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Necessary and Sufficient Conditions on
Consensus of General Fractional-Order

Multi-agent Systems over Directed Networks
Jason J. R. Liu, Member, IEEE, James Lam, Fellow, IEEE, and Ka-Wai Kwok, Senior Member, IEEE

Abstract—This paper tackles the consensus problem for a group of multi-agent systems communicating over a directed network. Our
networked system consists of general fractional-order dynamic systems with order α ∈ [1, 2) in continuous time. This presents a more
challenging issue than the previous research on simple single/double fractional-order integrators. Specifically, we investigate the
consensus issue for agents described by fractional-order systems with general linear dynamics, which presents a challenge due to the
limited applicability of existing tools for integer-order models. To address this, we utilize spectral graph theory and fractional-order
systems theory to derive several equivalent conditions without conservatism for such systems where agents communicate through
directed graphs. We develop a tractable convex programming algorithm for controller design based on the obtained results. We then
demonstrate the effectiveness of our proposed approach through simulations on higher-order dynamic systems and fractional-order
circuits.

Index Terms—Cooperative control, consensus problem, directed graphs, networked fractional-order systems

✦

1 INTRODUCTION

1.1 Background

The study of collective behaviours in networked multi-agent
systems has attracted significant attention in the last decade.
This interest stems from the inspiration drawn from natural
phenomena, such as flocking in birds and swarming in
insects, as well as the wide range of engineering applica-
tions, including the formation of multi-robot systems and
unmanned vehicles. The consensus problem, which requires
agreement among all agents using only local information, is
the focus of collective behaviours among agents. Extensive
research has been conducted on the consensus problem for
agents with integer-order dynamics, such as first/second-
order models [15], [24], [25] and higher-order models [7],
[20], [26]. However, numerous natural phenomena and en-
gineering applications are more accurately characterized by
non-integer-order/fractional-order dynamics [1], [8], [22].
This observation has motivated our investigation of the
consensus issue in networked systems with fractional-order
dynamics.

1.2 Related Work

In recent years, significant effort has been devoted to ad-
dressing the consensus issue in networked fractional-order
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systems. The issue was first addressed in [2], where agents
consisted of fractional-order single integrators and inter-
esting convergence speed and fractional-order results were
revealed. Shen et al. investigated fractional-order single
integrators with time delay and proposed necessary and
sufficient conditions for consensus in [17], [18]. Yu et al. ex-
plored the leader-following tracking consensus of double in-
tegrators and uncovered interesting results of the Laplacian
matrix when the fractional order was less than 2 [30]. Liu et
al. investigated the consensus issue for positive fractional-
order and integer-order multi-agent systems on directed
graphs [10], [12]. Su et al. proposed necessary and sufficient
conditions for consensus of fractional-order single/double
integrators via sampled-data control [21], [28], [31]. Gong et
al. studied the problem of fault-tolerant consensus control
for heterogeneous nonlinear fractional-order integrators in
[6]. More recently, Chen et al. addressed the consensus
problem in networks of linear fractional-order systems with
order α ∈ (0, 1) over directed graphs [3], and Ye et al.
investigated the consensus issue of networked systems in
which the agents have order α ∈ (1, 2) and communicate
through undirected graphs [27]. However, limited progress
has been made in solving the problem of consensus in net-
worked multi-agent systems with agents that have an order
of α ∈ (1, 2) and directed graphs. As noted in [5], achieving
consensus for agents with order α ∈ (1, 2) and directed
graphs is challenging due to the significant differences in
stability conditions compared to integer-order systems [13],
[14], [23]. Therefore, investigating this problem is expected
to provide a more comprehensive and innovative under-
standing of cooperative networked systems.

1.3 Contribution
This paper addresses the consensus issue for a class of net-
worked multi-agent systems with general fractional-order
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linear models, in which the order α ∈ (1, 2) and the topol-
ogy are directed, to fill the literature gap in the field of coop-
erative networked systems. The major contributions of this
work in comparison to previous studies [3], [5], [11], [27],
[29] are as follows: First, a novel stability characterization
is derived for complex fractional-order linear systems (see
Lemma 1); Second, a consensus analysis condition without
conservatism is proposed; Third, a tractable convex pro-
gramming algorithm is developed for consensus synthesis
of networked systems with order α ∈ (1, 2) and directed
graphs.
Notations: We use R (or C) to denote the set of real (or
complex) numbers. The symbol j (j2 = −1) represents
the imaginary unit. The Hermitian transpose (or conjugate
transpose) of a complex matrix X is denoted by X ∗. For
two real symmetric matrices X ,Y ∈ Rn×n, we use X > Y
(respectively, X ≥ Y) to indicate that X − Y is positive
definite (respectively, positive semidefinite). We use the
symbol X ≻ Y (respectively, X ⪰ Y) to represent that X−Y
is positive (respectively, nonnegative) for any real matrices
X ,Y ∈ Rm×n. We use the symbol X ∈ H to represent that
matrix X is Hurwitz. The real part of a complex matrix
X ∈ Cp×p is denoted by R(X ), and its imaginary part is
represented by I(X ). We use the symbol arg(a) to represent
the argument of complex number a. We use N+ to represent
the set of positive integers. The symbol Np

