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Abstract— This article investigates the positive consensus problem of
a special kind of interconnected positive systems over directed graphs.
They are composed of multiple fractional-order continuous-time positive
linear systems. Unlike most existing works in the literature, we study
this problem for the first time, in which the communication topology
of agents is described by a directed graph containing a spanning tree.
This is a more general and new scenario due to the interplay between
the eigenvalues of the Laplacian matrix and the controller gains, which
renders the positivity analysis fairly challenging. Based on the existing
results in spectral graph theory, fractional-order systems (FOSs) theory,
and positive systems theory, we derive several necessary and/or sufficient
conditions on the positive consensus of fractional-order multiagent
systems (PCFMAS). It is shown that the protocol, which is designed
for a specific graph, can solve the positive consensus problem of agents
over an additional set of directed graphs. Finally, a comprehensive
comparison study of different approaches is carried out, which shows
that the proposed approaches have advantages over the existing ones.

Index Terms— Directed graphs, fractional-order multiagent
systems, positive consensus, positive fractional-order systems
(FOSs), positive systems.

I. INTRODUCTION

A. Background and Motivation

Among various classes of dynamic systems, there is a special
type of systems named positive dynamic systems [1], which can be
traced back to a book [2] on fundamental systems theory published
by David Luenberger in 1979. Generally, a positive system can
be regarded as a dynamic system whose states and outputs are
constrained to be nonnegative given that its inputs and initial states
are nonnegative. Such kind of systems has attracted much attention in
the field of control recently (see [3]–[7] and the references therein).
An important motivation behind positive systems theory is that, in the
physical world, many descriptor variables are usually constrained to
be nonnegative due to their intrinsic characteristics or physical laws,
such as the material flows in a compartmental network [8], and the
probabilities of Markov chains in stochastic processes quantities [9].

Recently, the research of collective behaviors in an interconnected
positive system, referred to as a positive multiagent system, has
attracted much attention due to the research and development of
networked systems, such as the dynamical buffer networks and
the epidemic spreading processes. Moreover, even simple dynamic
models such as fractional/integer order integrators and first-order
lags with positive gains, as well as their series/parallel connections,
are all positive, which often represent some typical systems of
moving objects. Although each of their dynamics is simple, the
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global behavior of a group of them is complicated, and deserves
investigation, especially in the area of multiagent systems [10], [11].
Indeed, examples of positive multiagent systems are also ubiquitous
(see [12] and [13]).

B. Related Works and Challenges

Analysis and synthesis of interconnected positive systems using
positive systems theory have attracted much attention in recent years.
For instance, Ebihara et al. [10] proposed a novel framework for
the analysis and synthesis of interconnected systems constructed
by heterogeneous positive systems. Sun et al. [14] investigated the
consensus problem of multiagent systems using the property of
positive switched linear systems. Ogura and Preciado [15] proposed
an optimization framework for the design of a networked positive
linear system whose structure switches over a Markov process.
In particular, one hot issue is the positive consensus problem of
multiagent systems. The objective of positive consensus is to design
a controller such that the overall system can reach consensus and
meanwhile the states of all the agents remain nonnegative throughout
the evolutionary process. Despite the pioneering research on the
positive consensus of multiagent systems over undirected graphs
by Valcher and Zorzan [16] and Liu et al. [17], we have seen
very limited progress in positive consensus of multiagent systems
over directed graphs. This is because conventional positive systems
theory, which is used to effectively analyze the positive consensus
problem with undirected topologies, would unfortunately fail in the
case of directed topologies. This challenge was further tackled by
Wu and Su [18], Yang et al. [19], and Liu et al. [20], and sufficient
conditions of positive consensus are given.

In contrast to the works on integer-order positive multiagent
systems mentioned above, the study of positive fractional-order
interconnected systems is a recent new trend since many fractional-
order interconnected systems (and the individual agent) also contain
nonnegative variables (see [21]–[23] and the references therein).
Hien and Chu [24] proposed a decentralized control strategy for posi-
tive fractional-order interconnected systems with heterogeneous time-
varying delays. Huong and Nahavandi et al. [25] designed the positive
reduced-order distributed functional observers for positive fractional-
order interconnected time-delay systems. More recently, Ye et al. [26]
investigated the positive consensus problem of fractional-order multi-
agent systems (PCFMAS) over undirected graphs. It should be noted
that the consensus problem of fractional-order multiagent systems
is difficult since they possess more complex and general dynamics
(compared with the integer-order systems) [27]–[32]. Furthermore,
this problem will become more challenging while agents interacting
over a directed graph due to the interplay between the (complex)
eigenvalues of the Laplacian matrix and the controller gains, which
renders the positivity analysis infeasible.

