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Abstract— This article investigates the nonnegative consensus
tracking problem for networked systems with a distributed static
output-feedback (SOF) control protocol. The distributed SOF
controller design for networked systems presents a more challeng-
ing issue compared with the distributed state-feedback controller
design. The agents are described by multi-input multi-output
(MIMO) positive dynamic systems which may contain uncertain
parameters, and the interconnection among the followers is
modeled using an undirected connected communication graph.
By employing positive systems theory, a series of necessary and
sufficient conditions governing the consensus of the nominal,
as well as uncertain, networked positive systems, is developed.
Semidefinite programming consensus design approaches are pro-
posed for the convergence rate optimization of MIMO agents.
In addition, by exploiting the positivity characteristic of the
systems, a linear-programming-based design approach is also
proposed for the convergence rate optimization of single-input
multi-output (SIMO) agents. The proposed approaches and the
corresponding theoretical results are validated by case studies.

Index Terms— Linear programming, networked systems, non-
negative consensus tracking, positive systems, robust consensus,
semidefinite programming.

I. INTRODUCTION

IN the last decade, the coordination problem of net-
worked systems has attracted increasing attention among

researchers. The interest in this problem is mainly motivated
by a large number of applications in various areas. For exam-
ple, useful and extensive applications have been utilized in
unmanned aerial vehicles [9], mobile robots [5], flocking [28],
and sensor networks [25]. One critical issue during handling
the coordination of networked systems is how to manage the
agents such that they can reach an agreement by designing
distributed control protocols with local information, which
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is called the consensus/synchronization problem [4], [29].
In leader-follower networked systems, the leader is usually
unaffected by the followers but can guide their behaviors. The
control objective of such systems can be realized easily via
controlling the leader only. Hence, the leader-follower consen-
sus strategy not only simplifies the design and implementation
but also reduces the control cost or energy [34]. Most work on
the consensus problem is focused on static consensus protocols
using the full state information of agents. However, in practical
applications, the full state information for controller design
is generally not available, thus the output feedback design
approaches for consensus of networked systems are desirable.
Another practical issue that should be considered is uncer-
tainty, which is inevitably present in system parameters for
various unpredictable reasons.

Positive systems are dynamic systems whose state and
output variables take nonnegative values consistently under
given nonnegative initial conditions and inputs [6], [22], [23].
Such systems can be seen frequently and extensively uti-
lized in a variety of fields, for example, heat exchangers,
economics, industrial engineering involving chemical reactors,
and storage systems [8]. In recent years, the research topic
on positive systems arouses a significant amount of interest,
see [1], [22] and the references therein. Indeed, different
control problems of networked systems with positivity con-
straints have been studied in [26], [18], [32], [21], and [11]
recently. Specifically, those networked systems consisting of
single integrators or double integrators were typical positive
ones [9], [26]. The integrator-based consensus algorithm was
then applied to the emissions control for a fleet of Plug-in
Hybrid Electric Vehicles (PHEVs) in [18]. The leaderless
edge consensus problem with positivity constraints was studied
in [32]. The observer and controller design problems were
investigated for positive fractional-order networked systems in
[30] and [11]. For the first time, we investigate the nonnegative
consensus tracking problem of networked systems in this
article.

It is known that the consensus problem of networked sys-
tems with static output-feedback (SOF) control is equivalent
to the simultaneous SOF stabilization problem. However,
the consensus of uncertain networked positive systems is
difficult to be settled due to two main reasons. One is the
SOF control issue which is generally NP-hard [7] due to the
fact that it is a bilinear matrix inequality (BMI) problem [3].
The other issue to tackle is how to reach a consensus of
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agents while maintaining the positivity of the investigated
system. In this article, such a challenging problem with the
aforementioned issues will be considered and solved. The
main contributions of this article are: 1) It is the first attempt
to investigate the nonnegative consensus tracking problem
of networked systems with SOF control. 2) Using positive
systems theory, necessary and sufficient conditions for the con-
sensus analysis of networked positive systems without or with
uncertainties are derived. 3) Based on the consensusability
analysis results, two types of consensus design approaches,
that is, the semidefinite programming and the linear-
programming-based approaches, are developed for computing
the required controllers, as well as optimizing the convergence
rates.

The rest of this article is organized as follows.
Section II presents some mathematical preliminaries and
defines the problem to be solved. In Section III, the positive
leader-follower consensus conditions on the analysis and
design of networked positive systems are proposed by semi-
definite programming optimization approaches. In Section IV,
the nonnegative consensus tracking in networked positive
systems comprising single-input multi-output (SIMO) agents
is achieved utilizing linear-programming-based optimization
approaches. In Section V, numerical simulations are provided
to verify the obtained results. Section VI summarizes this
article with some remarks.

II. PRELIMINARIES

A. Notations

The notations used in this article are standard. For any
matrices X and Y that are real symmetric and of the same
dimension, we let X ≥ Y (respectively, X > Y) represent that
their difference X − Y is positive semidefinite (respectively,
positive definite). The transpose operation of the correspond-
ing matrix is denoted by the superscript T. Matrices in alge-
braic operations without specific statements are defaulted to be
dimension-compatible. The identity matrix of the appropriate
dimension is denoted by I . We use symbol |·| to represent the
Euclidean norm for vectors while for matrices, we use symbols
�·� and �·�1 to denote the spectral norm and the 1-norm,
respectively. X⊗Y denotes the Kronecker product of matrices
X and Y. For matrix X ∈ R

m×n , notation [X]i j is to represent
its element in the i th row and the j th column. Nonnegative
matrix X � 0 (respectively, positive matrix X � 0) indicates
that for any combinations of i and j , the element [X]i j � 0
(respectively, [X]i j � 0). We use notation X � Y (respectively,
X � Y) to indicate that their difference satisfies X − Y � 0
(respectively, X − Y � 0). Matrix X ∈ R