k is used to denote
a sequence of positive integers as k, k + 1, . . . , p. Unless
explicitly defined otherwise, we assume that all matrices’
dimensions in this paper are compatible.

2 PRELIMINARIES

2.1 Problem Fundamentals
The results presented in [4], [16] are crucial in the analysis
of consensus problems in networked systems with general
fractional-order models and directed topologies.

2.1.1 Fundamentals of Fractional-Order Calculus
Assuming that f(t) is a continuous function, we define its
Caputo fractional derivative and integral of order α ∈ (n−
1, n), n ∈ N+ in the following:

Dαf(t) =
1

Γ(1− α)

∫ t

t0

(t− τ)−αf (n)(τ)dτ

and

Iαf(t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1f(τ)dτ

where f (n)(·) represents the n-th order derivative of f(·)
and Γ(·) denotes the Gamma function:

Γ(α) =

∫ t

0
e−ttα−1dt.

Since we are going to discuss the linear fractional-order
systems, without loss of generality, the lower limit of the
fractional integrals and derivatives is assumed t0 = 0 in the
sequel.

Let us consider a complex fractional-order linear model
as follows:

Dαx(t) = Ǎx(t) + B̌u(t), α ∈ [1, 2) (1)

where complex matrices Ǎ and B̌ are of appropriate dimen-
sions, and the complex system’s state and control input are
denoted as x(t) and u(t), respectively. Moreover, we derive
some useful results of system (1) and summarize them as
follows.
Lemma 1. The asymptotic stability of FOS (1) (with zero

input) is achieved if and only if one of the below condi-
tions, that are equivalent, holds:
1) Assuming that Ǎ’s eigenvalues are λi(Ǎ), i ∈ Np

1, the
following condition is satisfied: |arg(λi(Ǎ))| > απ/2;
2) Define Ǎr = sin(απ/2)R(Ǎ) − cos(απ/2)I(Ǎ) and
Ǎi = sin(απ/2)I(Ǎ) + cos(απ/2)R(Ǎ), then the Hur-
witzness of the following real matrix is guaranteed:[

Ǎr Ǎi

−Ǎi Ǎr

]
. (2)

Proof. Please refer to Section 6.1. □

2.1.2 Graph Theory
One can use a graph to depict the topology of a networked
system. When all the edges in a graph are directed from
one node to another, it is known as a directed graph. Thus,
undirected graphs are generally regarded as special cases of
directed graphs. In this work, we assume that the agents of
a networked system communicate via a graph G(V, E) that
is directed, and V := {1, 2, . . . , N} is used to represent the
node set and E ⊂ V ×V is employed to denote the edge set.
It is assumed that, b, c ∈ V , (b, c) ∈ E means that agent c can
acquire the full state information of agent b. We define the
path of graph G as a sequence {b, c, d, . . . , g, h, l} of which
the successive tuples (b, c), (c, d), . . . , (g, h), (h, l) ∈ E . In
this paper, it is assumed that the graph G has a spanning
tree, which means that there always exist a root b ∈ V and a
path starting from b to any other node c ∈ V . The adjacency
matrix of graph G is defined and represented by an N ×N
matrix Λ in which [Λ]bc = 1 in the case that (c, b) ∈ E and
[Λ]bc = 0 otherwise. In addition, graph G is assumed to have
no self-loops. The neighbor set of any node b ∈ V is defined
as ℵb := {c ∈ V : (c, b) ∈ E}. For graph G, we can define its
Laplacian matrix using an N × N matrix L for b, c ∈ V as
follows:

[L]bc =

{∑N
m=1[Λ]bm if b = c

−[Λ]bc if b ̸= c
(3)

If the Laplacian matrix L contains a spanning tree, it usu-
ally has complex eigenvalues which are represented by λk,
k ∈ NN

1 . Then we can order them as 0 = R(λ1(L)) <
R(λ2(L)) ≤ . . . ≤ R(λN (L)).