C. Contributions

This note studies the PCFMAS over directed graphs. The main
contributions of this work in comparison with [16]–[19], [26], [33]
are summarized as follows: 1) this is the first attempt to address this
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problem for positive fractional-order multiagent systems over directed
graphs, which includes the integer-order positive multiagent systems
as a special case; 2) stability results are extended from real fractional-
order systems (FOSs) to complex FOSs, and several necessary and/or
sufficient conditions are proposed for analysis and synthesis of
positive consensus; and 3) the protocol, which is designed for a
given directed graph, can also solve the positive consensus problem
of agents over an additional set of directed graphs.

Notation: The notation ⊗ means Kronecker product. The imaginary
unit is denoted as j ( j 2 = −1). The symbol A∗ denotes the conjugate
transpose of matrix A. For symmetric matrices A, B ∈ Rn×n , the
notation A > B (respectively, A ≥ B) means that A − B is
positive definite (respectively, positive semidefinite). For matrices
A, B ∈ Rm×n , the notation A � B (respectively, A � B) means
that A − B is positive (respectively, nonnegative). For matrix A,
A ∈ M means that A is Metzler, and A ∈ H means that A is
Hurwitz. The spectral abscissa of matrix A is represented by ξ(A).
For a complex matrix A ∈ C

p×p , Re(A) denotes the real part and
Im(A) denotes the imaginary part. The symbol N+ denotes the set
of positive integers. The symbol Ip denotes a p × p identity matrix.
Matrix A is an M-matrix if its off-diagonal elements are nonpositive,
and its eigenvalues have nonnegative real parts. Matrices are assumed
having compatible dimensions if not stated specifically.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

The following results [1], [34], [35] pave the way for further
analysis on the PCFMAS over directed graphs.

1) Fractional-Order Fundamentals: The Caputo fractional deriva-
tive and integral of order α ∈ (n − 1, n), n ∈ N+, for a continuous
function f (t) are, respectively, defined as

Dα f (t) = 1

�(1 − α)

� t

0
(t − τ)−α f (n)(τ )dτ

and

I α f (t) = 1

�(α)

� t

0
(t − τ)α−1 f (τ)dτ

where f (n)(·) denotes the nth-order derivative of f (·) and L(·)
denotes the Gamma function

�(α) =
� t

0
e−t tα−1dt . (1)

Consider a fractional-order continuous-time linear system

Dαx(t) = Ax(t) + Bu(t), α ∈ (0, 2) (2)

where A ∈ Cp×p and B ∈ Cr×r are system matrices with appropriate
dimensions, and x(t) ∈ Cp and u(t) ∈ Cr are the system state and
control input, respectively. Moreover, we have the following useful
results.

Definition 1 [36, Definition 1]: When A and B are real matri-
ces, the FOS in (2) is called positive if for any nonnegative
initial value and input, its state always remains nonnegative, that
is, x(t) ≥ 0 for t ≥ 0.

Lemma 1 [36, Theorem 2]: When A and B are real matrices, the
FOS in (2) is positive if and only if A is Metzler and B is nonnegative.

Lemma 2 [35]: When A and B are real matrices, the positive FOS
in (2) with order α ∈ (0, 1] and u(t) = 0 is asymptotically stable if
and only if one of the following equivalent conditions is satisfied.

1) Matrix A is Hurwitz.
2) There is a diagonal matrix P > 0 such that

PA + AT P < 0 or AP + PAT < 0.

Lemma 3 [1]: When A1 and A2 are real matrices, A1, A2 ∈ M,
A1 � A2 ⇒ ξ(A1) ≤ ξ(A2).

2) Key Lemmas:
Lemma 4: The FOS in (2) with u(t) = 0 is asymptotically stable

if and only if |arg(λi(A))| > απ/2 where λi(A), i = 1, 2, . . . , p,
denotes the eigenvalues of A and arg(·) denotes the argument of a
complex number.

Proof: Denotes x(t) := Re(x(t)) + j Im(x(t)) where Re(x(t)) ∈
R

p and Im(x(t)) ∈ R
p . The FOS in (2) with u(t) = 0 can

be rewritten as DαRe(x(t)) + DαIm(x(t)) j = Re(A)Re(x(t)) −
Im(A)Im(x(t))+Im(A)Re(x(t)) j +Re(A)Im(x(t)) j, α ∈ [1, 2). For
clearer illustration, we represent it into the following real form:�

DαRe(x(t))
DαIm(x(t))

�
=

�
Re(A) −Im(A)

Im(A) Re(A)

��
Re(x(t))
Im(x(t))

�
. (3)

Therefore, the complex FOS in (2) with u(t) = 0 can be equivalently
characterized by the real system in (3). By [35, Th. 2], it is known
that (3) is asymptotically stable if and only if |arg(λi(Ã))| > απ/2
(i = 1, 2, . . . , p), where

Ã :=
�

Re(A) −Im(A)

Im(A) Re(A)

�
. (4)

Define

T = 1√
2

�− j Ip − j Ip

Ip −Ip

�
, T ∗ = 1√

2 j

�−Ip j Ip

−Ip − j Ip

�
.

