusively all dimensions of the stimuli.

2.1.2 Higher-Dimensional Soft Strain Sensor

To scale up the dimensionality of soft sensing without comprising its

performance and maintaining sufficient flexibility for potential application,

sensor designs that aim to detect high-level input are discussed. One strategy

is to deduce curvature and deformation from the raw impedance variations.

Inferring by the classical beam theory, the deformation of the curvature sensor

is formulated and computed.

The hypothesis suggested by Liu et al. [14] is under small-scale

deformation, there do not exist significant differences between beam bending

and soft sensor bending. If strains are lengthwise and repeatedly follow a

relationship with electrical signals, then using the analytical model is not

problematic. Demonstration using a typical strain gauge showed that the

mapping from resistance changes to curvature is consistent with the theoretical

prediction. A simple bending setup shows that the bidirectional curvature of

deployed body can be deduced quantitatively with a GF of 1.5 (Figure 2.4). In

case of elastomeric sensors without perfect strain-stress relationship and

non-linear deformation, the experimental results deviate from theoretical

values The errors that arise from the deformability of soft substrate are

significant, and not viable for any application purposes. Similar idea [15], [16]

are also used in electrical impedance tomography-based sensing, where

pressure signals are used to deduce morphological changes near electrodes.
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This indirect deduction inevitably leads to a larger sensing error, e.g., up to 3%

[17] in a recent research.

Figure 2.4. Flexible strain gauge-based curvature sensor modeled on classical
beam theory. Consistent curvature-strain behavior can be multiplexed when
detecting finger bending. Image source: [14]

Different from aforementioned laminating multiple material layers, a

monolithic alternative is injecting conductive liquid in a soft medium. The

concept is inspired by microfluidics research [18], [19], where inkjet printing

technology emerged in the last few decades . In principle, the liquid flows

within the closed microchannel without any restrictions, and thus deforming

the substrate would inevitably influence the continuous liquid flow. The

resulting resistive changes are hence being utilized in soft sensing. In general,

the overall mechanical compliance and sensor thickness is thoroughly

governed by the substrate material, which also implies more freedom in

material choices.

For example, Park et al. [20] made a revolutionary attempt by injecting

resistive liquid eutectic gallium indium (EGaIn) in a pre-determined

microfluidic cavity in silicone as shown in Figure 2.5(a). When the entire soft

substrate elongates or compresses, the resulting strains are computed to

variations in resistance. By alternating these cavities and stacking layers,

multi-axial tactile information can be captured with strain up to 250%.
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Figure 2.5. Examples of liquid-metal-based soft sensors. (a) Three layers of
elastomer matrix filled with conductive liquid metal EGaln, capable of sensing
bidirectional stretching and pressing. (b) EGaIn sensor used as a sensing glove,
to detect strains in handshaking. (c) Stretchable EGaIn-based conductors that
are linearly active to tensile strain up to 1000%. (d) Shape-adaptive EGaIn-
based tattoo that conforms to the creases of finger joints, which also enhanced
strain sensing. Image source: [20]–[23]

Comparatively, it seems impossible to utilize multiple pressure sensors at the

same time to capture multi-dimensional information. Moreover, the large

strain limit and high stretchability [24] surpass many pressure sensors at that

time, and are preferably suited for scenarios with larger deformation . The

capability and inherent flexibility of this strain sensor open up new

opportunities in soft stretchable sensor, and has shed light on many prototypes

thereafter. In some recent breakthroughs in printing technology and the

introduction of novel conductors, the ultimate configuration can even
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withstand an even higher strain [25]–[27]. Excellent electrical stability is shown

with an almost linear strain-resistance relationship in the full ultra-stretchable

range, with additional characteristics like high permeability or self-healing

ability .

Besides researching sensors and transducing elements, the sensor array

arrangement also draws attention [28], [29]. The concept is inspired by

“Kirigami”, which refers to the Japanese traditional paper-cutting technique

that structurally transforms a planar material into a highly flexible

hinges-based shape. Conventionally, the grid-based sensor arrangement and

the injecting cavity for fluidic conductors are fixed, as well as the equivalent

distance between each sensor. The underlying unrealistic assumption is that

the deployed body or external stimuli are regularly shaped. Though being

claimed as flexible, some of these soft sensors often confront challenges in

adaptively conforming to an irregular body shape. Concerning shape

conformality, Jiang et al. [30] proposed a Kirigami-based capacitive skin that

mimics the shape-adaptive ability of snakeskin, conceptually illustrated in

Figure 2.6(a). The capacitive sensor array is initially placed on top of a rigid

polyimide sheet, followed by a programmable cutting pattern based on

required curvilinearity. The cut-out sheet is then linked up by soft conductive

hinges for circuit connection. The configuration was verified on rigid

cylindrical, saddle, spherical and wavy surfaces. Thus, it becomes possible to

deduce strain given from a 3D body when the sensor is guaranteed to be

thoroughly shape-adaptive. It should be noted that the sensing capability is

derived from cutting pattern adjustment, and the structural stiffness and

stretchability are controlled regardless of the transducer used. It implies that

the Kirigami technique is supplementary to other advances in flexible

electronics [31]. In addition, the sub-millimeter scale cutting pattern can be

engineered in finer resolution, similar to how micro-structured pyramids and
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domes have been developed to nano-scale [32], and further improve sensor

sensitivity .

Figure 2.6. Example of Kirigami research in shape-adaptation. (a) Soft hinges-
linked polyimide sheet with capacitive sensors that conformal to an irregular
curvy surface. (b) Square array of mutually orthogonal cuts leads to an out-of-
plane buckling effect under uniaxial tension. (c) Stretchable Kirigami pad with
multifunctional electronics conforms to elbow bending, and is used for human-
machine interfacing. (d) Dense cut-out planar PET sheet capable of tracking the
angular position of shoulder joints. Image source: [30], [33]–[35]

2.2 Optical-based soft sensing

Aside from transducing mechanical energy directly to electrical signals,

optical-based soft sensing captures information from all kinds of light-matter

interactions. Including methods that convert a tactile input into an electrical

output using light as an intermediate, and using cameras that track the

kinematics of a soft body. This session briefly introduces the core principle and

limitations of recent research focus on optical-based soft sensing.

2.2.1 Vision-Based Sensing

A vision-based tracking system is usually installed with a distance from the

target objects externally. Many of these market-available technologies rely on

the use of markers, often infrared-reflective. Due to the advances in camera
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technology and imaging in the last few decades, advanced vision-based

sensing of high spatial resolution (< 0.5 mm) and low temporal latency (< 5

ms) have been utilized for dynamic motion tracking ( >100 fps). The only but

critical disadvantage of this cutting-edge technology, also the reason why it is

not welcomed in many disciplines is the line-of-sight dependence [36], [37]. In

many health monitoring applications, such as long-term prosthetic devices,

external installation [38] goes against the purpose of portable use. To eliminate

the problem of line-of-sight dependence, some researches integrate and bundle

the camera module with soft medium [39], [40], hence study the image

changes as a feedback of displacement or strain.. One representative example

[41] was developed by mimicking the epidermis in human skin, where 3-D

surface indentation could be mapped into unique representation of light

distortion (both magnitude and location) per pixel. With advanced image

processing techniques and deep learning models, recent vision-based sensor

demonstrate a spatial resolution of 0.4 mm, tactile force accuracy of 0.03 N

over a conical finger-like body. The self-contained configuration also enable

integration with soft actuator of similar shape, however, may bulk up the

overall form factor and hinder application in narrow workspace. The

portability comes with the expense of bulkiness as well as a finite, bundled

volume of rigid components, which may further limit its potential usage in

case of a larger scale of deformation.

2.2.2 Fiber Optics

Owing to the advances in photonics and the demand for long-range

telecommunication, the technology of fiber optics has been maturely

established in the last few decades. Typically, optical fiber is a more flexible

waveguide option than vision-based device, where the core medium is

surrounded by a cladding medium with a lower refraction index. With proper
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material choices, light can be kept in the core with minimum propagation loss

according to the principle of total internal reflection. Most importantly, optical

waveguide materials are usually endowed with flexibility, where optical fiber

can be used in a standalone configuration or attached to a soft substrate.

In general, optical fiber sensors can exhibit high sensitivities to external

physical perturbations such as temperature, strain, acoustic vibration, current,

pressure, etc., that can surpass other existing techniques by tens to a hundred

decibels in sensitivity in some cases. The immunity of silica optical fiber to

electromagnetic interference and resistance to high temperatures and corrosive

substances allows optical fiber sensors to be used in various harsh

environments [42]. Furthermore, the compact fiber geometry, flexibility, and

light weight of optical fibers provide a very high degree of freedom in

applications with limited space and portability requirements. Optical fiber

sensors are point-wise sensors distributed in an array along the fiber length,

which can be multiplexed using a single light source and detection system.

Current distributed sensing technology utilizes two types of light scattering to

sense strain, namely Rayleigh and Brillouin scattering [43]. The scattered light

carries the information of intensity loss during propagation due to the

variation in the refractive index. In case of curvature changes or local pressure

at any location of the optical fiber, the refractive index of the cladding material

at the relevant region will be affected, as well as light propagation. Depending

on the required spatial resolution, accuracy and fiber length, the interrogation

technique can be specifically selected in terms of scattering method and

multiplexing arrangements. For instance, optical frequency domain

reflectometry (OFDR) utilizes Rayleigh scattering and receives a frequency

response from the optical fiber [44]. Using Fourier transform, strain sensing

can be almost perfectly linear with high strain accuracy 1µϵ. However, the

bottleneck of data acquisition frequency (ranges from mHz to Hz) is not
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eliminated even in the recent demonstrations.