2.2 Problem Setting
Let us consider a networked system constructed by N
agents that are identical and connected through a directed
graph. The dynamics of each agent is modelled as the
following state-space form,

Dαxk(t) = Axk(t) + Buk(t), k ∈ NN
1 (4)

where agent k’s order α ∈ [1, 2), xk(t) := [xk1, xk2, . . .
, xkp]

T ∈ Rp represents agent k’s state, and uk(t) ∈ Rr

represents agent k’s input. In addition, the pair (A,B) is
assumed stabilizable.
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Φk :=

[
A sin(απ/2)− θkBK A cos(απ/2)− γkBK
−A cos(απ/2) + γkBK A sin(απ/2)− θkBK

]
,

θk := sin(απ/2)R(λk(L))− cos(απ/2)I(λk(L)),

γk := sin(απ/2)I(λk(L)) + cos(απ/2)R(λk(L)).

A state-feedback law is employed in this paper:

uk(t) = K
N∑
l=1

[Λ]kl(xl − xk), k ∈ NN
1 (5)

where K is the control protocol that we need to find. For
clear illustration, the overall system’s state x(t) := [xT

1 (t),
xT
2 (t), . . . , xT

N (t)]T ∈ RpN . Then one can represent the
whole networked system in (4) as follows:

Dαx(t) = Ωx(t) (6)

where Ω = IN ⊗A− L⊗ BK .
In this article, we address the consensus problem for

a system in which agents are represented by general
fractional-order linear models, and communicate through
directed topologies. Based on the dynamic system descrip-
tions presented earlier, we formulate the problem we aim to
solve as follows.
Problem CFNS (Consensus of Fractional-order Networked
System): Find a state-feedback gain K of (5) that solves
the consensus of (4), that is, for any xk(0), k ∈ NN

1 ,
limt→∞(xl(t)− xk(t)) = 0, ∀l, k ∈ NN

1 .

3 MAIN RESULTS

We derive some necessary and sufficient conditions for the
analysis and synthesis of Problem CFNS in this section
by employing graph theory and fractional-order systems
theory.

Theorem 1. For α ∈ [1, 2), Problem CFNS has a feasible
solution K , is equivalent to one of the following two
equivalent conditions:
1) |arg(λi(A − λk(L)BK))| > απ/2 for i ∈ Np

1 and
k ∈ NN

2 ;
2) Matrix Φk is Hurwitz (definition of matrix Φk is
placed at the top of this page).

Proof. Define ek(t) =
∑N

l=1[Λ]kl(xl − xk), k ∈ NN
1 , and

e(t) = [eT1 (t), e
T
2 (t), . . . , eTN (t)]T ∈ RpN , we have

e(t) = −(L⊗ Ip)x(t), (7)

and
Dαe(t) = (IN ⊗A− L⊗ BK)e(t). (8)

Because it is assumed that the agents communicate through
a graph which contains a spanning tree, we can utilize the
property of Laplacian matrix [21], [27], [28], [33] and find
that one can always find a coordinate transformation and
the whole system (8) can be reduced to the N − 1 systems:

Dαϵk(t) = Akϵk(t), k ∈ NN
2 (9)

where Ak := A − λk(L)BK = A − R(λk(L))BK −
I(λk(L))BK . Notice that limt→∞ ek(t) = 0, k ∈ NN

1 ⇔
limt→∞ ϵk(t) = 0, k ∈ NN

2 . Consequently, to achieve the

consensus of system (8), one can equivalently solve the
stabilization problem of the N − 1 systems in (9). Condition
1) is thus readily obtained by Lemma 1. Moreover, through
some matrix manipulations, one can conclude that the N−1
systems in (9) are stable if and only if the condition 2),
that is, Φk, k ∈ NN

2 , are Hurwitz matrices, is satisfied. This
completes the proof. □

Remark 1. Theorem 1 presents an equivalent condition
for the consensus analysis of networked systems with
general fractional-order models and directed topologies,
which was not previously available. This result is sig-
nificant because it enables the development of synthesis
conditions and numerical algorithms for Problem CFNS.
Furthermore, it is worth noting that Φk is a real matrix,
which enhances the practical usefulness of this condi-
tion.