n×n is addressed
as a Metzler matrix if all its off-diagonal components are
nonnegative, which is symbolized as X ∈ M

n . The spectral
abscissa of a matrix X is represented as α(X). The orthogonal
complement X⊥ of any real matrix X ∈ R

m×n with m ≺ n is
defined as the matrix with maximum column rank satisfying
XX⊥ = 0 and (X⊥)TX⊥ = I . We use the notation diag(X1,
X2, . . . , Xn) as meaning of the block diagonal matrix with X1,
X2, . . . , Xn on the diagonal. 1n denotes [1, 1, . . . , 1]T ∈ R

n,
while 0n denotes [0, 0, . . . , 0]T ∈ R

n .

B. Positive Systems Theory

We consider the continuous-time linear system as follows:�
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

where x(t) ∈ R
r , u(t) ∈ R

m and y(t) ∈ R
p denote

the system state, input and measured output, respectively.
A ∈ R

r×r , B ∈ R
r×m and C ∈ R

p×r denote the system
matrices of appropriate dimensions. Since our object of this
article is networked positive systems, several definitions and
statements about the positivity concerning system (1) are listed
as below [2], [8], [10].

Definition 1: System (1) is addressed as a continuous-time
positive linear system if for any initial value x(0) � 0 and
input u(t) � 0, the state trajectory x(t) � 0, and the output
y(t) � 0 for any t � 0.

Lemma 1: System (1) is positive under the necessary and
sufficient conditions that matrix A is Metzler, moreover, matri-
ces B and C perform nonnegative.

Lemma 2: For a given Metzler matrix A, it is Hurwitz if
and only if ∃ a diagonal matrix P > 0 such that

AT P + P A < 0.

Lemma 3: For a given Metzler matrix A, it is Hurwitz if
and only if one of the following two statements holds:

1) ∃ a column vector p � 0, such that Ap ≺ 0;
2) ∃ a column vector q � 0, such that qT A ≺ 0.

Lemma 4: For any two Metzler matrices A1, A2 ∈ R
r×r ,

if A1 � A2, then α(A1) � α(A2).

C. Graph Theory

With regard to the follower systems, we employ an undi-
rected graph G = (W , F ) which consists of a finite node set
W = {w1, w2, . . . , wn} and an edge set F ⊂ W × W for
representation. If set W contains n nodes in total, the graph
G will be n-order, the nodes in which can also be specifically
labeled by integer i , i ∈ I = {1, 2, . . . , n}. Two nodes wi

and w j are adjacent if (wi , w j ) ∈ F , which means that nodes
i and j have interactions. An adjacency matrix J of graph G
with order n is a square matrix defined as [J ]i j = [J ] j i = 1
if (wi , w j ) ∈ F , otherwise as 0. If (wi , w j) ∈ F , then w j

is one of the neighbors of wi . The set of wi ’s neighbors is
denoted by Ni = {w j ∈ W : (wi , w j ) ∈ F }. The Laplacian
matrix L of n-order graph G is an n × n matrix characterized
by [L]ii = �

v j ∈Ni
[J ]i j and [L]i j = −[J ]i j for any i �= j . In

graph G , a path with length n − 1 equals an ordered sequence
containing n different nodes {w(1), w(2), . . . , w(n)} where (w(i),
w(i+1)) ∈ F . The undirected graph G is called connected, if,
for any two nodes, there always exists a path, otherwise called
disconnected.

As to the leader–follower system, another graph Ḡ associ-
ated with the system constructed by one leader denoted as w0

as well as n followers are taken into consideration. In graph
Ḡ , the leader node connects some of the n follower nodes
(related to graph G ) by directed edges. Graph Ḡ is referred to
as “connected” if at least one follower node in each component
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of graph G is linked to the leader node by a directed edge,
which means the follower node can sense the instruction from
the leader. The leader adjacency matrix associated with graph
Ḡ is represented as G := diag(g1, g2, . . . , gn), where gi = 1
indicates node vi can sense the data from the leader and
otherwise gi = 0. Obviously, the Laplacian matrix L of graph
Ḡ is in the following form:

L =
�

0 0T
n

−G1n L + G

�
.

D. Problem Formulation

Consider a network system described by an n-agent commu-
nication graph, with identical positive linear dynamic systems
as

ẋi(t) = Axi(t) + Bui(t), yi(t) = Cxi(t), i ∈ I (2)

where xi(t) := [xi1, xi2, . . . , xir ]T ∈ R
r denotes the state,

ui(t) ∈ R
m denotes the system input, yi(t) ∈ R

p denotes the
measured output. Matrix A ∈ R

r×r is Metzler, while matrices
B ∈ R

r×m and C ∈ R
p×r are nonnegative. Notice that the

system in (2) is an multi-input multi-output (MIMO) positive
linear system of any orders and can be stable, marginally stable
or unstable. The dynamics of the leader is represented by

ẋ0(t) = Ax0(t), y0(t) = Cx0(t) (3)

where x0(t) ∈ R
r is the state and y0(t) ∈ R

p is the measured
output.

In nominal cases, system matrices A, B , and C are known.
However, when dealing with the uncertain case, the specific
parameters of system matrices A, B , and C are unknown, but
fixed. One can consider the robust case that system matrices A,
B and C have interval uncertainties, which can be expressed
by

Am  A  AM, Bm  B  BM, Cm  C  CM (4)

where Am ∈ R
r×r is Metzler, 0  Bm ∈ R

r×m , and
0  Cm ∈ R

p×r . It is assumed that system (A, B , C) is
stabilizable and detectable, and matrices B and C are full-
rank throughout this article.