Figure 2.7. (a) Frequency shifts of Brillouin backscattered light when subjected
to tensile strain. (b) Strain-sensing accuracy plot of a recent OFDR strain sensing
approach, which enhanced spatial resolution to 2.56mm of a 25m fiber. (c)
Strain responses of another OFDR distributed sensing of low spatial resolution
(0.5mm). Image Source: [43]–[45]

Comparatively, the data acquisition frequency of shape sensors built from

micrometer-sized FBGs can reach up to the scale of kHz. It refers to a

permanent index modulation at the core of optical fiber in a periodic pattern.

The modulated regions, also called fiber Bragg gratings allow the transmission

of some wavelengths and reflect others based on their period. When subjected

to strain, the grating is mechanically deformed, hence influencing the reflected

wavelength. The relationship of all these quantities is thus linked up, and can

be mathematically formulated. Recent research has shown how FBGs can be

leveraged to reconstruct higher dimensions, such as curvature and 3-D
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morphology sensing based on axial strain sensing [46], [47]. One of the

implementations employs multicore fiber, a special kind of configuration that

embed multiple fiber core with single cladding. When subjected to a

longitudinal strain that is proportional to the distance of fiber’s neutral axis,

the distinct responses of each FBG can be calculated as the local curvature and

aggregately approximated as the global shape.

Figure 2.8. Examples of multi-core optical fiber with FBGs. (a) Standard
experimental set-up for the use of multi-core FBGs in shape sensing. (b)
(Left) Seven-core FBG fiber placed inside the water channel of a standard
electrophysiology catheter. (Right) Shape sensing accuracy in various
curvatures for closed-loop robotic control. Image Source: [48], [49]

For example, Dong et al. [49] incorporate the shape sensing feedback in

their closed-loop control of a robotic cardiac catheter system in Figure 2.8(b).

Diameter of 0.2 mm seven-core FBG fiber is placed inside the water channel of
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a standard electrophysiology (EP) catheter, tracking the 3-D steering of its

distal bending section. Twenty-one FBGs are used for each core to reconstruct

the distal catheter section of 63.4 mm in real time. Ex vivo experimental

validation showed that the average angular error of all FBG sensors is 2.33°

and the average positional error of 0.63 mm. In a fluidic environment under a

magnetic resonance imaging setting, optical-based soft sensing surpasses any

electromagnetic approaches. In addition to the demand for real-time sampling

frequency, compact design and high-dimensional feedback, multicore optical

fiber with FBGs is groundbreaking. However, the configuration of multicore

fiber is often optimized for telecommunication purposes in terms of cladding

diameter, core spacing and fiber length. A more cost-effective alternative could

be using a more common option, single-core FBGs.

Figure 2.9. Examples of single-core optical fiber with FBGs. (a) (Left) FBGs
routed circularly at the top and bottom surface of a thick (5mm) shape sensor.
(Right) Shape reconstruction performance in real-time (10 Hz) (b) Ω-shaped
routing of a radius 3 mm that increases detection range of tensile strain by 200%.
(c) Three optical fibers helically wrapped around a soft manipulator that detect
its curvature in a quasi-hemisphere workspace. Image Source: [50]–[52]

In recent research, single-core FBGs have adhered to soft medium in a

variety of curvilinear routing layouts to leverage their axial strain detection to

a higher dimension [50], [53], [54]. The concept behind this is, to extend the
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strain-sensing capability of FBGS from optical fiber segments to a larger

area/volume of the flexible body. Though by definition, not a monolithic body,

the fabrication errors incurred are mostly negligible to computation. For

example, Lun et al. [50] made use of two optical fibers with 16 FBGs, circularly

routing at the top and bottom surface of a silicone substrate of 45 x 45 x 5mm

with silicone epoxy adhesion as shown in Figure 2.9(a). The soft sensor is

capable of real-time (10 Hz) reconstructing simple bending based on shallow

artificial neural networks. The primitive results suggest the possibility to

utilize strain sensing in higher dimensions, although limited by sensor

thickness and flexibility. Further exploration of stretchability routed a single

optical fiber in a Ω-shaped arrangement of a radius of 3 mm [51] in Figure

2.9(b). The detection range of tensile strain increased by 200%, noting that

optical fiber exhibits almost zero stretchability by nature. When attached to the

human body, multiple sensors were multiplexed against distinct strain

performance from respiratory rate, joint motion, etc [52].

However, the complexity of strain signals in previous examples is rather

straightforward, either bounded by the sensor thickness or strain

dimensionality (only axial). Such sensing capability can possibly be achieved

by flexible electronics with higher flexibility and durability, given that FBGs

are exceptionally fragile. A more convincing implementation is reconstructing

the curvature changes of a soft actuator in a quasi-hemisphere workspace. The

nonlinear deformation of soft silicone rubber (outer diameter 20 mm) was

modelled based on FBG-based piecewise constant curvature. Three optical

fibers were helically wrapped around the continuum robot with phase

difference 120°, and accurately detect the axial elongation/compression during

bending. This approach has generated interest in soft robotics research, as

optical fibers can be directly integrated into the robot structure to model and

reconstruct its behavior [55]–[58]. However, despite the advantages of FBG
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fibers, including exceptional thinness (<300 µm), electromagnetic immunity,

and multiplexability [43], they still face challenges in terms of relatively rigid

fibers, which can inhibit the ultimate sensor flexibility. Additionally, FBG

fibers entail high costs and bulky measurement equipment (i.e., optical

interrogators) [59], [60].

2.2.3 Waveguide Sensing

One possible approach that omits the use of tethered interrogation while

retaining the advantages of fiber optics shape sensing is optical waveguide

shape sensing. It refers to the detection of light transmission within an optical

waveguide, including but not limited to optical fiber. The core concept of total

internal reflection is still regarded, but most likely in other form factors and

materials. In particular, advanced materials with higher stretchability and

exceptional refractive indices are concerned.

Figure 2.10. Soft waveguide sensing prototypes. (a) Intensity loss due
to bending was characterized as a function of curvature and local normal
force in the waveguide sensing of a soft pneumatic gripper. (b) Similar soft
finger design with a U-shaped waveguide that uses simple optoelectronics
(LEDs and photodiodes) for intensity loss modeling. (c) Recent color-based
waveguide sensing that enables skeleton-based finger motion reconstruction.
Image Source: [61]–[63]

For example, Teeple et al. [61] developed a 1 mm thick rectangular optical
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waveguide that was attached to a soft pneumatic gripper to track its bending

curvature and contact force. Contrary to upholding minimum propagating

loss as in optical fibers, deformation is characterized in relationship with light

loss. When subjected to deformation, some of the lights fail to follow internal

reflection due to curvature changes. Though shape changes might be

proportional to strains, the sensing principle of optical waveguide omits all

strains-relevant calculations [64]. The experimental intensity loss was then

modeled as a function of deformation. The intended use of light loss is also

found in other finger-like structures, mostly utilizing simple optoelectronics,

namely LED and PDs [65]. The light emission can be coupled with optical

silicone rubber (refractive index ≈ 1.4) over the visible light spectrum, nothing

that only a narrow range of invisible light (≈ ±10 nm) is sensitive to FBGs and

distributed sensing. The wide range of color (wavelength) sensitivity was

utilized in another prototype that bundled two waveguides together. White

LED light was transmitted at one waveguide core and lost to another

rainbow-dyed waveguide. Based on the color intensities, the finger-like sensor

can detect accurately the local deformation and the overall shape changes.

In addition to shape changes, the reduction in light intensity was also

used as a state signal in a self-healing soft robot [66]. Similar to previous

examples, the light transmission was used for closed-loop control feedback of

pneumatic pressure actuation. The soft quadruped robot crawled forward

using light losses feedback from each leg, and additionally, continuously

detecting structural damages that cut off the waveguide (Figure 2.11). The

resulting reduction in absolute light intensity would have stopped the robot

until the self-healing effect of the waveguide took place. The idea is not

common in electrical-based soft sensors as the conductivity of

electrically-active materials might not be 100% self-healed.
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Figure 2.11. Soft self-healing waveguide robot that crawls forward. Five pairs
of LED and PD are embedded in the actuators, monitoring the gait and damage
state of the quadruped and controlling the movement direction based on the
damage condition. Image Source: [66]

2.3 Conclusion

To conclude, this chapter reviews various soft sensors based on their sensing

dimensionality and transducing mechanism/ working principle, spanning

from rigid MEMS to flexible functional material, liquid metal, FBGS and the

optical waveguide. The mechanical compliance of soft materials safeguards a

risk-free interaction and collision, which is vital in human-machine interfaces.

Based on various applications and integration platforms, the mechanical

requirement for soft sensors varies, and entails new challenges for future

innovation. Collectively, the soft medium used as encapsulation, dielectric

supporting layer and optical waveguide in form factors of a thin substrate, has

been a crucial component influencing sensor flexibility. Mechanical properties

including Young’s modulus, elastic limit (elongation), strain limit (fracture),

bending radius and structural stiffness could help quantify soft sensors’

flexibility. Further investigation on material properties like biocompatibility,
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permeability and adhesiveness also encourages the potential integration into

healthcare applications, such as wearable devices and implant devices. Besides

a high degree of compliance, an all-rounded strategy that improves the overall

user experience has been suggested. The sensing system may incorporate a

wireless module and battery (or self-powering ability) instead of

implementing a standalone sensing prototype. The elevated structural

complexity is often unconsidered in the research stage, but it could be

challenging to package everything into a durable, robust body. The advantages

of monolithic design, the ease of fabrication, and the cost-effectiveness govern

how translatable research efforts can be reliably applied.