By employing the useful results concluded in Theorem 1, an
equivalent condition on the consensus synthesis of agents is
derived for Problem CFNS as follows.
Theorem 2. For α ∈ [1, 2), Problem CFNS has a feasible

solution K if and only if matrices Pk > 0 or Qk > 0
(k ∈ NN

2 ), M and

K :=

[
K 0
0 K

]
(10)

satisfy one of the following equivalent conditions:
1) Uk(Pk,K,M) :=[

ÂTPk + PT
k Â − KTK +Θ1 #

B̂T
k Pk −K −I

]
< 0; (11)

2) Wk(Qk,K,M) :=[
ÂQk +QT

k ÂT − B̂kKKTB̂T
k + B̂kΘ2B̂T

k #
KTBT

k −Qk −I

]
< 0

(12)
where Θ1 := (K−M)T(K−M) and Θ2 := (K−M)(K−
M)T,

Â :=

[
A 0
0 A

]
×

[
sin(απ/2)Ip cos(απ/2)Ip

− cos(απ/2)Ip sin(απ/2)Ip

]
,

B̂k :=

[
θkB γkB
−γkB θkB

]
.

Proof. It is noted that, to solve Problem CFNS, we need
to find a controller K such that matrices Φk = Â − B̂kK
(k ∈ NN

2 ) are all Hurwitz and K must have the represen-
tation in (10). By Lyapunov’s stability theory, the condition
that matrices Φk = Â − B̂kK, k ∈ NN

2 , are all Hurwitz, is
equivalent to that any of the following conditions holds:

ΦT
kPk + PkΦk < 0, Pk > 0, (13)

or
QkΦ

T
k +ΦkQk < 0, Qk > 0. (14)
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In the following, we will show the equivalence of (11) and
(13). Define a nonsingular matrix as

T =

[
I 0

−K I

]
.

Performing a similarity transformation to Uk yields

Ψk :=T TUkT =[
ΦT

kPk + PkΦk + (K −M)T(K −M) #

B̂T
k Pk −I

]
< 0

(15)
for k = 2, 3, . . . , N . This implies that ΦT

kPk + PkΦk + (K−
M)T(K−M) < 0, or equivalently, ΦT

kPk +PkΦk < −(K−
M)T(K −M) ≤ 0 since (K −M)T(K −M) ≥ 0. This com-
pletes the sufficiency part. Assuming that ΦT

k P̂k+P̂kΦk < 0

holds and letting M = K, then one can find a set of scalar
ak, k = 2, 3, . . . , N that are sufficiently small such that

−I−akB̂T
k P̂k(Φ

T
k P̂k+P̂kΦk+(K−M)T(K−M))−1P̂kB̂k < 0.

Letting Pk = akP̂k and noticing that (K−M)T(K−M) = 0,
then (11) becomes

−I−B̂T
k Pk(Φ

T
kPk+PkΦk+(K−M)T(K−M))−1PkB̂k < 0.

Using the property of Schur complement equivalence and
simple matrix operations, it follows that

Uk = T −TΨkT −1 < 0

for k ∈ NN
2 . This completes the necessity part. Therefore,

(13) and (11) are equivalent. To show the equivalence of
(12) and (14), one can define a nonsingular matrix:

Sk =

[
I 0

KTB̂T
k I

]
.

The rest of this proof follows similarly as above, and thus is
omitted here. The whole proof is completed. □ In order to
obtain the K as in (10), we can partition it as

K =

[
K11 K12

K21 K22

]
where K11 ∈ Rr×p and K22 ∈ Rr×p. Then define a new
variable associated with K as follows:

F =

[
K22 0
0 K11

]
. (17)

Notice that when ∥K − F∥22 = 0, the representation of K is
successfully obtained as (10). This motivates us to develop a
convex programming algorithm in the following for solving
a feasible K satisfying the conditions concluded in Theorem
2.

Algorithm CFNS:

Step 1. Initialize: i = 1, ϵ(0) = 0, δ = 0, M (1)

(ensuring Φk = A− BkM
(1), k ∈ NN

2 are Hurwitz).
Step 2. Fix M = M (i), minimize ϵ(i)

s.t.


Uk < 0, (k ∈ NN

2 ),[
−ϵ(i)I (K −F)T

K −F −I

]
< 0,w.r.t.{Pk > 0,K,F}.

If ϵ(i) ≺ η (η is a prescribed tolerance), a feasible K
is found. STOP. Otherwise, go to next step.

Step 3. If |ϵ(i) − δ|/ϵ(i) ≺ θ, STOP. Otherwise, go to
next step.
Step 4. If |ϵ(i)−ϵ(i−1)|/ϵ(i) ≺ θ, set δ = ϵ(i), i = i+1,
update M (i) = K, go to Step 5. Otherwise, set i =
i+ 1, update M (i) = K, then go to Step 2.
Step 5. Fix M = M (i), minimize ϵ(i)

s.t.


Wk < 0, (k ∈ NN

2 ),[
−ϵ(i)I (K −F)T

K −F −I

]
< 0,w.r.t.{Qk > 0,K,F}.