The distributed SOF protocol in [24] of the i th agent is

ui (t) = K
�

v j ∈Ni

[L]i j

�
yi(t) − y j(t)

� + gi K (y0(t) − yi(t)) (5)

where K is the SOF controller matrix to be designed.
It is different from the state-feedback controller since it
does not need the full state information of the closed-loop
system, thus the design of K is more challenging com-
pared with that in the state-feedback case. Furthermore,
define x(t) := [xT

1 (t), xT
2 (t), . . . , xT

n (t)]T ∈ R
nr , x̂(t) :=

[xT
0 (t), xT

0 (t), . . . , xT
0 (t)]T ∈ R

nr . Throughout this article, two
assumptions are taken regarding the communication graph of
agents: 1) graph G is connected, and 2) at least one follower
node can sense the information of the leader. It is known that
with assumptions 1) and 2), matrix L + G is positive definite
and hence, its eigenvalues are positive. In the following,
we denote the eigenvalues of matrix L + G as λi , i ∈ I , with

λ1  λ2  · · ·  λn . By using the distributed SOF protocol
in (5), the whole closed-loop system is represented by

ẋ0(t) = Ax0(t), ẋ(t) = Ax(t) + Bx̂(t) (6)

where A = In ⊗ A − (L + G) ⊗ BKC and B = G ⊗ BKC.
To show how the convergence rate of uncertain multiagent
systems is guaranteed, define the error signals to be z(t) :=
x(t)− x̂(t) and z0(t) := x0(t)−x0(t). Then the leader-follower
system in (6) can be represented in the sense of error as

ż(t) = Az(t). (7)

Thus, the exponential convergence rate is defined as follows.
Definition 2: The multiagent system in (2) and (3) achieves

leader-follower consensus with exponential convergence rate
σ � 0 if and only if |z(t)|  κe−σ t , t � 0, where z(0) is the
initial error and κ is a system-related constant.

Remark 1: Notice that an equivalent description of the
condition in Definition 2 is α(A) ≺ −σ with σ � 0.

Obviously from (7) and Definition 2, the leader-follower
consensus of the system in (2) and (3) is guaranteed with an
exponential convergence rate σ � 0 if and only if the spectral
abscissa α(A) ≺ −σ . As known in [19], there exists a unitary
matrix U such that

(U ⊗ In)
T
A(U ⊗ In) = In ⊗ A − � ⊗ BKC (8)

where

� = U T(L + G)U =

⎡
⎢⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

⎤
⎥⎥⎥⎦.

Expanding (8) yields

In ⊗ A − � ⊗ BKC

=

⎡
⎢⎢⎢⎣

A − λ1BKC 0 . . . 0
0 A − λ2BKC . . . 0
...

...
. . .

...
0 0 . . . A − λnBKC

⎤
⎥⎥⎥⎦. (9)

It follows from (9) that the spectral abscissa α(A) ≺ −σ
holds if and only if α(A − λi BKC) ≺ −σ , i ∈ I , hold,
or equivalently, there exist matrices Pi > 0, i ∈ I , such
that (A − λi BKC)T Pi + Pi (A − λi BKC) < −2σ Pi . In this
article, the positive leader-follower consensus of nominal and
uncertain multiagent systems with a guaranteed convergence
rate are studied, which are defined as follows:

Problem Nonnegative Consensus Tracking of Networked
Systems (NCTNS): For any unknown initial x(0) � 0, design
the protocol in (5) such that the follower agents in (2) approach
the leader in (3) asymptotically, that is, limt→∞(xi(t) −
x0(t)) = 0, ∀i ∈ I , with exponential convergence rate σ � 0
guaranteed, while the state trajectory of the multiagent system
remains nonnegative for t � 0.

Problem Robust Nonnegative Consensus Tracking of Net-
worked Systems (RNCTNS): For any unknown initial x(0) � 0,
design the protocol in (5) such that the uncertain follower
agents in (2) and (4), approach the uncertain leader in (3)
and (4) asymptotically, that is, limt→∞(xi(t) − x0(t)) = 0,
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∀i ∈ I , with exponential convergence rate σ � 0 guaranteed,
while the state trajectory of the uncertain multiagent system
remains nonnegative for t � 0.

III. MAIN RESULTS

This section is devoted to the analysis and discussion
of Problem NCTNS as well as Problem RNCTNS, for
obtaining some necessary and sufficient conditions of consen-
sus analysis and design. The corresponding numerical algo-
rithms for the computation of consensus controllers are also
developed.

A. Consensus Analysis

First, Problem NCTNS is considered. For ease of illustra-
tion, we define lmax := maxi∈I li . According to Lemma 1,
and observing the whole closed-loop system in (6) as well as
noticing the fact that the leader-follower consensus is achieved
if and only if all the matrices Ai := A − λi BKC, i ∈ I , are
Hurwitz [24], a necessary and sufficient condition for solving
Problem NCTNS can be obtained as below.

Proposition 1: Problem NCTNS can be solved if and only
if the following conditions are satisfied: 1) BKC � 0, 2)
A − lmaxBKC is Metzler, and 3) α(Ai ) ≺ −σ , i ∈ I .

Now, we are going to discuss Problem RNCTNS. In the
following of this article, we define β := max{λn , lmax}. By
using the special characterizations of positive systems, we
can obtain the condition to satisfy positive consensusability
of Problem RNCTNS, the proof of which is also provided
below.

Proposition 2: Problem RNCTNS can be solved if the
following conditions hold: 1) K � 0, 2) Am − β BMKCM is
Metzler, 3) α(AM − λ1 Bm K Cm) ≺ −σ .