More importantly, the emerging demand for a high-performance soft

sensor is unmet given mechanical stimuli. Multi-modality and

multi-functional characterization often appear to be non-mechanical, such as

the capability to sense electrocardiography signals and temperature variations.

Pressure and strain sensing thus remains one-dimensional and provide

low-level feedbacks, which may still be sufficient to use in scenarios where a

simple pressing button is needed. The dedication to elevating signal

dimensionality is surging, especially in fields that may not exist any

convincing solution, for instance, the proprioception of soft robots.

Accompanied by the difficulty in leveraging soft sensing in a higher

dimension, the hardware complexity in scaling up the size also requires more

research efforts. It is common to conceive that stacking up the amount of

transducing units could immediately increase the scale and dimension of

sensing. However, upfront research reveals that the enhancement comes at the

expense of system stability (crosstalk), bandwidth (temporal latency) and

flexibility (physical connection).

The underlying challenge in real-time soft sensing systems can be

understood as the difficulty in capturing a vast amount of physical stimuli
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changes as well as the processing capability to acknowledge these data with

finite computing time. Apart from novel materials and prototyping methods

for sensor arrays, simulation is one possible approach to capture an equivalent

amount of information with reduced hardware complexity. Assuming high

consistency with real soft sensors, virtually generated data are noise-free and

almost infinite in amount. In some cases, the iterative computing cost is much

smaller than the fabrication cost, given that most research efforts are in an

experimental stage with a certain level of failing risk. Once a reliable dataset is

generated, data-driven modeling might be one of the best alternatives to

explain the relationship between physical stimuli and sensing data. In the

latter Chapter 3, simulations of sensor performance are covered in detail to

showcase how it can be enhanced by only using raw sensing signals, i.e., FBG

strains. Our research explores using neural networks to model the mapping

between the simulated data and sensing outcomes. Based on the prototype in

Chapter 3 and its experimental results, I extend the work to generalize our

sensor design framework with another type of raw data such as light intensity.

The overall objective is to demonstrate how a deep learning model can be

capable of realizing the mapping from the raw sensing signals to explicit

morphology details.
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Chapter 3

FE-based Data-driven Shape

Sensing Approach

3.1 Introduction

One critical challenge in real-time soft sensing systems is the nonlinearity in

soft medium, often brought over by its mechanical compliance. The issue

becomes increasingly vital when the sensing area escalates, accompanied by

other challenges reviewed in Chapter 2. Apart from soft sensing, modeling

and controlling potentially unpredictable behavior of soft materials have also

been emerging research questions in soft robots. In particular, the infinite

degree of freedom(DoFs) during actuation and interaction with the

environments may not have any theoretical formation to describe and model.

If required, the unrestricted deformability entails additional complications for

their perceptions at locations all over their soft body. This implies a sensing

approach that tracks continuous deformation rather than a discrete grid-based

sensing array and differential information derived from joint-based

kinematics.

To empower soft robots with such sensing capability, this Chapter aims to

explore a data-driven modeling approach with shape-sensing FBGs.
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Compared with other soft sensors, the advantage above of optical-based

sensing and single-core optical fiber is an interesting direction to explore.

Without much fabrication complexity, investigation on high-dimensional

shape sensing feedback can be initiated and begun using off-shelf optical fiber

with FBGs. In some data-driven modeling sensor research, the sensing

performance is often limited by the hardware sensor configuration, and fails to

demonstrate why a data-driven model is essentially needed. For example,

Rendl et al. used a nonlinear mapping function that learns the raw

measurements from piezoelectric sensors to meshed surfaces [67]. The

irregularly distributed sensor array achieved the continuous surface

deformations of an A4-sized sheet. However, the sensing accuracy remains at

the centimeter level, which was still far from any meaningful application. A

more accurate demonstration utilizing optical fibers came with the cost of

portability. By integrating the illumination and detection devices, the

deformation of silicone rubber was decoded by light loss within 30 regularly

distributed optical fibers [68]. The optical feedback was then trained by

multiple deep-learning models with the lowest error of 0.06° in the k-nearest

neighbors(KNN) method. The KNN model was also used to classify

deformation patterns with 100% accuracy, explicitly simple bending and

twisting. Though showcasing excellent performance, the modeling approach

did not explain any physical phenomenon. Therefore, the proposed

data-driven modeling approach in this Chapter aims to describe the raw

sensing signals in a step forward to construct a generalized framework for soft

sensing. (Figure.1) To begin with, a sensor design capable of high-order

morphological changes was investigated.
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Figure 3.1. Step-by-step workflow of the data-driven modeling approach
regardless of shape sensors used.

3.2 FE-based design optimization

Before prototyping the soft sensor comprising the single-core optical fiber and

FBGs, iterative simulations were explored to see how sensor design may affect

data shapes and training quality. The following pilot study examined the

strains of a single optical fiber and its attached silicone rubber under various

deformation patterns using FEA. The virtual sensor was set to have equivalent

material properties to guarantee the simulation was consistent with the

physical prototype.

3.2.1 Simulation settings

Explicitly, the elastic modulus and Poisson’s ratio of the silicone is 2.192 MPa

and 0.393, respectively; that is 70 GPa and 0.1638 for the optical fiber [69].

These numerical values were determined following the ASTM-D412 standard,

using digital image correlation [70], [71]. The testing specimen was stretched at

a 10 mm/min uniaxial loading velocity, synchronously recorded by a

charge-coupled device(CCD) camera at a frame rate of 10 Hz. Both materials

were then set as linear elastic three-dimensional deformable parts. In reality,

the stress-strain curve of both silicone and silica optical fiber is not linearly

elastic but is sufficiently valid for most deformation patterns. Scenarios
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beyond elastic deformation may often approach the breakage limit, and

certainly beyond the allowed motion range/workspace, which this thesis

would not discuss—further setting up the mesh element into eight-node brick

elements (C3D8I) for silicone and two-node linear 3D truss elements (T3D2H)

for optical fiber. The incompatible deformation modes setting minimizes

unfavorable parasitic shear strains commonly occurring in its fully-integrated

alternative (C3D8) and zero-strain deformation in reduced-integration

alternative (C3D8R) [72]. The hybrid element mode setting was additionally

used to safeguard the incompressibility of FBGs since it is much more fragile

than the optical fiber, where volumetric changes of tiny grating periods are

equivalent to breakage. Furthermore, the optical fiber was constrained with

surface-to-surface contact with the soft medium, ensuring it always conforms

to the deformed shape of silicon rubber.

In this initial attempt, a form factor of standard A4-sized (210 × 297 mm)

was selected. It is sufficiently large to illustrate various deformation patterns,

especially those irregular, non-primitive shapes. A single-core optical fiber

carrying 29 FBGs was used, where 28 were used for strain sensing and the

remaining for temperature compensation. This is also a common practice seen

in previous research because the gratings are sensitive to temperature changes;

thus, keeping a temperature sensor guarantees the measurements are stable

[73]. Multiple design considerations were simulated to evaluate how sensor

design influences raw strain responses, assuming geometrical nonlinearity

may occur. Structural stiffness may vary in large deformation with clamped

elements and lead to geometrical changes. A more straightforward example is

the little stretching effect when a clamped silicone rubber is bent with large

deflections. This effect may be negligible in actual application, but it is

significant in the following simulations.
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Figure 3.2. Simulated fiber strain responses of three fiber routes subjected to
three deformation patterns. The dog-bone-like route has the smallest Peak-
to-peak strains (yellow) than the elliptical and rounded rectangle route. With
equivalent spacing between FBGs, the total length and number of FBGs used
also vary, i.e., ellipse shape is shortest with 50 FBGs

3.2.2 Fiber strain responses

Firstly, the fiber route and the distribution of FBGs were analyzed. The strain

responses of three fiber routes undergoing three virtual deformation patterns

were simulated as shown in Figure 3.2. A smaller peak-to-peak strain range

was demonstrated in the dog-bone-like, implying that the deformation pattern

does not exert a significant strain on optical fiber. For those small strains very

close to zero, the challenge shifts to the intrinsic sensitivity of FBGs. It is also

true to conclude that the small range suggests the potential to undergo more

irregular and localized deformations, possibly tears off the fiber if either ellipse

or rounded rectangle was used. With reference to optical fiber research li202,

2skin, [50], [52], [57], [67], an ideal route should have evenly distributed the

FBGs over the sensing area such that local strains at most possible locations
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could be captured and realized. Following this logic, the dog-bone-like route

outperforms the other primitive routes by tracking the strain variations in the

central region. However, a perfect route is still unknown regardless of the

limitation in the amount of FBGs and its spatial resolution (spacing).

Figure 3.3. Simulated fiber strain responses of various sensor thicknesses.
(a) Cross-section view of the surface-adhered fiber of total thickness t when
subjected to simple bending. (b) FBGs strain responses against displacement d
within ±80 mm along a optical fiber length(i.e. distal fiber end has the largest
fiber distance). (c) FBGs strain responses against thickness t range from 0.2 to 4
mm.

The simulation proceeded to the thickness with the dog-bone-like route.