If ϵ(i) ≺ η, a feasible K is found. STOP. Otherwise,
go to next step.
Step 6. If |ϵ(i) − δ|/ϵ(i) ≺ θ, STOP. Otherwise, go to
next step.
Step 7. If |ϵ(i)−ϵ(i−1)|/ϵ(i) ≺ θ, set δ = ϵ(i), i = i+1,
update M (i) = K, go to Step 2. Otherwise, set i =
i+ 1, update M (i) = K, then go to Step 5.

Remark 2. In Step 1 of the algorithm, one can obtain an
M (1) = LX−1 by solving ÂX −B̂kL+(ÂX −B̂kL)T < 0
with respect to X > 0 and L. It should be noted
that, during the iterative process of algorithm, we have
ϵ(i+1) ⪯ ϵ(i) for i ⪰ 2, because one can always find
K = K(i), Pk > 0 or Qk > 0, and F (i), 2 ≤ k ≤ N
such that ∥K(i) − F (i)∥22 ⪯ ϵ(i) ⪯ ∥K(i−1) − F (i−1)∥22 ⪯
ϵ(i−1), k ∈ NN

2 . This means that the errors decrease or
stay the same as the algorithm progresses.

4 ILLUSTRATIVE EXAMPLES

In this section, we provide validation for the proposed
results and algorithm in Section 3 by presenting three il-
lustrative examples.

4.1 High-Order Integrator Dynamics
There are scarce results dedicated to the analysis of net-
works consisting of multiple higher-order fractional inte-
grator models [19], [32], [34]. In this example, we consider a
networked system (4) composed of four agents. The system
matrix of each agent is given as follows:

A =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


, B =



0
0
0
0
0
0
1


.

The eigenvalues of matrix A are shown in Fig. 1, from which
one can find that it is unstable when α = 1.3, since its
poles all locate at the origin. The communication topology
of networked systems is denoted using G with the follwing
Laplacian matrix:

L =


1 0 0 −1
−1 1 0 0
−1 −1 2 0
0 0 −1 1

 . (18)

The eigenvalues of L are, respectively, λ1(L) = 0, λ2(L) =
1.5 + 0.866j, λ3(L) = 1.5 − 0.866j and λ4(L) = 2.
θ2 = 1.7297, θ3 = 0.9434, θ4 = 1.7820 γ2 = 0.0906,
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K =
[
0.8687 11.9562 44.8001 82.0047 83.2621 46.7320 12.0127

]
. (16)
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Fig. 1. Eigenvalues of matrix A in Example 1
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Fig. 2. Eigenvalues of matrices A2, A3 and A4 with controller (16)

γ3 = −1.4526, and γ4 = −0.9080. Using Algorithm CFNS,
we obtained a controller (16) (shown at the top of this
page). The eigenvalues of A2, A3, and A4 with controller
(16) are shown in Fig. 2 from which we can see that all
the eigenvalues locate at the stability region, and thus
|arg(λi(Ak))| > απ/2 for i ∈ N7

1, k ∈ N4
2, are satisfied.

Figs. 3 and 4 depict the state consensus evolution of agents
with controller (16) (State components 6 and 7 of agents).

4.2 Fractional-Order Electric Circuit Model

Consider a networked system (4) composed of four agents
over the directed graph G, as in the previous example.
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Fig. 3. Consensus of agents with controller (16) (State component 6)
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Fig. 4. Consensus of agents with controller (16) (State component 7)

Each agent in the system is represented by a fractional-
order electric circuit (refer to Example 4.2 in [9]), with the
following system matrices:

A =


−R1+R2

L1

R2

L1
0 R1

L1
R2

L2
−R2+R3

L2

R3

L2
0

0 R3

L3
−R3

L3
0

R1

L4

R3

L4
0 −R1+R3+R4

L4

 (19)

and

B =


1
L1

0 0

0 0 0
0 1

L3
0

0 1
L3

1
L4

 .

The resistances R1 = R2 = R3 = 1 ohm and R4 = 0 ohm,
and the inductances L1 = L2 = L3 = L4 = 1 henry. The
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Fig. 5. Eigenvalues of matrix A in Example 2

−3 −2 −1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

Real

Im
a

g
in

a
ry

Fig. 6. Eigenvalues of matrices A2, A3 and A4 with controller (20)

eigenvalues of matrix (19) are shown in Fig. 5, from which
we can see that it is an unstable system because there is
one pole at the origin. Letting α = 1.5 and using Algorithm
CFNS, we obtained a controller:

K =

−0.1950 0.0675 0.1556 0.3651
0.1591 0.0485 0.1205 0.1604
−2.1449 −0.5499 0.9525 4.0882