Proof: Since β is the larger value between λn and lmax,
moreover, 1) K � 0 and BmKCm � 0, we have the
following facts: AM − λi BmKCm � Am − λi BMKCM �
Am − λi+1 BMKCM, AM − λi BmKCm � AM − λi+1 BmKCm �
Am − λi+1 BMKCM � Am − λn BMKCM � Am − β BMKCM

and Am − lmax BMKCM � Am − β BMKCM. Also, we have
BMKCM � BKC � BmKCm, AM −λi BmKCm � A −λi BKC �
Am − λi BMKCM � Am − λn BMKCM � Am − β BMKCM, and
AM − lmax BmKCm � A − lmaxBKC � Am − lmax BMKCM.
Hence, if 2) Am −β BMKCM is Metzler, then A−lmaxBKC and
A − λi BKC, ∀i ∈ I , where Am  A  AM, Bm  B  BM

and Cm  C  CM, are all Metzler. In addition, it follows
from the result in Lemma 4 that A − λi BKC, ∀i ∈ I , are
Hurwitz if AM − λ1 BmKCm is Hurwitz. Also, according to
the aforementioned consensusability convergence rate analysis
and Lemma 4, the convergence rate of uncertain networked
positive systems is guaranteed if 3) α(AM−λ1 BmKCm) ≺ −σ .
Then based on the analysis process of Proposition 1, it can be
seen that Problem RNCTNS can be solved if 1) to 3) hold.
Therefore, the proof is completed. �

Remark 2: It follows from the proof of Proposition 2 that
conditions 1) to 3) ensure matrices Ai , ∀i ∈ I , A − lmaxBKC
and A − βBKC, where Am  A  AM, Bm  B  BM and
Cm  C  CM, are all Metzler and Hurwitz.

If there is no uncertainty in the system parameters, on the
basis of Propositions 1 and 2, one can readily obtain the
following corollary for Problem NCTNS:

Corollary 1: Problem NCTNS can be solved if the fol-
lowing conditions are satisfied: 1) BKC � 0, 2) A − βBKC is
Metzler, 3) α(A − λ1BKC) ≺ −σ .

In order to overcome the difficulties of solving Prob-
lem NCTNS and Problem RNCTNS, a System Augmen-
tation Approach needs to be developed. For the following
closed-loop state-space model: For i ∈ I :

ξ̇i (t) = (A − λi BKC)ξi (t) ⇐�

⎧⎪⎨
⎪⎩

ξ̇i (t) = Aξi (t) + λi Bũi(t)

ỹi(t) = Cξi (t)

ũi (t) = −K ỹi(t)

(10)

one can introduce a new state component ũi (t) and define the
state variable as x̄i(t) = �

ξT
i (t) ũT

i (t)
�T

, then an equivalent
augmented system of (10) is obtained as follows:

E ˙̄xi (t) = Ai x̄i(t) (11)

where

E =
�

I 0
0 0

�
, Ai =

�
A λi B

−KC −I

�
∀i ∈ I .

The system augmentation approach for SOF consensus is
derived based on the descriptor system in (11). The basic idea
is to construct a Lyapunov function for the stability of the
augmented system in (11). With this idea, some results based
on Propositions 1 and 2 are obtained in the following theorems.

Theorem 1: Problem NCTNS can be solved if and only if
there are matrices Pi > 0 such that the following conditions
hold: 1) BKC � 0, 2) A − lmaxBKC is Metzler, 3)

AT
i Pi + PT

i Ai + 2σETPi < 0 (12)

where Ai are defined in (11)

Pi =
�

Pi 0
1

2
KC

1

2
I

�
, i ∈ I .

Proof: Notice that conditions 1) and 2) are as same as
those in Proposition 1. What needs to be proven as well is that
condition 3) is the counterpart of the corresponding condition
3) in Proposition 1.

Sufficiency of 3): Define a nonsingular matrix as

T =
�

I 0
−KC I

�
.

By performing a congruent transformation on (12) with T T

and T , one can get

	i := T T
�
AT

i Pi + PT
i Ai + 2σETPi

�
T

=
�

AT
i Pi + Pi Ai + 2σ Pi λi Pi B

λi BT Pi −I

�
< 0 (13)

from which the first leading principal signifies that matrices
α(Ai ) ≺ −σ , i ∈ I , are Hurwitz.
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Necessity of 3): If all matrices Ai are Hurwitz and
α(Ai ) ≺ −σ , then a set of matrices Qi > 0, i ∈ I can be
found to satisfy the following condition:

AT
i Qi + Qi Ai + 2σ Qi < 0.

A set of scalars ci � 0, i ∈ I can be found to satisfy that

−I−ciλ
2
i BT Qi

�
AT

i Qi + Qi Ai + 2σ Qi
�−1

Qi B < 0. (14)

Notice that

−I−ciλ
2
i BT Qi

�
AT

i Qi + Qi Ai + 2σ Qi
�−1

Qi B

= −I − λ2
i BTci Qi

�
AT

i ci Qi + ci Qi Ai + 2ciσ Qi
�−1

ci Qi B.