Via simple matrix manipulations, we have

T ∗ÃT =
�A 0

0 Ā
�

where Ā is the conjugate of A. Notice that we have |arg(λi (A))| >

απ/2 if and only if |arg(λi(Ā))| > απ/2. Therefore, we have
|arg(λi(A))| > απ/2 if and only if |arg(λi(Ã))| > απ/2, which
further indicates that the FOS in (2) [or (3)] with u(t) = 0 is
asymptotically stable if and only if |arg(λi(A))| > απ/2 for
i = 1, 2, . . . , p. �

By Lemma 4, we can readily obtain the following conclusion for
α ∈ (0, 1).

Lemma 5 [35]: The FOS in (2) with order α ∈ (0, 1) and
u(t) = 0 is asymptotically stable if matrix A is Hurwitz.

Lemma 6 [35]: The FOS in (2) with order α ∈ [1, 2) and
u(t) = 0 is asymptotically stable if and only if the following matrix
is Hurwitz: � A sin(απ/2) A cos(απ/2)

−A cos(απ/2) A sin(απ/2)

�
. (5)

Proof: Notice that the matrix in (5) is Hurwitz is equivalent to
that (sin(απ/2) + cos(απ/2) j)A is Hurwitz. Then along the line in
the proof of Lemma 4 and using [35, Th. 3], it can be shown that,
the FOS in (2) with order α ∈ [1, 2) and u(t) = 0, is asymptotically
stable if and only if the matrix in (5) is Hurwitz. �

3) Graph Theory: The topology of a multiagent system can be
properly described by its graph. A graph is called directed if all its
edges are directed from one vertex to another, and thus undirected
graphs can be regarded as a special type of directed graphs. In this
note, we investigate a multiagent system with directed communication
topology that can be described by a directed graph G(V, E), where
V := {1, 2, . . . , N} is the vertex set and E ⊂ V × V is the edge set.
For any k, l ∈ V , we assume that (k, l) ∈ E if and only if agent l is
able to access the full state of agent k. A path of graph G is defined
as a sequence {k, l, m, . . . , o, p, q} such that all the successive tuples
(k, l), (l, m), . . . , (o, p), (p, q) ∈ E . Graph G is assumed to contain
a spanning tree, that is, there is a root k ∈ V such that there exists a
path from k to any other vertex l ∈ V . The adjacency matrix of graph
G is defined and denoted as an N × N matrix � where [�]kl = 1 if
(l, k) ∈ E and [�]kl = 0 otherwise. It is assumed that graph G
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contains no self-loops, that is, [�]kk = 0, k ∈ V . Define the neighbor
set for any vertex k ∈ V as ℵk := {l ∈ V : (l, k) ∈ E}. The Laplacian
matrix of graph G is defined and denoted as an N × N matrix L such
that, k, l ∈ V

[L]kl =

⎧⎪⎨
⎪⎩

N	
m=1

[�]km , if k = l

−[�]kl , if k �= l.

(6)

By the well-known results in [34], the eigenvalues, λi , i = 1, 2,

. . . , N , of a Laplacian matrix L containing a spanning tree, are
in general complex which can be ordered as 0 = Re(λ1(L)) <

Re(λ2(L)) ≤ · · · ≤ Re(λN (L)). Moreover, β(L) :=
max{
N

m=1[�]km : k = 2, 3, . . . , N}.

B. Problem Formulation

Consider a homogeneous multiagent system constituting of N
identical agents in a directed communication topology, and the
dynamics of each agent can be described by the following positive
fractional-order linear system:

Dαxk(t) = Axk(t) + Buk(t), k = 1, 2, . . . , N (7)

where α ∈ (0, 2), xk(t) := [xk1, xk2, . . . , xkp]T ∈ Rp is the state of
agent k, and uk(t) ∈ Rr is the input of agent k. The pair (A, B) is
assumed to be stabilizable. By Lemma 1, the system in (7) is positive
if and only if A ∈ Rp×p is Metzler and B ∈ Rp×r is nonnegative.