 . (20)

The eigenvalues of A2, A3 and A4 with controller (20) are
shown in Fig. 6, from which we know that all the eigenval-
ues locate at the stability region, and thus |arg(λi(Ak))| >
απ/2 for i ∈ N7

1, k ∈ N4
2, are satisfied. To verify the

robustness of the obtained controller in (20), the eigenvalues
of A2, A3 and A4 with controller (20) and uncertainty
∆R2 ∈ [−0.5, 0.5] (100 samples) are shown in Fig. 7, from
which we know that all the eigenvalues locate at the stability
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Fig. 7. Eigenvalues of matrices A2, A3 and A4 with controller (20) and
uncertainty ∆R2

region, and thus |arg(λi(Ak))| > απ/2 for i ∈ N7
1, k ∈ N4

2,
are satisfied.

4.3 General Linear Dynamics

We consider a networked system (4) consisting of 4 agents
over the directed graph G as in the previous example. The
system matrices are represented by (21) (shown at the top
of the next page). Fig. 8 shows the eigenvalues of the matrix
A, from which we can see that the system is unstable with
α = 1.2. Using Algorithm CFNS, we obtained the controller
(22). Fig. 9 shows the eigenvalues of A2, A3, and A4 with
controller (16). We can see that all the eigenvalues are lo-
cated in the stability region, and thus |arg(λi(Ak))| > απ/2
for i ∈ N7

1 and k ∈ N4
2 are satisfied.

5 CONCLUSIONS

In this paper, we have addressed the consensus problem of
a class of networked systems over directed graphs, where
agents are represented by general fractional-order linear
dynamics with order α ∈ [1, 2). The goal of consensus
control is to design distributed protocols for agents so that
the entire dynamic system can achieve consensus. Using
spectral graph theory and fractional-order systems theory,
we have derived several equivalent conditions for the con-
sensus analysis and synthesis of networked systems with
fractional-order models. Simulation results on higher-order
dynamic models and fractional-order circuit models have
demonstrated the effectiveness of our proposed approach
and algorithm. In the future, we will focus on the coopera-
tive control problem of fractional-order linear models with
order α ∈ (0, 1), since a necessary and sufficient condition
for addressing this issue has not yet been developed.
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A =



0.9945 −0.9785 0.3096 0.8609 1.4091 −0.5797 −0.3156 1.8295
−1.5193 −1.9179 −0.2399 0.5682 0.0225 1.9880 −1.2636 −0.9387
0.1002 1.6947 −0.9695 −0.3238 0.5426 −1.1033 0.9031 1.6983
−0.6967 0.6148 1.0078 −0.4370 1.8036 0.6098 −0.5185 −1.1049
0.1858 1.7305 −1.0853 1.2646 −0.2241 0.4200 1.3662 −0.5057
−0.4045 −1.3460 −1.7433 −0.7303 −1.7599 −0.4510 0.9369 −1.6500
−0.3396 1.6844 1.0693 1.2582 1.4670 −1.4313 0.2841 0.5605
−1.2770 1.1786 0.6848 1.1563 0.5248 −1.8995 −1.2926 −1.2775


,B =



−1.8198 1.2022
0.8927 0.9834
−0.6102 1.2525
0.6425 −0.4668
−0.4645 0.4691
0.5094 0.3020
−1.9134 0.1202
1.6423 −0.8997


.

(21)

K =

[
17.6834 −1.7922 6.5441 4.5133 9.2604 −16.7184 −15.8648 20.4279
28.4485 −2.0377 4.3855 15.4354 23.0124 −15.3470 −19.7867 20.6598

]
. (22)
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Fig. 8. Eigenvalues of matrix A in Example 3
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Fig. 9. Eigenvalues of matrices A2, A3 and A4 with controller (22)

6 APPENDIX

6.1 Proof of Lemma 1
Let R(x(t)) ∈ Rp be the real part of x(t), and I(x(t)) ∈ Rp

be the imaginary part of x(t), then it can be represented as
x(t) := R(x(t))+jI(x(t)). The FOS in (1) with u(t) = 0 can
be rewritten as DαR(x(t))+DαI(x(t))j = R(Â)R(x(t))−
I(Â)I(x(t)) + I(Â)R(x(t))j + R(Â)I(x(t))j, α ∈ [1, 2).
To show it in a more clear manner, we derive it as:[

DαR(x(t))
DαI(x(t))

]
=

[
R(Ǎ) −I(Ǎ)
I(Ǎ) R(Ǎ)

]
×

[
R(x(t))
I(x(t))

]
. (23)

Hence, in the following analysis, we will use the real system
in (23) to equivalently characterize the complex FOS in (1)
with zero input.