Let Pi = ci Qi , i ∈ I , then (14) becomes

−I − λ2
i BT Pi

�
AT

i Pi + Pi Ai + 2σ Pi
�−1

Pi B < 0. (15)

By Schur complement equivalence and appropriate matrix
manipulations, it follows that:

AT
i Pi + PT

i Ai + 2σETPi = T −T	i T
−1 < 0

where 	i is defined as (13). The whole proof is completed. �
Theorem 2: Problem RNCTNS can be solved if there is a

diagonal matrix P > 0 such that the following conditions can
be satisfied: 1) K � 0, 2) Am − β BMKCM is Metzler, 3)

ATP + PTA + 2σETP < 0 (16)

where

A =
�

AM λ1 Bm

−KCm −I

�
, P =

�
P 0

1

2
KCm

1

2
I

�
. (17)

Sketch of Proof: Conditions 1) and 2) are as same as those in
Proposition 2. Hence, condition 3) is to be proven. By defining
T̄ as

T̄ =
�

I 0
−KCm I

�
then it follows from Proposition 2, Lemma 2 as well as
the proof of Theorem 1 that (16) (that is, condition 3) in
Theorem 2 is comparable to condition 3) in Proposition 2.
The proof is completed. �

B. Consensus Design With Convergence Rate Optimization

In the last subsection, the consensusability with convergence
rate analysis of networked positive systems is discussed. In this
section, the consensus design conditions via semidefinite pro-
gramming are derived and the algorithms are also developed.

1) Consensus Design via Semidefinite Programming: First,
for Problem NCTNS, the consensus design condition corre-
sponding to Theorem 1 is developed in the following.

Theorem 3: Problem NCTNS can be solved under the
necessary and sufficient conditions that there are matrices
Pi > 0, i ∈ I , K and M which satisfy:

1) BKC � 0,
2) A − lmaxBKC is Metzler,
3)


i (M) =
�

AT Pi + Pi A + 2σ Pi + � λi Pi B − CT K T

λi BT Pi − KC −I

�
< 0

(18)

where � = −CT K T M − MTKC + MT M . Once the conditions
hold, a controller matrix K is obtained.

Proof: Since conditions 1) and 2) remain the same as
those in Theorem 1, we will prove condition 3).

Sufficiency of 3): It is worth noticing that, for any matrix
M , (KC − M)T(KC − M) ≥ 0 gives rise to

−CT K TKC ≤ −CT K T M − MTKC + MT M.

Then it follows from (18) that (12) holds.
Necessity of 3): If Problem NCTNS can be solved, then

one can always find matrices Pi > 0, i ∈ I , such that the
condition in (13) holds. By setting M = KC, it follows that:

−CT K TKC = −CT K T M − MTKC + MT M.

Substituting this into (12) gives rise to that (18) holds. On
the basis of Theorem 1, Problem NCTNS can be solved if
and only if conditions 1) to 3) are ensured. So far the proof
process is finished. �

For Problem RNCTNS, performing a similar analysis as
the proof in Theorem 3, the consensus design condition on
the basis of Theorem 2 is obtained as follows.

Theorem 4: Problem RNCTNS can be solved if there are
a diagonal matrix P > 0, matrices K and M , which enable
the conditions below establish:

1) K � 0,
2) Am − β BMKCM is Metzler,
3)


R(M) =
�

AT
M P + P AM + 2σ P + �̄ λ1 P Bm − CT

mK T

λ1 BT
m P − KCm −I

�
< 0 (19)

where �̄ = −CT
mK T M−MTKCm+MT M . Once the conditions

hold, a controller matrix K is obtained.
Remark 3: It is well known that the positive SOF control

problem of positive systems will result in bilinear inequality
conditions. Although several well-known methods have been
proposed for solving the positive SOF control problem of a
single positive system [12], [14], [27], [31], however, those
methods are not applicable to the problem of multiple positive
systems.

Remark 4: Notice that the conditions from (18) to (19)
belong to nonlinear/nonconvex matrix inequalities which are
not easy to solve. However, if M is known, they will all
become linear matrix inequalities (LMIs) which are con-
vex. Furthermore, if one defines the LMI as diag(
1(M),

2(M), . . . ,
n(M)) < γ I where γ is a scalar variable, from
the proof in Theorem 3, the value of γ will reach its minimum
value when M = KC. Therefore, if M is defined with
suitable values, Problem NCTNS (and Problem RNCTNS)
can be further solved by an iterative algorithm. The proof in
Theorem 3 implies that the initialization of M would also
determine whether the iterative algorithm leads to a solution.

By virtue of the theoretical results in Theorems 3 and 4,
we develop an algorithm (given in Algorithm 1) to solve
Problem NCTNS and Problem RNCTNS.
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Algorithm 1 NCTNS1

Step 1: Initialize the indexes k = 1 and γ (0) = 0. Consider-
ing (2) and (3), compute the initial matrix M (k): A−λi B M (k),
i ∈ I , are Hurwitz.
Step 2: Set M = M (k) and minimize γ (k)

Case 1 : s.t.

⎧⎪⎨
⎪⎩

BKC � 0

A − lmaxBKC ∈ M
r

diag(
1(M),
2(M), . . . ,
n(M)) < γ (k) I

with respect to Pi > 0 and K

Case 2 : s.t.

⎧⎪⎨
⎪⎩

K � 0

Am − β BMKCM ∈ M
r


R(M) < γ (k) I

with respect to P > 0 (diagonal) and K .
Step 3: If 0� γ (k), K is thus confirmed. This algorithm is
completed here. Otherwise, move to Step 4.
Step 4: If |γ (k) −γ (k−1)|/γ (k) ≺ η, where η is a pregiven toler-
ance, it is unable to get the required solution via this algorithm.
End the algorithm. Otherwise, assign matrix M (k+1) = KC
(respectively, M (k+1) = KCm for Case 2), update k = k + 1,
then go to Step 2.