The following distributed state-feedback protocol is utilized:

uk(t) = K
N	

l=1

[�]kl(xl − xk), k = 1, 2, . . . , N (8)

where K is the controller gain matrix to be determined. For
convenience of expression, define the global state x(t) := [xT

1 (t),
xT

2 (t), . . . , xT
N (t)]T ∈ Rpn . Then the overall multiagent system in (7)

can be described as

Dαx(t) = 
x(t) (9)

where 
 = IN ⊗ A−L ⊗ B K .
Based on the above model settings, the problem to be solved is

formulated and defined as follows.
Problem PCFMAS: Considering the positive fractional-order mul-

tiagent system in (7) with the state-feedback protocol in (8), given
any nonnegative initial states xk(0) � 0, k = 1, 2, . . . , N , determine
gain matrix K such that the consensus of the multiagent system in (7)
is achievable, that is, limt→∞(xl(t) − xk(t)) = 0, ∀l, k = 1, . . . , N ,
and the state trajectory of each agent remains nonnegative, that is,
xk(t) � 0, k = 1, 2, . . . , N for t � 0.

III. MAIN RESULTS

In this section, several necessary and sufficient conditions and
analyses on the solvability of problem PCFMAS are derived using
graph theory and positive systems theory. Equation (10), as shown at
the bottom of the page.

Theorem 1: Problem PCFMAS with α ∈ (0, 2) is solved by gain
matrix K if and only if all the following conditions are satisfied.

1) B K � 0.
2) A − β(L)B K ∈ M.
3) |arg(λi(A − λk(L)B K ))| � απ/2 where i = 1, 2, . . . , p,

k = 2, 3, . . . , N .
Proof: Notice that 
, as shown at the bottom of the page.

By Lemma 1, the positivity of the dynamics of all the agents, that
is, the positivity of system (9) is preserved if and only if system
matrix 
 is Metzler. By definition, 
 ∈ M if and only if B K is
nonnegative and A − 
N

m=1[�]km B K , k = 2, 3, . . . , N, are Metzler.
As β(L) = max{
N

m=1[�]km : k = 2, 3, . . . , N}, it is easy to see
that, A − 
N

m=1[�]km B K , k = 2, 3, . . . , N, are Metzler if and only
if A−β(L)B K is Metzler. So, the positivity of the multiagent system
in (9) is preserved if and only if condition 1) B K � 0 and condition
2) A − β(L)B K ∈ M.

Define ek(t) = 
N
l=1[�]kl (xl − xk), k = 1, 2, . . . , N , and

e(t) = [eT
1 (t), eT

2 (t), . . . , eT
N (t)]T ∈ Rpn , we have

e(t) = −(L ⊗ Ip)x(t) (11)

and

Dαe(t) = (IN ⊗ A−L ⊗ B K )e(t). (12)

Since graph G contains a spanning tree, there always exists a
coordinate transformation for e(t) [37]–[40] such that the overall
dynamic system in (12) becomes

Dα�k(t) = Ak�k(t), k = 2, . . . , N (13)

where Ak := A − λk(L)B K . Note that limt→∞ ek(t) = 0,

∀k = 1, . . . , N is equivalent to limt→∞ �k(t) = 0, ∀k = 2, . . . , N .
Therefore, the consensus problem of system (12) is equivalently
formulated as the stabilization problem of the N −1 systems in (13).
By Lemma 4, one can obtain the condition 3) |arg(λi (Ak))| �
απ/2 where i = 1, 2, . . . , p, k = 1, 2, . . . , n for consensus. The
whole proof is completed. �

Remark 1: A necessary and sufficient analysis condition of
fractional-order multiagent systems over directed graphs is estab-
lished in Theorem 1, in which the eigenvalues λk , k = 2, . . . , N ,
of graph G are generally complex numbers. Due to the interplay
between complex eigenvalues and controller gain, conventional pos-
itive systems theory cannot be applied to addressing the positive
consensus design problem. Hence, the positive consensus design

�
(W AT + AW ) sin(απ/2) − 2θ B Q BT (AW − W AT) cos(απ/2)

(AW − W AT) cos(απ/2) (W AT + AW ) sin(απ/2) − 2θ B Q BT

�
< 0 (10)


 = IN ⊗ A−L ⊗ B K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A −
N	

m=1

[�]1m B K [�]12 B K · · · · · · [�]1(N−1) B K [�]1N B K

[�]21 B K A −
N	

m=1

[�]2m B K · · · · · · [�]2(N−1) B K [�]2N B K

...
...

. . . · · · . . .
...

[�]N1 B K [�]N2 B K · · · · · · [�]N(N−1) B K A −
N	

m=1

[�]Nm B K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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problem becomes much more complicated than that with undirected
connected graphs [26].

Theorem 2: Problem PCFMAS with α ∈ (0, 1) is solved by gain
matrix K = Q BTW−1 if there exist a positive-definite M-matrix
W > 0, a matrix Q > 0 and a sufficiently large scalar μ � 0 such
that all the following conditions are satisfied.