Thickness undoubtedly decides how flexible the soft sensor is, and should not

be too large. In case of using an optical fiber of diameter 125 µm, the sensor

could not be too thin to serve as a protective layer. In the simulation of one-end-

clamped bending shown in Figure 3.3, the fiber strains increase with the sensor

thickness. The data shape looks similar but the magnitude of fiber strains is

more than proportional to thickness. In view of the high sensitivity of FBGs,

the absolute strains need not be very high. Based on Kirchhoff plate theory
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[74] and related research [50], [75], the distance offset from the mid-plane of

bending is also relevant to fiber strains. For simplicity and the bidirectional

sensing capability, the sensor design confirmed the 1 mm thickness assuming

the optical fiber adhered to the surface of silicone rubber.

Figure 3.4. (a) Large-scale shape sensor prototype (210 × 297 × 1 mm)
comprises of an FBGs-carrying optical fiber and a silicone rubber substrate.
Sparsely distributed FBGs routed in a dog-bone-like layout targeting the local
strains over the continuous soft body. (b) Experimental set-up for capturing
sensor deformation using electromagnetic (EM) tracking system. Eight EM
markers were attached on the rubber substrate.

3.3 Sparse-to-dense data-driven modeling

To realize shape changes of the A4-sized soft sensor (Figure 3.4(a)), the

data-driven model should map the fiber strain responses to surface

deformation. One of the best alternatives to capture the deformation of soft

sensors is electromagnetic(EM) motion tracking system. By attaching EM

tracking markers on the sensor surface (Figure 3.4(b)), their 5-DoF values with

regard to a confined workspace could be captured. However, it is physically

impossible to adhere so many markers all tethered to an interfacing machine,

let alone resolve the reduction of sampling rate by multiplexing more markers.

The issue of marker adhesion similarly happens to camera-based technology

which is bounded by additional line-of-sight dependence. The core obstacle in

large-scale shape sensing is uncovered to be an appropriate method that

accurately represents the continuous sensor regardless of its deformed shape.
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In some previous research efforts, the finite element(FE) model was used as an

alternative to interpolation techniques. Thanks to the geometrical and material

constraints, the simulation often provides higher accuracy than

polynomial-based interpolation. The virtually generated shape is continuous

by nature with many output points based on the number of meshed elements.

For instance, Lee et al. made use of the simulating data to initialize a

kinematics model for soft robot control [76]. The iterative simulation came

with an expense of high computational cost and limited the use in a

nonparametric model. A straightforward resolution is reducing the

computation complexity so as to cut down the time cost [77], which may not

be feasible in the scope of this thesis. The advances in hardware computing

units and parallel computing strategies to date are still insufficient to push

forward FE simulation in real-time usage [78]. Nevertheless, the

computational cost is not a severe issue if used appropriately in machine

learning [79], where the computational time is primarily governed by the

complexity of the model. The computation time needed for a trained model is

comparatively a few orders below that for FEA [77]. Ultimately, the bandwidth

and the sensing frequency could still become a problem and were explored

after the discussion in FE data enrichment.

3.3.1 FE-based data enrichment

To verify whether data enrichment could provide a reliable dataset, the ground

truths were captured by the EM tracking systems (Aurora® V3, NDI) and

input in the previously established simulation environment. Nine EM markers

were evenly distributed on the A4-sized silicone rubber to capture the spatial

coordinates that were synchronous to FBG strain sensing (FBG-Scan 804D).

Various deformation patterns were manually performed over 2 minutes at a 40

Hz sampling rate. The nine control points were then subsequently used as a
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boundary condition that transiently confines the motion of the virtual sensor.

Eventually, the 3×3 ground truths were enriched to a selection of a denser

grid. Compared with bilinear and non-linear interpolations [80], the

simulation was more accurate (Figure 3.5). When statically placed over a

cylinder of diameter 115 mm, the errors in approximating the continuous

surface using 9 query points were beyond acceptable for the interpolation

technique. The maximum displacement errors for these methods were 3.2 mm,

19.7 mm and 16.8 mm respectively. Theoretically, using more control points

should further lower the error and it is applicable to all methods.

Figure 3.5. (a) Surface approximation based on nine query points over a
cylinder of diameter 115 mm. Color bar showing the displacement errors for all
three methods, namely FE-based enrichment, piecewise bilinear interpolation
and triangle-based non-linear interpolation [80]. (b) Simulated deformation
patterns and its fiber strains based on nine query points.

However, it may not be feasible as the number of query points influences

the complexity of model training and hence its performance. It should be

noted that the errors stemming from data enrichment (from EM-tracked nodes

to denser nodes) are part of the final sensing error, which also includes the
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modeling error. The mean data enrichment error for a 3000-frame sample was

0.6995 mm. Five deformation patterns were selected in Figure 3.5 with their

corresponding simulate strains. The variance in fiber strains indicates that a

unique mapping is possible to differentiate different deformation patterns. The

coefficient of determination R2 is >0.999, showing that the simulated dataset

was consistent with the acquisition.

Figure 3.6. Proposed data-driven model using ensemble learning. The
rectangular surface is divided into N windows of equivalent size and covering
an equivalent amount of nodes. Each window corresponds to an multi-layer
perceptron (MLP) regression sub-model. Altogether, twenty-eight (M) strain
sensing data are used as inputs to twenty-four (N) two-layered MLP sub-
models

3.3.2 Ensemble learning

Further from the FE-based data enrichment, an ensemble model was

developed to map strains to a denser grid of enriched nodal displacements

(Figure 3.6). Although the sensor shape could be realized by a denser grid, the

issue of discrete point-wise sensing has become the primary source of errors.

An ideal learning model should have regarded the deformation at the blank

regions between FBG sensors, which could also be used for other grid-based

sensor arrays. In this Chapter, the A4-sized prototype was divided into

multiple smaller overlapping rectangular areas, where nodes within the same
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area would be spatially related [81], [82]. The configuration took references

from a technique called “sliding window” that is commonly used in image

recognition classification problems [83], [84]. Within each region (window), the

nodal displacements were modeled by an individual ANN-based sub-model.

It implied that nodal displacements that were covered in overlapping

windows would be calculated and cross-validated. The overall model

prediction was ensembled by the weighted prediction of multiple sub-models

[85], [86].

Figure 3.7. Analysis of the trade-off between prediction accuracy and
computational time.

By controlling the number of nodal displacements (node density) and

windows (sub-model size), the trade-off between prediction accuracy and

computational time was analyzed. As summarized in Figure 3.7, small

sub-model size and denser nodes resulted in higher accuracy and longer

computational time. Out of the combination of three node densities and eight

window sizes, the prediction time ranges from 1 ms to almost 80 ms. The time

is much smaller than a full iteration of FEA that runs for hours or days. The

prediction error fell in a narrower range between 1.5 to 2.5 mm. Whether such

error size is sufficiently small to enable accurate shape sensing requires further

experimental validation and characterization analysis. The above preliminary

results show that it is possible to establish a data-driven modeling approach to

realize large-scale shape sensing with low temporal latency. To experimentally
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validate its feasibility, multiple tests were carried out with a configuration of 7

× 11 nodes and 24 windows. The corresponding computation time of 10 ms

(100 Hz) was comparable to human proprioception which could be a

benchmark for developing biomimicking robots and senses-enhancing

wearbales [87]–[89].

3.4 Experimental evaluation of a A4-sized sensing skin

To evaluate the accuracy of data-driven modeling, the sensor prototype was

subjected to a series of deformation patterns continuously. The shape

reconstruction of three key instances is shown in Figure 3.8, all having a

maximum nodal displacement of 60 mm.

Figure 3.8. Selected shape reconstruction instances. The deformation pattern is
reconstructed using the proposed data-driven model with color bar indicating
the continuous displacement. The simulated fiber strain and enriched nodal
displacements are also shown at the last column.
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3.4.1 Model Prediction Accuracy

The deformation was compared with the EM-tracked ground truth nodes.

Quantitatively, 300 deformation instances that had not appeared in the training

dataset were analyzed in detail. The 2,700 nodal displacement errors (300 × 9

nodes) are plotted in Figure 3.9(a), where 90% samples were smaller than 5

mm with RMSe 2.28 mm. Combined with the previous data enrichment error,

the mean error was below 3 mm. Furthermore, the error distribution from the

viewpoint of each node is shown in Figure 3.9(b) and Figure 3.9(c), the RMS

errors obviously were correlated with their RMS displacement, as well as their

location on the sensor. Corner nodes A1, K1 and K7 have the largest error,

probably due to additional DoFs than other nodes.

Figure 3.9. (a) Displacement error distribution of 2,700 samples selected from
300 frames (9 nodes). (b)RMS error of each EM-tracked node with A7 being the
clamped point. (c) RMS error distribution in (b) against the distance from A7
and RMS displacement.

When further looking at their prediction errors during deformation over a

period of 10s (Figure 3.10), the prediction of 3-D nodal displacements still

follows a similar data shape for all instances with errors mostly below 5 mm,

but could go up to 15 mm. Using a maximum nodal displacement of 60 mm,

the 25% error was beyond the acceptable limit of shape sensing. In those

instances, the shape reconstruction deviated from the actual deformation even

for visual representation since nodal errors of neighboring regions were

related by ensembled models. The 15 mm large error at K1 was implying an



42 Chapter 3. FE-based Data-driven Shape Sensing Approach

error >10mm of its neighboring enriched nodes. The use of FEA and ensemble

learning had regarded the soft sensor as a continuous body, eliminating the

possibility of absurd prediction of one large error happening on only one node.