2) Convergence Rate Optimization via Semidefinite Pro-
gramming: The robust case is considered and we assume
that Problem RNCTNS is solvable with the conditions in
Proposition 2 satisfied. According to Proposition 2, one has
K � 0, Am −β BMKCM is Metzler and α(AM −λ1 BmKCm) ≺
−σ , which indicates that AM − λ1 BmKCm � A − λ1BKC �
A − λ2BKC � · · · � A − λnBKC � Am − β BMKCM;
moreover, AM − λ1 BmKCm and A − λi BKC, i ∈ I , are
Metzler (and Hurwitz). According to Lemma 4, one has
α(AM −λ1 BmKCm) � α(A −λ1BKC) � α(A −λ2BKC) � · · ·
� α(A − λnBKC). Hence, from (9), one has α(A) = α(A −
λ1BKC)  α(AM − λ1 BmKCm). That means one can improve
the convergence rate by minimizing α(AM −λ1 BmKCm). Now,
the question is how to minimize α(AM − λ1 BmKCm). Notice
that K � 0 and BmKCm � 0. According to Lemma 4,
one can minimize α(AM − λ1 BmKCm) by increasing the
values of the elements of matrix K . To construct an opti-
mization algorithm, one can define an objective function as
�K�1 over the conditions in Theorem 4 and try to max-
imize it. Therefore, based on the discussions above, and
the result of Theorem 4, one can develop an iterative algo-
rithm for convergence rate optimization, which is given in
Algorithm 2.

Remark 5: Notice that the condition α(A) = α(A−λ1BKC)
does not always hold in Proposition 1. For Problem NCTNS,
one cannot draw a similar conclusion for convergence rate
optimization as Problem RNCTNS unless the conditions in
Corollary 1 are satisfied.

Remark 6: Algorithm 1 is developed to solve Prob-
lem RNCTNS and Problem NCTNS. In Algorithm 2, only
Problem RNCTNS is considered on the basis of Theorem 4
for improving the convergence rate.

Algorithm 2 NCTNS2
Step 1: Set k = 1. For the multiagent system in (2) and (3),
compute a feasible solution matrix K (1) by Algorithm 1. Then
set s(0) � �K (1)�1 and an initial matrix M (1) is obtained as
M (1) = KCm.
Step 2: Fix M = M (k)

Case 2 : Max s(k) � �K�1 s.t.

⎧⎪⎨
⎪⎩

K � K (k)

Am − β BMKCM ∈ M
r


R(M) < 0.

Step 3: If |s(k) − s(k−1)|/s(k) ≺ η, where η is a prescribed
tolerance, then an optimized K is obtained. End the algorithm.
Otherwise, assign M (k+1) = KCm and K (k+1) = K , set k =
k + 1 and go back to Step 2.

IV. SIMO AGENTS VIA LINEAR PROGRAMMING

Due to the positivity of agents, in what follows, the con-
sensus design with convergence rate optimization for Prob-
lem RNCTNS is to be discussed via the copositive Lyapunov
function approach. An important lemma regarding SOF control
for SIMO positive linear systems which will be used in proving
the theorem is presented at first.

Lemma 5: Suppose that (1) is an SIMO positive linear
system and there exists a row vector K such that matrix
A − BKC is Metzler. Then the following statements are
equivalent:

1) Matrix A − BKC is Hurwitz,
2) There exist a column vector p � 0 and a row vector K

such that pT A − KC ≺ 0 and pT B = 1 hold.
Proof: 2) ⇒ 1): It follows from pT A−KC ≺ 0 and pT B =

1 where p � 0 is a column vector that pT(A − BKC) ≺ 0
holds. According to Lemma 3, A − BKC is Hurwitz (and
Metzler).

1) ⇒ 2): From Lemma 3, it follows that if condition 1)
holds, there must exist a column vector q � 0 such that qT(A−
BKC) ≺ 0 holds. Notice that qT B � 0 is a scalar. Selecting
pT = qT/(qT B), we have that pT A − KC = (qT/(qT B))A −
KC = (qT/(qT B))A − ((qT B)/(qT B))KC = (qT/(qT B))A −
(qT/(qT B))BKC = (1/(qT B))qT(A−BKC) ≺0. Also, pT B =
(qT/(qT B))B = ((qT B)/(qT B)) = 1. Therefore, we can
conclude that a column vector p � 0 and a row vector K
can be found to satisfy pT A − KC ≺ 0 and pT B = 1 if
condition 1) holds. �

Using the above lemma, the theorem for
Problem RNCTNS is obtained. It should be pointing
that the result is presented under the framework of linear
programming and thus can be solved very efficiently.

Theorem 5: For SIMO agents, Problem RNCTNS can
be solved if a column vector p � 0 and a row vector K
exist such that the following conditions hold: 1) K � 0,
2) Am − β BMKCM ∈ M

r , 3) pT(AM + σ I ) − λ1KCm ≺ 0,
4) pT Bm = 1.

The proof can be done by applying Lemma 5 to the
statement (iii) of Proposition 2.

In Section III-B, we have discussed the consensus con-
vergence rate and come up with the idea to improve the
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convergence rate by increasing the values of the elements
of matrix K . Based on such an idea as well as the results
in Theorem 5, one can develop a linear-programming-based
algorithm for Problem RNCTNS.

Algorithm 3 NCTNS3
Maximize �K�1 subject to

SIMO :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K � 0

Am − β BMK CM ∈ M
r

pT AM − λ1 K Cm ≺ 0

pT Bm = 1

with respect to variables: vectors p � 0 and K .

Remark 7: In Algorithm 3, since the linear-
programming-based problem is convex, the objective function
�K�1 obtained is globally optimal subject to the condition
in Theorem 5. However, in Algorithm 2, the obtained �K�1

is a locally maximal solution. Hence, for SIMO agents, one
should use Algorithm 3 to solve Problem RNCTNS to obtain
a satisfactory consensus convergence rate rather than those in
Section III-B.