By the Theorem 2 in [16], it is known that, the sys-
tem in (23) is asymptotically stable, is equivalent to that
|arg(λi(Ǎ))| > απ/2, i ∈ Np

1, where

A :=

[
R(Ǎ) −I(Ǎ)
I(Ǎ) R(Ǎ)

]
.

Define

V =
1√
2

[
−jIp −jIp
Ip −Ip

]
, V ∗ =

1√
2j

[
−Ip jIp
−Ip −jIp

]
.

The following result can be obtained using simple matrix
manipulations:

V ∗AV =

[
Ǎ 0

0 ¯̌A

]

where ¯̌A is used to denote the conjugate of Ǎ. Notice
that |arg(λi(Ǎ))| > απ/2 and |arg(λi(

¯̌A))| > απ/2
are two equivalent conditions. Consequently, we have
|arg(λi(Ǎ))| > απ/2 is equivalent to |arg(λi(

¯̌A))| > απ/2,
which implies that the FOS in (1) (or (23)) with zero input
achieves asymptotic stability, is equivalent to |arg(λi(Ǎ))| >
απ/2 for i ∈ Np

1. This completes the proof for Condition 1).
In the following, we will give the proof for Condition

2). By the Theorem 3 in [16], it is known that the asymp-
totic stability of system (23) is achieved if and only if the
Hurwitzness of the following matrix is guaranteed:

Ã :=

[
A 0
0 A

]
×

[
sin(απ/2)I2p cos(απ/2)I2p

− cos(απ/2)I2p sin(απ/2)I2p

]
. (24)

Define

T =
1√
2

[
−jI2p −jI2p
I2p −I2p

]
, T ∗ =

1√
2j

[
−I2p jI2p
−I2p −jI2p

]
.
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The following result can be obtained using similarity trans-
formation:

T ∗ÃT =

[
wA 0
0 w̄A

]
where w := sin(απ/2) + cos(απ/2)j and w̄ := sin(απ/2)−
cos(απ/2)j. The Hurwitzness of matrix (24) is guaranteed if
and only if the matrix T ∗ÃT is Hurwitz. Notice that matrix
wA and w̄A are conjugate to each other, we have wA is
Hurwitz if and only if w̄A is Hurwitz. Therefore, wA is
Hurwitz, is equivalent to that matrix T ∗ÃT (or matrix (24))
is Hurwitz. Expanding wA as

wA =

[
wR(Ǎ) −wI(Ǎ)
wI(Ǎ) wR(Ǎ)

]
.

The following result can be obtained using similarity trans-
formation:

V ∗wAV =

[
wǍ 0

0 w ¯̌A

]

where ¯̌A is the conjugate of Ǎ. Notice that we have that
|arg(λi(wǍ))| > απ/2 and |arg(λi(w

¯̌A))| > απ/2 are
equivalent. Hence, it follows that |arg(λi(wǍ))| > απ/2

and |arg(λi(w
¯̌A))| > απ/2 are two equivalent conditions,

which further indicates that the Hurwitzness of matrix (24)
is guaranteed if and only if |arg(λi(wǍ))| > απ/2 for
i ∈ Np

1. Representing wǍ as wǍ = sin(απ/2)R(Ǎ) −
cos(απ/2)I(Ǎ)+j sin(απ/2)I(Ǎ)+cos(απ/2)R(Ǎ) = Ǎr+
jǍi. Using the similarity transformation to matrix (2) again,
we can show that matrix (2) is Hurwitz is equivalent to
that matrix wǍ is Hurwitz. In conclusion, the FOS in (1)
with zero input (or the system in (23)) is asymptotically
stable, is equivalent to that the matrix in (2) is Hurwitz.
This completes the proof. □

REFERENCES

[1] J. Cao, G. Stamov, I. Stamova, and S. Simeonov. Almost periodicity
in impulsive fractional-order reaction-diffusion neural networks
with time-varying delays. IEEE Transactions on Cybernetics, 2020.

[2] Y. Cao, Y. Li, W. Ren, and Y. Chen. Distributed coordination of
networked fractional-order systems. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 40(2):362–370, 2010.

[3] J. Chen, B. Chen, and Z. Zeng. Synchronization and consensus
in networks of linear fractional-order multi-agent systems via
sampled-data control. IEEE Transactions on Neural Networks and
Learning Systems, 31(8):2955–2964, 2020.

[4] F. R. Chung and F. C. Graham. Spectral Graph Theory. Number 92.
American Mathematical Soc., 1997.