1) B Q BT � 0.
2) AW − β(L)B Q BT + μW � 0.
3) W AT + AW − 2Re(λ2(L))B Q BT < 0.

Proof: Since W is a positive definite M-matrix [41], we have
W−1 � 0 and W−1 > 0. Taking K = Q BTW−1, then condition 1)
B Q BT � 0 and W−1 � 0 lead to B K = B Q BTW−1 � 0. Moreover,
if condition 2) AW − β(L)B Q BT + μW = (A − β(L)B Q BTW−1 +
μI )W � 0 holds, postmultiplying it by matrix W−1 � 0 yields
A − β(L)B Q BTW−1 + μI = A − β(L)B K + μI � 0 where μ � 0
is a sufficiently large scalar. Therefore, we have B K � 0 and
A − β(L)B K ∈ M.

For W−1 > 0, it is known that condition 3) W AT + AW −
2Re(λ2(L))B Q BT < 0 is equivalent to ATW−1 + W−1 A −
2Re(λ2(L))W−1 B Q BTW−1 < 0. Taking K = Q BTW−1,
we define the Lyapunov equation for Ak = A − λk(L)B K as
k(W, λk(L)) = (A − λk(L)B K )∗W + W (A − λk(L)B K ) =
ATW + W A − 2Re(λk(L))W B Q BTW , k = 2, . . . , N . Since 0 =
Re(λ1(L)) < Re(λ2(L)) ≤ · · · ≤ Re(λN (L)) and ATW +
W A − 2Re(λ2(L))W B Q BTW < 0, we have N (W, λN (L)) ≤
N−1(W, λN−1(L)) ≤ · · · ≤ 3(W, λ3(L)) ≤ 2(W, λ2(L)) =
ATW + W A − 2Re(λ2(L))W B Q BTW < 0. It follows from the Lya-
punov stability theory [2] that system matrices Ak = A − λk(L)B K ,
k = 2, . . . , N , are Hurwitz stable, and thus the FOSs in (13) with
α ∈ (0, 1) are asymptotically stable by Lemma 5. The whole proof
is completed. �

Corollary 1: Suppose the system matrices A ∈ M and B � 0 are
unknown but fixed, and they have known upper and lower bounds
such that A ∈ [ Ǎ, Â], B ∈ [B̌, B̂], and Ǎ ∈ M with B̌ � 0, then
problem PCFMAS α ∈ (0, 1) is solved by gain matrix K = Q BTW−1

if there exist a diagonal matrix W > 0 and Q > 0 such that all the
following conditions hold.

1) Q � 0.
2) ǍW − β(L)B̂ Q B̂T ∈ M.
3) W ǍT + ǍW − 2Re(λ2(L))B̂Q B̂T ∈ M.
4) W ÂT + ÂW − 2Re(λ2(L))B̌Q B̌T < 0.

Proof: As B � 0, conditions 1), 2), and 3) imply that
∀A ∈ [ Ǎ, Â], ∀B ∈ [B̌, B̂], B Q BT � 0, AW − β(L)B Q BT ∈ M,
and W AT + AW − 2Re(λ2(L))B Q BT ∈ M, respectively. It is
easy to see W ÂT + ÂW − 2Re(λ2(L))B̌Q B̌T � W AT + AW −
2Re(λ2(L))B Q BT, then by Lemmas 2 and 3, and the proof in
Theorem 2, we have W AT + AW − 2Re(λ2)B Q BT < 0 when
condition 4) W ÂT + ÂW − 2Re(λ2(L))B̌Q B̌T < 0 holds. Therefore,
the FOSs in (13) subject to interval uncertainties are asymptotically
stable for α ∈ (0, 1). The whole proof is completed. �

Theorem 2 and Corollary 1 have provided the synthesis condi-
tions on the PCFMAS with α ∈ (0, 1). Next, we will go even
further to investigate the problem with α ∈ (1, 2) and propose the
conditions for positive consensus. For clearer illustration, we define
θk = Re(λk(L)) sin(απ/2) − Im(λk(L)) cos(απ/2) and γk =
Im(λk(L)) sin(απ/2) + Re(λk(L)) cos(απ/2) for k = 2, 3, . . . , N .

Theorem 3: Problem PCFMAS with α ∈ [1, 2) is solved by gain
matrix K = Q BTW−1 if there exist an M-matrix W > 0, a matrix

Q > 0 and a sufficiently large scalar μ � 0 such that all the following
conditions are satisfied.

1) B Q BT � 0.
2) AW − β(L)B Q BT + μW � 0.
3) θ := min{θk} � 0.
4) The inequality in (10) holds for k = 2, 3, . . . , N .