V. CASE STUDIES

To validate the effectiveness of the proposed criteria,
a numerical example and a positive tunnel diode circuit system
are considered in this section. Implementing Algorithms 1 to 3
with the MATLAB solver SeDuMi, the results obtained under
different cases are carried out to illustrate the effectiveness of
the results.

A. Numerical MIMO Case

In this section, we validate the proposed LMI approaches
for solving Problem NCTNS and Problem RNCTNS, using
a simulated MIMO example. Consider a networked positive
system in the form of (2) and (3) containing one leader and
four followers. For each agent, the system matrices are

A =
⎡
⎣ −10 6 4

4 −8 4
7 5 −12

⎤
⎦, B =

⎡
⎣ 3 0

1 0
2 2

⎤
⎦, C =

�
2 0 0
0 2 3

�
.

Suppose that

Am =
⎡
⎣ −10.1 5.8 4

3.9 −8.2 4
7 4.9 −12

⎤
⎦, Bm =

⎡
⎣ 2.9 0

0.9 0
1.9 1.9

⎤
⎦

Cm =
�

1.9 0 0
0 1.9 2.9

�
, AM =

⎡
⎣ −9.9 6.2 4

4.1 −7.8 4
7 5.1 −12

⎤
⎦

BM =
⎡
⎣ 3.1 0

1.1 0
2.1 2.1

⎤
⎦, CM =

�
2.1 0 0
0 2.1 3.1

�
.

Moreover, suppose the graph in Fig. 1 is used for modeling
the communication among agents, where the information of
leader can be sensed only by Followers 1 and 2. It is assumed

TABLE I

SPECTRAL ABSCISSAE α(A) CORRESPONDING TO (20)–(22)

Fig. 1. Communication graph.

that the Laplacian matrix of follower systems is as follows:

L =

⎡
⎢⎢⎣

2 −1 0 −1
−1 2 −1 0
0 −1 2 −1

−1 0 −1 2

⎤
⎥⎥⎦

and the diagonal matrix representing the interconnection from
the leader to followers is G = diag(1, 1, 0, 0). In this
case, the eigenvalues of L + G are λ1 = 0.3820, λ2 =
2.3820, λ3 = 2.6180, λ4 = 4.6180. Also, lmax = 3. We
have implemented Algorithms 1 and 2, and found that the
conditions in Theorem 3 with σ = 0.6 are feasible with

K =
�

0.27866 0.093495
0.093495 −0.070142

�
(20)

and the conditions in Theorem 4 with σ = 0.3 are feasible
with

K =
�

0.26492 0.078795
0.078795 0.023437

�
. (21)

It can be observed from (20) that the requirement of
nonnegative controller gain which is necessary in the single-
input single-output (SISO) case becomes unnecessary now.
With solution (21), we implemented Algorithm 3 by using
Yalmip, and found the following optimized solution:

K =
�

0.26492 0.078798
0.078798 0.16181

�
. (22)

The spectral abscissae α(A) corresponding to the solutions
from (20)–(22) are listed in Table I.

We can find that the spectral abscissae α(A) with (20)
and (21) are −0.71244 ≺ −0.6 and −0.40154 ≺ −0.3, respec-
tively. By comparing the spectral abscissae α(A) with (21)
and (22), we can see that the consensus convergence rate has
been improved significantly.

B. Positive Tunnel Diode Circuit

It has been shown in many research works that positive
systems theory does play an important role in modeling,
analysis, and control design for positive electric circuit sys-
tems [15]–[17]. To verify the effectiveness of the linear-
programming-based approaches for Problem RNCTNS,
we consider a positive circuit networked system with identical
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Fig. 2. Positive tunnel diode circuit.

TABLE II

SPECTRAL ABSCISSAE α(A) CORRESPONDING TO (24) AND (25)

positive tunnel diode circuit systems as agents. The positive
tunnel diode circuit shown in Fig. 2 consists of two resistors,
one capacitor, one inductor, one tunnel diode and one volt-
age source. Using Kirchhoff’s Laws, the dynamic system is
characterized by⎧⎨

⎩ iL1(t) = CV̇C1 (t) + VC1(t)

R2
+ VC1(t)

RD

1.5VC1(t) + u(t) = L1i̇ L1(t) + VC1(t) + R1iL1(t).
(23)

Let the voltage of capacitor VC1(t) and the current of
Inductor iL1(t) be state/output variables, (23) can be expressed
as the positive system in (2). The parameters of the circuit
in Fig. 2 are set as R1 = 0.5 �, C1 = 1 F , L1 = 1 H , and
R2 = 2 �. RD1 is modeled as an uncertain parameter [33]
and set to be 2 �  RD1  4 �. One of the advantages of
Algorithm 3 is that one can add some linear constraints on
the controller gain such as K  KM which is essential from
a practical point of view. In this case, we set K  [10, 10].
Suppose that this SIMO case has the same number of agents
and the communication graph as in Example 1.

By using the linear program of Theorem 5, a feasible
solution is found as

K = �
0.10798 0.7

�
. (24)

To show the effectiveness of Algorithm 4, we implemented
it with Yalmip and obtained the optimized solution for Prob-
lem RNCTNS as follows:

K = �
0.10827 10

�
. (25)

The spectral abscissae α(A) corresponding to the solu-
tions from (24) and (25) are shown in Table II. From
Table II, we can see that the spectral abscissa obtained via
Algorithm 4, i.e., (25), is much greater, which has shown
the effectiveness of Algorithm 4. The consensus tracking
performance with the obtained controllers is illustrated using
the circuit with the above parameters and RD1 = 2 �. The
evolution of voltage VC1(t) (solid line) and current iL1(t)

Fig. 3. Evolution of VC1 (t) of the circuits with controller (24).

Fig. 4. Evolution of VC1 (t) of the circuits with controller (25).