[5] Z. Gao, H. Zhang, Y. Wang, and K. Zhang. Leader-following con-
sensus conditions for fractional-order descriptor uncertain multi-
agent systems with 0 < α < 2 via output feedback control. Journal
of the Franklin Institute, 357(4):2263–2281, 2020.

[6] P. Gong, W. Lan, and Q.-L. Han. Robust adaptive fault-tolerant
consensus control for uncertain nonlinear fractional-order multi-
agent systems with directed topologies. Automatica, 117:109011,
2020.

[7] X. Jiang, G. Xia, Z. Feng, and Z. Jiang. Consensus tracking of
data-sampled nonlinear multi-agent systems with packet loss and
communication delay. IEEE Transactions on Network Science and
Engineering, 8(1):126–137, 2020.

[8] T. Kaczorek. Selected Problems of Fractional Systems Theory, volume
411. Springer Science & Business Media, 2011.

[9] T. Kaczorek. Positive fractional linear electrical circuits. In
Photonics Applications in Astronomy, Communications, Industry, and
High-Energy Physics Experiments 2013, volume 8903, page 89031N.
International Society for Optics and Photonics, 2013.

[10] J. J. Liu, J. Lam, and K.-W. Kwok. Positive consensus of fractional-
order multiagent systems over directed graphs. IEEE Transactions
on Neural Networks and Learning Systems, (early access), 2022.

[11] J. J. R. Liu, N. Yang, K.-W. Kwok, and J. Lam. Positive consensus
of directed multi-agent systems. IEEE Transactions on Automatic
Control, (early access), 2021.

[12] J. J. R. Liu, N. Yang, K.-W. Kwok, and J. Lam. Positive consensus
of directed multiagent systems. IEEE Transactions on Automatic
Control, 67(7):3641–3646, 2022.

[13] J.-G. Lu and G. Chen. Robust stability and stabilization of
fractional-order interval systems: An LMI approach. IEEE Trans-
actions on Automatic Control, 54(6):1294–1299, 2009.

[14] J.-G. Lu and Y.-Q. Chen. Robust stability and stabilization of
fractional-order interval systems with the fractional order α: The
0 ≤ α ≤ 1 case. IEEE Transactions on Automatic Control, 55(1):152–
158, 2010.

[15] J. Ni, Y. Zhao, J. Cao, and W. Li. Fixed-time practical consensus
tracking of multi-agent systems with communication delay. IEEE
Transactions on Network Science and Engineering, 2022.

[16] B. Shafai and A. Oghbaee. Positive observer design for fractional
order systems. In 2014 World Automation Congress (WAC), pages
531–536, 2014.

[17] J. Shen and J. Cao. Necessary and sufficient conditions for
consensus of delayed fractional-order systems. Asian Journal of
Control, 14(6):1690–1697, 2012.

[18] J. Shen, J. Cao, and J. Lu. Consensus of fractional-order systems
with non-uniform input and communication delays. Proceedings of
the Institution of Mechanical Engineers, Part I: Journal of Systems and
Control Engineering, 226(2):271–283, 2012.

[19] S. Shi, S. Xu, W. Liu, and B. Zhang. Global fixed-time consensus
tracking of nonlinear uncertain multiagent systems with high-
order dynamics. IEEE Transactions on Cybernetics, 50(4):1530–1540,
2020.

[20] X. Shi, J. Cao, G. Wen, and X. Yu. Finite-time stability for network
systems with nonlinear protocols over signed digraphs. IEEE
Transactions on Network Science and Engineering, 7(3):1557–1569,
2019.

[21] H. Su, Y. Ye, X. Chen, and H. He. Necessary and sufficient con-
ditions for consensus in fractional-order multiagent systems via
sampled data over directed graph. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 51(4):2501–2511, 2021.

[22] H. Trinh, D. C. Huong, and S. Nahavandi. Observer design
for positive fractional-order interconnected time-delay systems.
Transactions of the Institute of Measurement and Control, 41(2):378–
391, 2019.

[23] C. Wang and Y. Zhao. Performance analysis and control of
fractional-order positive systems. IET Control Theory & Applica-
tions, 13(7):928–934, 2019.

[24] X. Wang, J. He, P. Cheng, and J. Chen. Differentially private
maximum consensus: Design, analysis and impossibility result.
IEEE Transactions on Network Science and Engineering, 6(4):928–939,
2018.

[25] X. Wang and H. Su. Robust consensus of multiagent dynamics
with transmission constraints and noises. IEEE Transactions on
Network Science and Engineering, 2022.

[26] G. Wen, X. Yu, W. Yu, and J. Lü. Coordination and control of
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