It failed to eliminate/mitigate the deviations for all nodes that possibly

derived from one single error. In those instances, the shape reconstruction

might not have a noticeable issue. If used for any other application, such

visual feedback might lead to wrong decision-making, and thus should be

seriously regarded.

Figure 3.10. Positions estimation on nodes with larger error. During a period of
10 seconds of continuous deformation, the 3-D errors of nodes A1, K1 and K7
were computed. No special deviations in a particular dimension can be seen.
The deviation mostly falls below 5mm with exceptions reaching 15 mm.

3.4.2 Hysteresis and Repeatability

In addition to accuracy, the sensor prototype was characterized by 1000

repeating cycles of one-end-clamped bending at 0.5 Hz in Figure 3.11 The

sensor was bent upward, downward, then back to the neutral position, driven

by a linear actuator at the distal edge. The raw Bragg wavelengths of three

FBGs were also monitored for hysteresis analysis. Based on the relationship
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between the wavelength shift λm and mechanical strains ϵm, the hysteresis for

strain sensing is of equivalent order to the hysteresis of Bragg wavelengths.

ϵm =
1
k
(

λm

λm0
− λc

λc0
) (3.1)

where λc0 and λc refer to the original wavelength and wavelength shift of

compensation FBG respectively, λm0 and λc refers to the original wavelength

and wavelength shift of the FBG for mechanical strain, k = 0.78 being the gauge

factor [73]. The equation can be reduced to a simpler form with coefficient k0

assuming no temperature variation,

ϵm = k0λm (3.2)

Figure 3.11. (a) Setup for hysteresis and repeatability tests. Three FBGs
at different locations were selected. (b) Hysteresis plot of wavelength
shifts against simple upward and downward bending. (c) Fluctuations of
predicted displacement over 1000 repeating cycles at 0.5 Hz. (d) Logarithmic
representation of fluctuations.
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By plotting the fitting curve and 95% confidence interval (shaded region),

the hysteresis between upward and downward bending was found.

Depending on the FBGs location, the disparities vary with a maximum

0.051mm shift. The small value showcased that adhering FBGs on a soft

medium had no influence on its strain sensing capability. For data-driven

modeling approaches that utilize other sensors for raw signals input, the

disparity should be highly regarded as it directly influences system robustness.

The training model makes no sense if the raw inputs vary too much. For this

sensor prototype, the fluctuations in prediction after 1000 cycles remain at a

very low level with the largest RMS fluctuation of 1.48 mm as shown in Figure

3.11(c) and logarithmic scale in Figure 3.11(d)). The small fluctuations suggest

that not only FBG strain sensing remains robust, but also the adhesion was

durable such that the optical fiber conforms to the deformed shape in all

bending cycles.

3.5 Large-scale shape reconstruction underwater

Following the workflow in previous sessions that develop a data-driven

modeling approach for a large-scale rectangular shape sensor (Figure 3.1), a

fish-shaped shape sensor was developed. The structure and its virtual model

are shown in Figure 3.12, using equivalent silicone rubber and optical fiber.

The primary goal was to validate whether the modeling approach and shape

sensing is applicable underwater. Given a series of training data acquired up

in the air, the shape sensor was tested in a water tank with external

hydrodynamic force. The fixed part of the prototype was linked to a rod

actuating axially at 1 Hz, where the silicone body was deformed by buoyancy

force and ever-changing waves. In such an unfamiliar environment and with

optical fiber directly exposed to water, the real-time shape reconstruction of

the fish-shaped sensor is shown in Figure 3.12(d). The results build up
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confidence for this data-driven modeling approach to be used in underwater

applications (e.g. marine robots [90], [91]), as well as biomimicking robots [92].

Figure 3.12. Shape sensing of the fish-shaped prototype underwater. (a) Sensor
design using the workflow in Figure 3.11 (b) The FE mesh of the fish-shaped
prototype. (c) Three instances during deformation. (d) Corresponding shape
reconstruction in real-time. Color bars refer to fiber strains.

3.6 Conclusion

In this Chapter, a data-driven modeling approach for large-scale shape sensing

is step-by-step developed. The motivation for incorporating each

component/tool is discussed, with reference to the challenges mentioned in

Chapter 2. In explicit, two sensor prototypes were developed with an FE-based

design analysis before their fabrication. The overall sensor configuration was

determined based on simulated strain responses, such that a dog-bone-like

FBGs-carrying optical fiber routing over a 1mm thick substrate could capture

strains all over the sensing area safely and durably. Utilizing the same
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simulated environment and motion capture technology, sensor shape could be

approximated by denser nodes with minimized errors compared with

conventional interpolation techniques. The issue of high computational cost in

iterative computational mechanics was eliminated by the introduction of a

training model; While the difficulty in acquiring sufficient high-quality

training data was overcome by the data enrichment in FEA. The trade-off

between prediction accuracy and computational time was balanced by

controlling the parameters in an ensemble learning configuration, where the

shape sensor was divided into multiple sub-models with adjustable node

density. The division successfully transformed the discrete nodes array into a

continuous body, where deformation at every location is spatially related to its

neighboring region. The combination of all these tools enables shape sensing

over an A4-sized (210 × 297 mm) with an RMS error of 2.28 mm at 100 Hz. It

was durable and functional after 1000 repeating cycles with a maximum

fluctuation of 1.5 mm. Underwater demonstrations showcase additional

potential to be used in other harsh environments where training data can be

acquired elsewhere. In these scenarios, more requirements have to be fulfilled

despite the demonstrated accuracy and repeatability.

Mobility/portability is one of the push factors for FBGs shape sensor as

reviewed in Chapter 2. Imagine a marine robot designed to freely explore the

sea, the tethered connection for interrogating wavelength shifts would be

restrictive to its motion planning. Regardless of sensing capability, mobility in

those scenarios is prioritized over many other functionalities. To push the

data-driven modeling approach a step forward in task-based applications,

untethered sensing alternatives over FBGs should be considered. Among all

soft sensing options reviewed, optical waveguide sensors can be made

portable since light transmission does not require a return path to an

interfacing machine. However, there does not exist any convincing solutions to
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realize high-order soft sensing with optical waveguide sensor. In the next

Chapter, a optical waveguide sensing approach is proposed with a generalized

learning-based framework based on the data-driven modeling approach.
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Chapter 4

Self-Contained Shape Sensor

Empowered by an

Autoregressive Learning

Framework

4.1 Introduction

The study of light transmission underpins the fundamental development of

many optical devices and photonics technologies [5], [93]. In the area of

geometrical optics, light transmission can be approximated as the propagation

of rays [94], and has been utilized in waveguide-based sensing [63], [95]–[98].

Given a flexible medium of homogeneous refractive index with cladding, light

rays are guided like a pathway resulting from total internal reflection.

However, light transmission variations in light intensity and refraction losses

can occur due to external mechanical stimuli. In Chapter 2, the reviewed

application of waveguide sensors spans many fields and shows potential as an

alternative to flexible electronics and optical fiber-based sensing. This is

particularly true when the primary design goal of such “soft sensors” or
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“electronic skins” is the reconstruction of the sensor’s deformation or

morphology in multiple dimensions, often requiring high flexibility and some

degree of stretchability. In the prior art, LED and PD pairs are typically placed

at either end of a thin waveguide, providing 1D measurement per waveguide.

Transmission loss takes advantage of geometrical optics, reducing formulation

and modeling complexity often found in the light modulation approach [99],

[100]. Generally, simplified PD-LED-based sensors serve as an interesting

proposition with low fabrication costs, ease of scaling, and potential for unique

waveguide and component placement.

Regardless of the sensing approach, combining multiple low-level sensors

to predict high-order morphology changes remains challenging, particularly

for soft mediums, which possess infinitely possible degrees of freedom [101],

[102]. The substantial complexity in computing finite sensory information for

high-level state estimation requires novel hardware design and modeling

methods. Chapter 3 proposes a data-driven modeling approach with the help

of computational mechanics and simple AI models. Simulated data

tremendously reduces the density of transducing units while providing

infinite possible virtual strains and displacements. This data enrichment

method can provide significant benefits in cases where limited ground truth

data are available to estimate a complex surface. When supplied with a

comprehensive and consistent set of simulation outputs, data-driven mapping

between sensory data (e.g., resistance/refracted wavelength) and mechanical

stimuli (e.g., pressure/shape change) can be modeled. With data-driven

modeling, convincing performance is shown in both classification (e.g., the

spatial accuracy of pressure) and regression tasks (e.g., pressure magnitude

estimation) [103]. However, a specialized neural network architecture for

high-order sensing outputs requires much more research to explore and verify.

In Chapter 3, several multilayer perceptrons (MLP) models were
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ensembled to predict the displacement of markers on a flat silicone sensor with

strain measurements given by FBGs. However, it was occasionally observed

that the prediction could momentarily deviate from the ground truth

significantly, which may be caused by overlooking the data’s temporal

characteristics. Recurrent neural networks (RNN), such as long short-term

memory (LSTM), are also popular in soft sensing [104]. An example of a

single-layer LSTM combined with an MLP was used to predict the magnitude

of contact force with an average error of 0.05±0.06 N in a soft finger [105].