(dotted line) is shown in Figs. 3–6 from which we can see
that controller (25) has demonstrated faster consensus tracking
performance compared with controller (24) (the initial states
of Agents 0 to 4 are [1, 2]T, [0.3, 0.5]T, [0.6, 1]T, [1.2, 1.5]T

and [2, 3]T, respectively).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: NCTNSS WITH CONVERGENCE RATE OPTIMIZATION 9

Fig. 5. Evolution of iL1 (t) of the circuits with controller (24).

Fig. 6. Evolution of iL1 (t) of the circuits with controller (25).

The well-known approaches [12], [14], [27], [31] can solve
the SOF control problem for a single positive system. For
instance, by using the approach in [31] for this example,
a controller is obtained in following:

K = �
0.5827 −0.5234

�
(26)

which can only guarantee partially conditions of Proposition 1.
Controller (26) can only guarantee that

A1 = A − λ1BKC =
� −1 1

0.27743 −0.30008

�
(27)

is Metzler and Hurwitz as it has eigenvalues −1.2824 and
−0.017663. However

A2 = A − λ2BKC =
� −1 1

−0.88799 0.74674

�

A3 = A − λ3BKC =
� −1 1

−1.0255 0.87026

�

A4 = A − λ4BKC =
� −1 1

−2.1909 1.9171

�

Fig. 7. Evolution of VC1 (t) of the circuits with controller (26).

Fig. 8. Evolution of iL1 (t) of the circuits with controller (26).

are not Metzler and

BKC =
�

0 0
0.5827 −0.5234

�
is not positive. Using this controller, the evolution of voltage
VC1(t) (solid line) and current iL1(t) (dotted line) is shown
in Figs. 7 and 8 from which we can see that neither consensus
tracking nor positivity has been achieved.

C. Platoon Control of Holonomic Vehicles

The platooning of connected and automated vehicles has
recently attracted extensive research interests due to its poten-
tial benefits to road traffic, e.g., enhancing highway safety,
improving traffic capacity, and smoothness, and reducing fuel
consumption [20]. Platoon control aims to ensure that all the
vehicles in a group move at the same speed while maintaining
the desired space between adjacent vehicles. In this example,
the algorithm is applied to the platoon control of holonomic
vehicles moving on a plane [13]. It is assumed that each holo-
nomic vehicle in the group is assigned with a fixed and known
relative position within the target formation. Both damping
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Fig. 9. Platooning of vehicles with controller (30) (t = 0 s).

and actuator dynamics are considered in these vehicles. The
n vehicles are modeled as, for i ∈ I⎧⎪⎨

⎪⎩
ṗi(t) = qi(t)

q̇i(t) = −α1qi (t) + v(t)

v̇i (t) = −α2vi (t) + l(t)

(28)

where pi(t) := [pi1(t), pi1(t)]T ∈ R
2, and qi(t) :=

[qi1(t), qi1(t)]T ∈ R
2 are the position and the velocity of the

i th vehicle, respectively, and vi (t) := [vi1(t), vi1(t)]T ∈ R
2

is an actuator state, and li (t) := [li1(t), li1(t)]T ∈ R
2 is a

control input. The parameters α1 � 0 and α2 � 0 characterize
the damping and the actuator dynamics. The leader vehicle is
represented by ⎧⎪⎨

⎪⎩
ṗ0(t) = q0(t)

q̇0(t) = −α1q0(t) + v(t)

v̇0(t) = −α2v0(t).

(29)

In addition, it is assumed that the measured output is

yi(t) =
�

1 0 0
0 1 1

�⎡
⎣ pi(t)

qi(t)
vi(t)

⎤
⎦.

It is obvious that the vehicles represented in (28) and (29)
are positive systems. The platoon control of vehicles is said
to be achieved if their velocity vectors converge to the same
value and the positions maintain a prescribed separation,
that is, pi(t) − di → p j(t) − d j and vi (t) → v j (t) as
t → ∞ for any i, j ∈ I , where di = [di1, di2]T ∈ R

2

is the constant target position of the i th vehicle relative to
the center of the formulation. Since each vehicle is assumed
to be holonomic, and they evolve independently in the two
planar directions, we can solve the consensus problem in each
direction separately. Suppose here we have the same number
of agents and the communication graph as in Example 1. The
system parameters are chosen as α1 = 0, and α2 = 1. In this
case, the conditions BKC � 0 and A − lmaxBKC ∈ M

r are
ignored to obtain a feasible solution. Then Algorithm 1 gives

Fig. 10. Platooning of vehicles with controller (30) (t = 5 s).

Fig. 11. Platooning of vehicles with controller (30) (t = 10 s).

a feasible solution as follows:
K = �

73.555 248.65
�
. (30)

For simulation, it is assumed that

d1 =
�−1
−1

�
, d2 =

�−2
−2

�
, d3 =

�−3
−3

�
, d4 =

�−4
−4

�
.

Using (30), the platooning of vehicles is shown
in Figs. 9–11.

VI. CONCLUSION

In this article, the consensus tracking problem has been
solved for positive networked systems with SOF control.
Both the nominal and uncertain cases have been consid-
ered. All the agents are positive state-space models, and
the communication graph among followers is undirected and
connected. Three consensus analysis conditions for nominal
and uncertain networked positive systems have been obtained
applying the positive systems theory. Then by introducing
the system augmentation approach, two consensus design
conditions for positive MIMO agents have been obtained, and
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several semidefinite programming algorithms were developed
for the solution. In addition, due to the positivity of systems,
a linear-programming-based approach has been proposed for
the consensus design of positive SIMO agents. Case studies
have been carried out to show that the theoretical results and
the proposed approaches are effective for the solution.
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