Proof: As the conditions in 1) and 2) are derived regarding
the positivity of the system, the proof of them is similar to that in
Theorem 2, and thus omitted here. Next, we will give the proof for
the consensus condition of agents. Define

Ă =
�

A sin(απ/2) −A cos(απ/2)

A cos(απ/2) A sin(απ/2)

�

Q̆ =
�

Q 0
0 Q

�
> 0, �k =

�
θk Ip γk Ip

−γk Ip θk Ip

�

B̄ =
�

B 0
0 B

�
, W̄ =

�
W 0
0 W

�
> 0, K̆ =

�
K 0
0 K

�

where 1 � sin(απ/2) � 0 and −1 ≺ cos(απ/2) � 0. Taking
K = Q BTW−1, then condition 4) can be represented as W̆ ĂT +
ĂW̆ − 2θ B̆ Q̆ B̆T < 0. By following the line in the proof of
Theorem 2 and condition 3) θ := min{θk} � 0, we can show that
W̆ ĂT + ĂW̆ − 2θk B̆ Q̆ B̆T ≤ W̆ ĂT + ĂW̆ − 2θ B̆ Q̆ B̆T < 0 for
k = 2, 3, . . . , N . The inequalities W̆ ĂT + ĂW̆ − 2θk B̆ Q̆ B̆T for
k = 2, 3, . . . , N , can be rewritten as

( Ă − �k B̆ K̆ )W̆ + W̆ ( Ă − �k B̆ K̆ )T < 0

which further indicates that Uk := Ă − �k B̆ K̆ is Hurwitz. Define

S = 1√
2

�− j Ip − j Ip

Ip −Ip

�
, S∗ = 1√

2 j

�−Ip j Ip

−Ip − j Ip

�
.

It follows from (14), as shown at the bottom of the page, that
(sin(απ/2)+ cos(απ/2) j)Ak is also Hurwitz. Regarding the Ak as a
unit and using the similarity transformation to (14) again, we show
that (14) is similar to

Ă − λk(L)B̆ K̆ :=
�

Ak sin(απ/2) Ak cos(απ/2)

−Ak cos(απ/2) Ak sin(απ/2)

�

which means that Ă − λk(L)B̆ K̆ for k = 2, 3, . . . , N , are Hurwitz.
By Lemma 6, it follows that the FOSs in (13) with α ∈ [1, 2) are
asymptotically stable. The whole proof is completed. �

IV. NUMERICAL SIMULATION

In this section, a comprehensive comparison study of solving
problem PCFMAS is made between our proposed approaches and
those in [16]–[19] and [26].

A. Fractional-Order α ∈ (0, 1)

This example borrowed from [26] aims to compare the approach of
Theorem 2 with that proposed in [26]. Consider a four-agent system
in (7) where the system matrices (see [26, Example 1]) are

A =

⎡
⎢⎢⎣

−16 1 1 1
2 −4 2 3
1 4 −7 3
2 2 3 −7

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0.25
1.25
0.25
0.25

⎤
⎥⎥⎦.

Note that, according to Lemma 4, this FOS with α ∈ (0, 1) is unsta-
ble since its eigenvalues are {8.5321, −16.2367, −3.5033, −8.7921}.

S∗Uk S :=
�
(sin(απ/2) + cos(απ/2) j)(A − λk B K ) 0

0 (sin(απ/2) + cos(απ/2) j)(A − λk B K )

�
∈ H (14)

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 11,2022 at 09:19:58 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Fig. 1. Directed communication graph G.

The communication topology is described by a directed graph G
(see Fig. 1) whose Laplacian matrix is

L =

⎡
⎢⎢⎣

1 0 0 −1
−1 1 0 0
−1 −1 2 0
0 0 −1 1

⎤
⎥⎥⎦. (15)

By the above model settings, it is easy to see that β(L) = 2.
The Laplacian eigenvalues are, respectively, λ1(L) = 0, λ2(L) =
1.5 + 0.866 j , λ3(L) = 1.5 − 0.866 j and λ4(L) = 2. Since the
approach proposed in [26] requires that the communication graphs be
undirected and connected, it cannot address such a positive consensus
problem in this case. In the simulation, we set μ = 10 000. Solving
the linear matrix constraints in Theorem 2, we can obtain that

K = �
0.4908 1.5120 0.4273 0.4791

�
. (16)

It can be verified that

B K =

⎡
⎢⎢⎣

0.1227 0.3780 0.1068 0.1198
0.6135 1.8900 0.5342 0.5989
0.1227 0.3780 0.1068 0.1198
0.1227 0.3780 0.1068 0.1198

⎤
⎥⎥⎦ � 0

A−β(L)B K =

⎡
⎢⎢⎣

−16.2454 0.2440 0.7863 0.7604
0.7731 −7.7800 0.9317 1.8022
0.7546 3.2440 −7.2137 2.7604
1.7546 1.2440 2.7863 −7.2396

⎤
⎥⎥⎦

∈ M.