However, a notable delay was present, possibly caused by the high

computational cost of LSTM. Convolutional neural networks (CNN) are

utilized in sparsely distributed sensors, e.g., a CNN layer was used to classify

stimuli type exerted on robotic skin with an accuracy of 98.7% [106]. However,

the criteria for selecting such learning-based methods were not explained in

previous research, and thus it is challenging to determine the appropriate

framework for newly developed soft sensors.

In this chapter, a general framework for flexible surface shape sensing in

real-time is presented on a soft and self-contained optical waveguide sensor

using sparsely placed PD and LEDs. It takes advantage of finite element (FE)

modeling to assist sensor parameter design, as well as sparse data enrichment

in Chapter 3. Additional multi-physics simulation that optimizes training data

spatiotemporal characteristics is covered prior to the detailed investigation of

an autoregressive-based learning model.

4.2 Proof-of-concept optical waveguide sensing

An A5-sized soft skin (148 × 210 × 4 mm) embedded with three pairs of LED

and PD was developed to demonstrate the working principle of the raised

waveguide sensor. Before the fabrication of the real prototype, the light

transmission inside the skin was simulated using FE to investigate the
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influence of PD-LED’s distribution on the light signal. And thus, suggestions

on the location of sensing elements were proposed. The distribution of sensing

elements (i.e., LED and PD) in the proposed shape decoder is discrete and

their locations would affect the light intensity data. To create the

light-deformation mapping using a data-driven method, the data pair is

required to be one-to-one, i.e., one kind of skin state corresponds to only one

set of light intensity, and vice versa. Additionally, the data dimension must be

sufficient to support the recognition of high-order skin deformations. To

satisfy such requirements on data quality, the optimization of LED and PD

locations is expected. Before optimization, an FE model was established to

investigate the influence of sensing unit distribution on light intensity.

4.2.1 Simulation settings

The A5-sized waveguide sensor was meshed into 1260 C3D8IH elements with

equivalent material properties in the simulation software COMSOL

Multiphysics, where geometrical optics and solid mechanics modules were

utilized. The refractive index of PDMS is varied with light wavelength, the

lower wavelength with the higher refractive index, such that Red (700 nm)

with 1.4273, Green (510 nm) with 1.4364 and Blue (440 nm) with 1.4433 [107].

Light rays in these three colors, each simulated with 5,000 vectors, were

emitted based on a Lambertian distribution. The simulated light loss was set at

a reflection coefficient of 0.75. Zero polarization is assumed. A stationery

study with nonlinear geometricity was carried out for deformation at step 1 (t

= 0), followed by a ray tracing study at step 2 (t = 20 ns).

4.2.2 Simulated results analysis

In the first simulation, three LEDs and a PD were respectively placed at the

clamped and free end of an A5-sized rectangular waveguide, which would be
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Figure 4.1. FE geometrical optics analysis of an A5-sized waveguide without
design optimization. (a) Simple bending with one end clamped along
two orientations (i.e., portrait and landscape orientation). (b) Simulation
normalized light intensities at the free end during portrait flipping motion,
supplementing the schematic of RGB light transmission inside the skin at the
flat state (time=0.5 s). (c) Problems in RGB light intensities along with the free
end displacement for both flipping modes (highlighted)

deformed in two modes, i.e., portrait and landscape as shown in Figure 4.1(a).

The light from LEDs would experience reflection and refraction before being

captured by PD, which would lead to light intensity loss. As shown in Figure

4.1(b), light signal responses are almost symmetric for all three wavelengths

during the downward ( 1⃝ ∼ 2⃝) and upward ( 2⃝ ∼ 3⃝) bending, namely, the

light signal captured under different skin deformation is the same, which is a

hinder to motion modeling. The same problem would appear in the landscape

mode where the free-hanging length is shorter. During small displacement (free

end displacement < ±20 mm, the Red and Blue light intensities are nearly zero

as the Red and Blue lights were put close to the side wall and most of the light

rays were absorbed or refracted. Besides, the spiky noise is obvious. In sum,
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the problems of symmetricity, zero light intensity variation and noise would

appear when the arrangement of LED and PD pairs is not optimized. Since

the low-quality data is highly unfavorable to sensing resolution as well as data-

driven modeling, therefore the angle α and distance D between LEDs and PD

as illustrated in Figure 4.2 should be optimized, which are dominant factors to

the captured light intensity.

Figure 4.2. Design optimization of LED and PD placement, and validation in
an A5-sized sensor (148 × 210 × 4 mm). (a) Simulated light intensity variations
in terms of absolute distance D and the offset angle α between the LED and PD.
(b) Simulated light intensities when bending two opposite corners (I and II) of
the skin embedded with three LEDs (Red, Green, and Blue) and a PD.

The light intensities measured at 46 angles α ranging from 0 to 90° and

four distances D ranging from 30 to 150 mm were compared in Figure 4.2(a).

For a specified angle, the light intensity drops exponentially with the distance.

Most primary rays would undergo free scattering and cannot focus on PD

through a specific pathway like conventionally in optical fiber, and hence

extended distance would bring increased light loss. Under a fixed distance, the

angle of 90° is optimal as the PD can only receive light from the front side. As

displayed in Figure 4.2(b), the light transmission inside a skin sensor with the

optimized setting is simulated, where the angle α and distance D from the PD

to Red, Green and Blue LEDs are respectively 45, 90, 150°, and 45, 60, 60 mm.

When bending the skin sensor upwards by the top left corners as shown in
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Figure 4.2(b)I, the light intensity is varying continuously without plateau

phases, and thus one type of shape corresponds to one set of light. However,

as shown in Figure 4.2(b)II, the zero light intensity variation, i.e., plateau

phase, still exists in all colors. This implies the need for optimizing PDs/LEDs

allocation and distribution, or the numbers of LED-PD pairs to increase the

data dimension.

4.2.3 Experimental validation

To demonstrate the optimized sensing effect, a 5-layered PDMS silicone sensor

(148 × 210 × 4 mm) with three pairs of LED and PD was fabricated, the

distribution of which were following the simulation. Explicitly, PDs were

placed near the edge of three sides, facing to the center of the rectangular

sensor; RGB LEDs were placed at the range of 45 mm< D < 60 mm and 30°< α

<150°, facing towards the nearest PDs.

The sensor is composed of three main parts, namely the soft skin, sensing

elements and wireless data transmission modules. The soft skin works as the

medium of light transmission, consisting of five layers as shown in Figure

4.3(a). Isotropic and non-dispersive PDMS is commonly used as the substance

for light-transmitting due to its high refractive index (≈1.4) and transmittance

(>90%) for visible light [107]. The fabrication of soft skin followed the standard

silicone curing process (Figure 4.3(b), which was repeatedly carried out for all

layers. The mixed PDMS (Sylgard 184) in a 10:1 ratio was degassed in a

vacuum and cured under 60°C for 48 hours, followed by 120°C for 30 minutes.

For the opaque and semi-opaque layers, PDMS was additionally mixed with

silicone dye. RGB LEDs (Kingbright 0603 LED), PDs (AMS TCS34725FN, 400

kHz) were respectively selected as light-emitting and transducing elements,

both of which were embedded in the transparent layer. The electronics were

connected to a Field Programmable Gate Arrays (FPGA) based printed circuit
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board (PCB) with Bluetooth 5.0 (HC Tech, nRF52832) module and lithium-ion

battery (3.7V, 400 mAh) as shown in Figure 4.3(c). The battery life is

approximately 30 minutes for consecutive sensing. These components are all

off-shelf available in the market and interchangeable, for instance, the

waveguide medium can be substituted by the synthetic hydrogel. The total

estimated cost is 150 USD.

Figure 4.3. (a) Sandwiched PDMS structure of the soft waveguide sensor, where
opaque and semi-opaque layers are silicone-dyed to enable internal reflection.
(b) Schematic of the FPGA PCB used for both shape sensor prototypes. (c) Key
fabrication steps of the sandwiched PDMS structure.

It can be observed that the light intensity is correlated with the bending

type. For instance, when the sensor was lifted at its top left corner (1st column

in Figure 4.4), the 1st (left) PD’s signal varied obviously while the 3rd (right)

one tended to be stagnant. This bending mostly affected the light transmission

in the left and middle regions, while only having a slight effect on the right

region’s light path. When the sensor was lifted at the other three corners (other

columns in Figure 4.4), the signal and motion are also consistent. With this

optimized LED-PD setting, the discrete deformation pattern can be roughly

observed corresponding to the plotting of light intensity data. For continuous



56
Chapter 4. Self-Contained Shape Sensor Empowered by an Autoregressive

Learning Framework

shape reconstruction in detail, a model capable of mapping light intensity to

sensor shape is therefore explored. The soft skin shape reconstruction through

analytical light transmission modeling needs large computational time and

assumptions, which conflicts with the requirement of high-frequency response

and high-accuracy sensing on sensors in practical use. Therefore, by exploiting

deep learning to create the end-to-end mapping between light signals, skin

configuration could be represented by 3-D coordinates of those evenly

distributed nodes.

Figure 4.4. Optical waveguide design optimization validation. Three pairs of
LED and PD were embedded in a A5-sized waveguide sensor and validated on
multiple deformation patterns (1st row). Light intensity variations of each pair
are shown respectively in the 2nd to 4th rows.