Also, the eigenvalues of A2, A3, and A4 are

A2 : {−2.0840 − 1.0933 j,−8.8463 − 0.8576 j,

− 9.6350 + 0.3068 j, −16.3627 − 0.0492 j}
A3 : {−2.0840 + 1.0933 j, −8.8463 + 0.8576 j,

− 9.6350 − 0.3068 j, −16.3627 + 0.0492 j}
A4 : {−2.9934, −16.4035, −9.5409 ± 0.7270 j}

respectively. Therefore, the conditions in Theorem 1 are all satisfied
for α ∈ (0, 1).

To show the robustness of the controller (16), we consider another
directed graph G1 (see Fig. 2) whose Laplacian matrix is

L1 :=

⎡
⎢⎢⎣

1 0 0 −1
−1 2 −1 0
−1 −1 2 0
0 −1 −1 2

⎤
⎥⎥⎦. (17)

It is easy to see that β(L1) = 2 and the Laplacian eigenvalues are,
respectively, λ1(L1) = 0, λ2(L1) = 2 + 1 j , λ3(L1) = 2 − 1 j and

Fig. 2. Directed communication graph G1.

λ4(L1) = 3. Therefore, this graph belongs to the set: {(G, L) | 1.5 �
Re(λ2(L)), 2 � β(L)}. Also, the eigenvalues of A2, A3, and A4 are

A2 : {−3.1935 − 1.2452 j, −9.1213 − 1.3387 j,

− 9.7752 + 0.4132 j, −16.3886 − 0.0687 j}
A3 : {−3.1935 + 1.2452 j, −9.1213 + 1.3387 j,

− 9.7752 − 0.4132 j, −16.3886 + 0.0687 j}
A4 : {−4.0351, −16.4948, −10.0940 ± 0.8788 j}

respectively. All the conditions in Theorem 1 are satisfied for
α ∈ (0, 1) as well.

B. Fractional Order α ∈ [1, 2)

1) Integer-Order α = 1: This example borrowed from [19] is
employed for the comparison of our proposed approach in Theorem 3
and those in [16]–[19] and [26]. Consider a four-agent system in (7)
over a directed graph, where the system matrices (see [19, Example
1]) are

A =
⎡
⎣−3 2 3

1 −4 2
2 1 −3

⎤
⎦, B =

⎡
⎣3 0

1 0
2 2

⎤
⎦.

Note that this system with α = 1 is unstable since its eigenvalues
are {4.2891, −3.3546, −4.9346}. The communication topology is
described by the graph G of the previous example and its Laplacian
matrix is given in (15). As graph G has a directed spanning tree, the
approaches in [17] (undirected graphs) and [18] (strongly-connected
balanced directed graphs) cannot address the positive consensus prob-
lem in this case. Moreover, using the approach proposed in [19] to
solve the positive consensus problem in this example, unfortunately,
no solutions are obtained. This is because the solvability of the
algorithm developed in [19] heavily relies on the initial value, and
no solution is guaranteed. Solving the linear matrix constraints in
Theorem 3, we can obtain that

K =
�

0.2984 0.1371 0.1903
−0.0876 −0.0361 5.7993

�
. (18)

Substituting (18) into the conditions of Theorem 1, we have
B K � 0 and A − β(L)B K ∈ M. Also, the eigenvalues of A2, A3,
and A4 are

A2 : {−3.3203 − 0.9459 j, −5.0992 − 0.1216 j

− 21.0977 − 10.2005 j}
A3 : {−3.3203 + 0.9459 j, −5.0992 + 0.1216 j

− 21.0977 + 10.2005 j}
A4 : {−3.6614, −5.2696, −27.0919}

respectively. Therefore, the conditions in Theorem 1 are all satisfied
for α = 1.
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2) Fractional-Order α = 1.3: Consider a four-agent system in (7)
where the system matrices are

A =

⎡
⎢⎢⎣

−16 10 2 1
4 −4 5 5
1 10 −7 3
2 10 3 −1

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

2.5
12.5
2.5
2.5

⎤
⎥⎥⎦.