Prior to the training attempt using various models, an analysis of sensing

data was carried out to observe the spatial and temporal characteristics, as

well as to select appropriate learning models. Considering the skin

deformation is of spatial locality, the points on the skin surface are grouped

referring to their location as shown in Figure 4.5(a), and inspected the average
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Figure 4.5. Data analysis on the light intensity and nodal displacements. (a)
Nodes on the skin surface are clustered into left, middle and right groups. (b)
Average z-axis nodal displacement of the three groups and corresponding skin
deformation patterns during a series of bending motions. (c) Autocorrelation
function (ACF) of light intensity and grouped node displacement with lags
ranging from 0 to 10. The blue bar represents the maximum value in all channels
under a specified lag, short colored horizontal lines are ACF of data channels
(i.e., nine light intensity channels and three node displacement channels), and
the green shaded regions are corresponding error bands.

z-axis displacements of these three groups during the bending deformation.

The node coordinates have an obvious tendency along with the skin bending,

i.e. when the top/bottom right (left) corner was deformed, the coordinates of

the node in right (left) group would vary sharply; and the coordinate variation

of nodes in middle group is relatively mild since the corner bending has a few

effects on them. It can be referred to that the data is of spatial locality, and

therefore, some techniques targeting spatial data such as convolution

operators and patch-wise processing can be considered in the model. Since the

bending is a continuous rather than impulsive motion, it can be supposed that

the data is also very time-sequential, which means the historical signal would

hold influence over a period of time further. To determine whether the model

for time series is suitable for the study, we used k-order ACF to analyze the
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light signal and node displacement:

ACF(k) =
m

∑
t=k+1

(yt − y)(yt−k − y)
∑n

t=1(yt − y)2 (4.1)

where k = 1, 2, 3, . . . is the lag value, yi is the data at the i-th time step, y is

the average value and m is the last time step. The ACF of light signal and node

coordinates was evaluated using lag k ranging from 0 to 10, which could

describe the degree of similarity between a time series and its lagged version

[108]. As displayed in Figure 4.5(c), most of the autocorrelation values exceed

the error band and it can be deduced that the data has a significant

autocorrelation. For such a time series, exploiting an autoregressive (AR)

model to extract the time-sequential feature of data could be a feasible option,

and evaluate complex motions such as the combination of bending and

twisting.

4.3 Real-time intelligent shape sensing framework

To further evaluate the feasibility of the proposed shape sensing framework

and the capability of the optical waveguide sensor, a fish-shaped prototype was

designed. It was fabricated with reference to the previous rectangular sensor,

following the same 5-layer sandwiching structure and electrical connection to

FPGA board shown in Figure 4.6(a). High frequency validation was performed

underwater of hydrodynamic forces to evaluate the robustness of the AR-based

shape-decoding accuracy.

4.3.1 Training Data Preparation

The volume and quality of training data vitally influence the training model

and the sensing capability regardless of application and scenario. In Chapter

3, the combined use of motion capture technology with FE-based enrichment
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Figure 4.6. (a) Components of the fish-shaped waveguide sensor. Three pairs of
PD and LED were embedded and connected to an FPGA board that carried the
Bluetooth module and battery for data transmission. (b) Mesh configuration of
the FE simulation for data enrichment.

method provided substantial amount of noise-free kinematics dataset, which

serves as a good reference for this fish-shaped sensor. Prior to model training,

these enriched node coordinates were analyzed by ACFs.

To assess the sensor’s shape-decoding performance, a total of 3,000 frames

of data (2,300 for training and 700 for testing) were collected underwater. Each

frame of data consists of light intensity (input) provided by PDs and 3-D nodal

displacements (output). One end of the fish prototype was clamped inside the

water tank and the rest body complied with the water flow. During

deformation, light intensities were acquired by multiple PDs and transmitted

by an FPGA board. Five EM tracking markers were sparsely adhered to the

sensor to capture real-time 3D coordinates at 20 Hz (Aurora V3, NDI) similar

to that in Chapter 3. Other motion-tracking methods (e.g., infrared-based or

dynamic Lidar detection) could also be alternatives if the difficulty of

line-of-sight is overcome. Light intensities are wirelessly transmitted to the

processing PC (i9-12900H, RTX 3060, 16GB RAM) at 150Hz for shape decoding

(also use for subsequent model evaluation and repeatability test). The FE

model was fed with 3D coordinates of five markers as point displacement

constraints, and generated 48 nodes’ coordinates via the commercial software

ABAQUS. Assuming the embedded optoelectronic components would not
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affect the skin’s flexibility, the waveguide medium PDMS was set as an elastic

material with the Poisson’s ratio of 0.495 [109], density of 965 kg/m3 and

elastic modulus of 2.5 MPa [110]. The FE model was discretized into 5394

linear hexahedral elements with incompatible modes (C3D8IH), which deliver

much better accuracy than the standard hexahedral element under bending

deformation in Figure 4.6(b)

4.3.2 Model Architecture

When constructing the deep learning model to map the light signal to skin

shape, it is required to consider two criteria: data characteristics and

computation efficiency. Due to the skin motion’s time-continuity and

space-locality, the sensing data is time-series as well as spatial. Having

considered the requirement for high update frequency in a real-time sensing

application, a trade-off between the computational cost and accuracy of the

proposed modeling was determined. Taking the aforementioned two criteria

into account, models like LSTM and CNN may not be well capable of dealing

with temporal signal data input and hence an autoregressive model was

developed.

As shown in Figure 4.7, the input was divided into two modules, which

represented light intensity at the current time-step t and nodal displacement at

the last time-step t-1, respectively. The output was the nodal displacement

corresponding to the current time-step t. The model can recursively generate

and receive the nodal displacement, respectively, with the aim of data training

and forecasting in tests. To enhance the continuity of prediction, a time

window was defined for temporal data sampling, implying that both the input

and output would be a series of frames within the fixed time range. To handle

the spatial deformation variation, the nodal displacements have to be grouped

into several clusters referring to their node locations. Mappings of each group
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from the light signal to nodal coordinates would be processed using

independent MLPs.

4.3.3 Underwater performance evaluation

Based on the above AR model, the enriched 48 nodal displacements were

divided into 3 groups as shown in Figure 4.7(a) The neural networks with a

batch size of 128 were trained using L2 loss:

Loss =
1
n

n

∑
i=1

∣∣∣∣∣∣∣∣xi − x∗i

∣∣∣∣∣∣∣∣
2

(4.2)

where xi and x∗i are respectively predicted and label nodal displacement, and n

is the number of nodes. The data was sampled using a time window size of five

frames (≈0.03 s).
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Figure 4.7. Model architecture of the proposed AR model. The model input
consists of two parts, i.e., the history module storing the nodal displacement at
the last step t-1, and the light module storing the light signal at the current stept.
The output is the prediction of nodal displacement at the current stept. All the
input and output are values during a period, namely the time window from t-w
tot. The whole architecture is ensembled by 3 models, i.e., the head, body and
tail models. The prediction rollout iteratively to the next step t+1 with nodal
displacement at steptand light signal at step t+1, and so forth.
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Figure 4.8. Real-time shape decoding (right) of the fish-shaped prototype
underwater. Asymmetric deformation in response to the hydrodynamic force
was captured at a 150 Hz sampling rate.
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To enhance the generalizability of the model, both the input and output

were values relative to the one in the stable initial state, and then normalized

to zero mean and unit variance. All six MLPs in our architecture have four

hidden layers with 128 neurons, taking ReLU as an activation function.

Dropout (p = 0.5) was adopted to alleviate overfitting. To evaluate the

performance of AR model, the fish-shaped sensor was placed in a water tank

with one end clamped. The shape decoding performance can be previewed in

Figure 4.8, visually showing that the model seems to be valid and accurate.

Figure 4.9. Sensor shape and prediction performance through 33600 node
instance samples collected from 700 frames. (a) Selected 48 nodes to represent
the overall sensor morphology. (b) Distribution of nodal displacement error per
group is illustrated in the box plot. (c) Distribution of nodal displacement error
of all node instances. (d) Error comparison in the ablation study of removing
time-window (TW), history (HX) module and patch-wise (PW) processing from
the original model (OM).
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For further analysis, errors are quantitatively investigated and discussed

with an additional ablation study. The nodal displacement error distribution

of three groups and 48 nodes are depicted in Figure 4.9(b) respectively and

collectively in Figure 4.9(c). It can be inferred that error would grow while the

sensors are undergoing larger deformation, giving rise to the RMSEs of head,

body and tail groups. An ablation study was conducted by removing three

key components, i.e., time-window (TW), history (HX) module and patch-wise

(PW) processing from the original model (OM) individually or jointly with an

error comparison table shown in Figure 4.9(d) and histograms in Figure 4.10. In

this ablation study, RMSE represents the mean error on 48 nodes in 700 frames,

which is defined as

RMSE =

√
1
n

n

∑
i=1

∣∣∣∣∣∣∣∣xi − x∗i

∣∣∣∣∣∣∣∣
2

(4.3)

The smallest error among these five models indicates the importance of these

components in terms of accurate prediction. As proved in the previous section,

sensing data is a type of time series, such that the history module and time

window data offering information on previous steps could play important

roles. From the comparison between OM and OM w/ PW, we can conclude

that patch-wise processing improves the model’s ability to target the spatial

locality of data.

Figure 4.10. Extended histogram of nodal displacement errors in the ablation
study.

With the comparison displayed in Figure 4.8 and Figure 4.11, the

reconstruction is proved to be close to the ground truths, despite relatively
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complex deformation, such as combining bending and torsion and inducing

large (100-mm) displacement of the tail region. As displayed in Figure 4.11(b),

the shape reconstruction error is less than 5 mm during a 2-s deformation span

without momentary large deviations, indicating that the decoding model

could predict stably.

Figure 4.11. Shape decoding of the fish-shaped waveguide sensor in the
underwater test. (a) Four different motion poses 2⃝ 3⃝ 4⃝ 5⃝, and their
corresponding decoded shape with colorbar showing the nodal displacement
error. (b) Prediction error of decoded shapes during this 2-second deformation.
The time of four motions in (a) was marked. (c) The isometric view of the
reconstructed skin shape. The colored shape referred to the four poses in (a)
and all predicted shapes (orange) within the 2s motion.

To further verify that the proposed waveguide sensing method is

sufficiently robust for potential task-based application, a repeatability test of

1000 deformation cycles was conducted. The fish-shaped prototype were

repeatedly undulated in the water driven by external hydrodynamic force
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Figure 4.12. Repeatability and hysteresis analysis of the fish-shaped sensor in
1000 cycles of asymmetrical undulating motion underwater. (a) Top view of five
sensor morphologies. The sensor was deformed in a cyclic mode in sequence
2⃝ 3⃝ 4⃝ 5⃝, and 1⃝ is the initial state) (b) RGB light intensity variations of
the second pair of LED/PD in the first cycle of motion captured in 150hz. (c)
Closed-up view of (b) at the initial undeformed state (0 to 0.2s). The noise of
raw signal is smaller than 0.05%. (d) Hysteresis plot of the red light intensity
captured by three PDs along with the nodal displacement respectively, where
the green shaded region refers to the 95% confidence interval.

with one end clamped (top view initial state 1⃝ shown in Figure 4.12(a)). The

undulating motion was constrained in the cycle, which contained two times of

bending leftwards and rightwards (i.e., 2⃝ 3⃝ 4⃝ 5⃝ in Figure 4.12(a)). Initially,

the fish-shaped waveguide sensor was kept in the neutral position until 0.2 s as

shown in Figure 4.12(b), and three channels of light intensity remained steady

with fluctuation less than 0.05% in Figure 4.12(c). The red-light intensities

received by three PDs in the 1st and 1,000th cycles were analyzed as displayed

in Figure 4.12(d). In terms of a specified nodal displacement, the light intensity

changes in these two cycles are nearly the same, the maximum difference of

which is less than 0.31%. In conclusion, the results imply that the sensing data
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is stable with small noise, and reliable even after 1,000 repeated motion cycles.

It also reveals that finite rigidity from tiny LEDs and PDs is not hindering the

flexibility of soft sensors, especially in the case of high-order morphology

changes involving bending, twisting and stretching. Data communication in

an underwater environment (with negligible water pressure) is also stable due

to the excellent water-repellent property of silicone PDMS.

4.4 Conclusion

In this Chapter, a shape decoding framework for the light transmission-based

soft skin sensor utilizing FEA and deep learning is presented. The FE method

plays an important role in the pre-fabrication design analysis of sensor,

allowing the optimization of distributing sensing units on the skin sensor with

finite computational cost. The effect of distance and angle between LEDs and

PDs on light transmission is explored via the FE simulation, and discovered

problems of low resolution. Many-to-one in sensing data could have been

eliminated after design optimization. The resulting real-time shape decoding

performance was demonstrated with simple corner bending. The A5-sized

prototype indicates that a relatively short distance (≈75 mm) and large angle

(≈90°) between PD and LED could reduce light energy loss and promote data

recognizability for data-driven modeling. Interpolation of sparse data using

FE simulation provides much more datasets for model training, easing the

requirement for the dense distribution of markers on skin sensors for the

record of high-resolution and complicated deformation. The skin sensor

deformation is described using 48 nodes coordinates interpolated through FEA

from five real markers, and thus the dataset including continuous light signal

and skin sensor shape was collected. The repeatability test shows that data of

the fish shape sensor is reliable even after 1,000-cycle deformation (difference

of light intensity < 0.31%) with acceptable noises (< 0.05%). Before training, the
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data considering the skin motion was of spatial locality and temporal

continuity. Results indicate that grouped node coordinate is in relation to the

skin deformation, and ACF reveals both the light signal and node coordinate

are affected by their history, respectively. The mapping from light intensity to

skin shape based on an autoregressive model is constructed, in which

time-window and patch-processing were utilized. The trained model could

reconstruct the nodal displacement with RMSE of 0.27 mm (for the 700-frame

test data), and the predicted skin shape was close to ground truth even for the

complex motion (e.g., a combination of bending and torsion). The ablation

study on model architecture implies the three key components of the

framework, namely the time window, autoregression and patch-wise

processing are beneficial to prediction in view of error.

The proposed LED-PD-based optical sensing could be combined in

artificial skin to percept human body motions, or enclosed in soft robots to

offer proprioceptive shape information in human-robot interaction.

Nevertheless, the study of other sensing modalities have been excluded and

the framework was only verified on 3-D morphological changes. Accurate

proprioception involving localized pressure (e.g. multi-point fingertips) or

stretching needs further research effort. In summary, a shape-sensing

framework for an LED-PD-based soft waveguide sensor is developed. The

FEA for sparse-to-dense data processing and design optimization, and the

autoregressive shape prediction model can also be utilized for other

transducing techniques such as electrical-impedance- [111] or acoustic-based

methods [106], [112].
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Conclusion

This thesis addresses the research gap in reconstructing high-dimensional

shape changes by investigating computational mechanics and data-driven

modeling. A real-time shape-sensing framework with a step-by-step workflow

was developed and experimentally validated. Multiple sensors with different

configurations were prototyped and characterized in terms of repeatability

and accuracy. The major achievements are summarized as follows:

5.1 Achievement Summary

1. Thin A4-sized (210 × 297 × 1 mm) shape sensor that routed FBGs optical

fiber on the top surface of silicone rubber, where sensor configuration was

optimized through FEA.

2. Optical waveguide sensors with simple optoelectronics, namely LEDs

and PDs, to form a self-contained “skin” capable of untethered sensing of

shape changes at high frequency (150 Hz)

3. Data-driven modeling approach that makes use of enriched data from

FEA, reducing the density of sensor array/transducing units and the

complexity of multiplexing/processing its raw signals.
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4. An autoregression (AR)-based learning framework for accurately

decoding RGB light signals into deformation patterns, which can be a

general approach for spatial and temporal sensing data across different

sensing modalities.

5. Underwater experimental validation for the proposed shape sensing

framework with characterized accuracy and repeatability.

5.2 Future Work

Based on this thesis and the surging trend of artificial intelligence, many

possibilities for enhancing the performance and reliability of soft sensing have

been opened up. The advantage of deep learning, or the technique of

processing vast information, has been substantially validated in building a

high-fidelity model in this thesis and many upfront soft sensors. More research

can be shifted to investigating a specialized data-driven model for a targeted

application and scenario. For instance, tracking human back muscle motion

enhances swimming performance. A self-contained artificial skin wearable

developed with reference to the presented framework in Chapter 4 may

endow the athlete with quantitative kinaesthetic feedback, or the so-called

“muscle memory”. Alternatively, the sensor can be integrated into a

biomimetic soft robot, where the shape-sensing ability acknowledges the

deformed robot state in real time. It offers a stereoscopic spatial estimation and

shape representation than the sense of touch, and enables further closed-loop

control and actuation. Both tasks make use of an object-based experimental

dataset, therefore, require iterative computational customization analysis. One

possible research direction is to develop a pre-trained transfer model without

prior knowledge of targeted systems. The pilot simulated study in Chapter 4

showcases that the spatiotemporal data characteristic is true in waveguide

sensing regardless of geometry. The variance in a task may only lead to the
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variance in data shape, which eventually could be mapped to repeatable

outputs. The changes in training data may stimulate more in-depth

investigation into the modeling approach. Sensing feedbacks are mostly

local-specific, time-series data, thus usually decoded in the time domain. A

state-of-the-art transformer and attention mechanism could be exciting despite

conventional classification and regression techniques. The vanilla transformer

decoder is autoregressive at inference time, implying that the deformed state

of the previous timestamp can be used for the current instance, accompanied

by the light signals. This shed insights into constructing a network architecture

with spatial and temporal attention blocks, as well as a pre-trained

model/encoder used for various applications.

Despite the opportunities in deep learning modeling, the potential of

employing computational mechanics in other sensing modalities is also

uncovered. Light pressure pressing, stretching of larger %elongation and

twisting >360° that have been achieved in some advanced flexible electronics

can be explored using the proposed waveguide sensing framework. For

instance, using a highly stretchable hydrogel as the waveguide medium with

prior knowledge of its material properties. The simulated environment can

then be developed with infinite output strains in an infinite possible stretched

sensor state. The subsequent training uses noise-free strains at multiple

locations and synchronous intensity changes, following the workflow as

presented. Besides the waveguide medium, the hardware components and

sensor configuration may also be upgraded to optimize light signal quality.

Furthermore, the combined use of computational mechanics and a

data-driven learning model could be implemented in other soft sensors,

especially those reviewed in Chapter 2. Using consistent simulated data, the

density of distributed sensor array could be reduced, as well as the complexity

of the electrical connection. For instance, the pressure/strain captured by a
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single transducer would be replaced by stresses exerted on the soft substrate

over a larger area. Discrete point-wise sensing would become continuous

along the entire soft sensor. The groundbreaking sensitivity exhibited by the

novel transducing method would also be utilized as constraints/ground truths

to confirm the simulated outputs are consistent. To conclude, the framework

could minimize transducing units from dense to sparse while providing

sensing signals from sparse to dense.
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