This system with fractional order α = 1.3 is unstable since
its eigenvalues are {9.2487, −19.0312, −11.7861, −6.4314}. The
communication topology of agents is described by the graph G
in the previous example, with its Laplacian matrix given in (15).
θ = 0.9434. Solving the matrix constraints in Theorem 3, we have

K = �
0.1594 1.8668 0.1831 0.0999

�
. (19)

It can be verified that

B K =

⎡
⎢⎢⎣

0.3986 4.6670 0.4578 0.2497
1.9928 23.3350 2.2891 1.2485
0.3986 4.6670 0.4578 0.2497
0.3986 4.6670 0.4578 0.2497

⎤
⎥⎥⎦ � 0

A−β(L)B K =

⎡
⎢⎢⎣

−16.7971 0.6660 1.0844 0.5006
0.0144 −50.6700 0.4218 2.5030
0.2029 0.6660 −7.9156 2.5006
1.2029 0.6660 2.0844 −1.4994

⎤
⎥⎥⎦

∈ M.

Also, the eigenvalues of A2, A3, and A4 are

A2 : {−38.4416 − 19.4452 j, −16.8833 − 0.3879 j

− 0.6741 − 1.0584 j − 8.6626 − 0.2745 j}
A3 : {−38.4416 + 19.4452 j, −16.8833 + 0.3879 j

− 0.6741 + 1.0584 j, −8.6626 + 0.2745 j}
A4 : {−50.7076, −16.8403, −0.6635, −8.6707}

respectively. Therefore, the conditions in Theorem 1 are all satisfied
for α = 1.3.

To show the robustness of controller (19), we considered another
graph topology G2 (see Fig. 3) for a seven-agent system whose
Laplacian matrix is

L2 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 −1
−1 2 −1 0 0 0 0
−1 −1 2 0 0 0 0
−1 0 −1 2 0 0 0
−1 0 0 −1 2 0 0
0 0 0 0 −1 2 −1
0 0 0 0 −1 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is easy to see that β(L2) = 2 and the Laplacian eigenvalues
are, respectively, λ1(L2) = 0, λ2(L2) = 1.5 + 0.866 j , λ3(L2) =
1.5 − 0.866 j , λ4(L2) = λ5(L2) = 2, and λ6(L2) =
λ7(L2) = 3. Therefore, this graph belongs to the set: {(G, L) |
Re(λk(L)) sin(απ/2) − Im(λk(L)) cos(απ/2) � 0.9434, 2 � β(L)}.
The eigenvalues of A2, A3, A4 (A5) and A6 (A7) are

A2 : {−38.4416 − 19.4452 j, −16.8833 − 0.3879 j

− 0.6741 − 1.0584 j,−8.6626 − 0.2745 j}
A3 : {−38.4416 + 19.4452 j, −16.8833 + 0.3879 j

− 0.6741 + 1.0584 j, −8.6626 + 0.2745 j}
A4 (A5) : {−50.7076, −16.8403, −0.6635, −8.6707}
A6 (A7) : {−74.1860, −17.0503, −1.2571, −8.8298}

respectively. Therefore, the conditions in Theorem 1 are all satisfied
for α = 1.3 as well.

Fig. 3. Directed communication graph G2.

Fig. 4. Consensus result of agents with controller (21).

C. Fractional-Order Linear Electric Circuit

Consider a fractional-order linear electric network consisting of
multiple positive electric circuits [22] as shown in Fig. 2 (seven
agents). By Kirchhoff’s voltage law, we have�

e(t) = L1 Dαi1(t) + R(i1(t) − i2(t))

R(i1(t) − i2(t)) = L2 Dαi2(t).
(20)

Choosing i1(t) and i2(t) as the two state variables and e(t) as the
control input, leads to the system in (2) with the system matrices

A =

⎡
⎢⎢⎣

− R1

L1

R1

L1

R1

L2
− R1

L2

⎤
⎥⎥⎦, B =

⎡
⎣ 1

L1
0

⎤
⎦.

The values of the parameters are chosen as R1 = 1 
 and
L1 = L2 = 1 H. Letting α = 1.1, and assuming the communication
topology of agents is described by the graph G in Example A with
its Laplacian matrix (15), a feasible solution is found as

K = �
15.7041 0.0568

�
. (21)

Using the obtained controller in (21), the consensus result of agents
is shown in Fig. 4 where the initial values of Agents 1–4 are,
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respectively, [0 0.5]T, [1 1.5]T, [2 2.5]T, [3 3.5]T. We can see
from Fig. 4 that the positivity of agents is preserved while achieving
consensus.

V. CONCLUSION

This article has investigated the consensus issue for positive
fractional-order interconnected systems over directed graphs. The
objective of positive consensus is to design a controller such that
the overall system can reach consensus and meanwhile the states
of all the agents remain nonnegative throughout the evolutionary
process. Using the spectral graph theory, FOSs theory, and positive
systems theory, several necessary and/or sufficient conditions on the
PCFMAS have been derived. A comprehensive comparison study of
different approaches has been conducted and shown that the proposed
approaches outperformed the recent published works. In the future,
we will explore the positive consensus issue of nonlinear fractional-
order linear dynamics with order α ∈ (0, 2).
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