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Decentralized H2 Control for Discrete-Time Networked
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Abstract— In this brief, we study the decentralized H2 state-feedback
control problem for networked discrete-time systems with positivity
constraint. This problem (for a single positive system), raised recently in
the area of positive systems theory, is known to be challenging due to
its inherent nonconvexity. In contrast to most works, which only provide
sufficient synthesis conditions for a single positive system, we study this
problem within a primal–dual scheme, in which necessary and sufficient
synthesis conditions are proposed for networked positive systems. Based
on the equivalent conditions, we develop a primal–dual iterative algorithm
for solution, which helps prevent from converging to a local minimum.
In the simulation, two illustrative examples are employed for verification
of our proposed results.

Index Terms— Discrete-time systems, H2 state-feedback con-
trol, networked systems, positive systems.

I. INTRODUCTION

Among various classes of dynamic systems, there is a special type
of systems named positive dynamic systems. The first systematic
introduction for such kinds of systems can be traced back to a
book on fundamental systems theory published by Luenberger [24].
Generally speaking, a positive system can be regarded as a dynamic
system whose states and outputs are constrained to be nonnegative
given that its inputs and initial states are nonnegative [10]. During
the past two decades, there has been a large quantity of research
devoted to the investigation of positive systems from a variety of
engineering and scientific communities, due to its broad applications
in systems biology, pharmacokinetics, and electric circuits [5], [17],
[18], [19], [20]. A strong motivation behind the development of
positive systems theory is that, in the physical world, many descriptor
variables are usually constrained to be nonnegative due to their
intrinsic characteristics or physical laws, such as the material flows
in a compartmental network [2]. Meanwhile, positive systems theory
also finds its way in modeling stochastic or probabilistic processes,
since probabilities are intrinsically nonnegative quantities, such as
Markov chains [27].

In recent years, a considerable amount of effort has been devoted
to addressing the analysis and synthesis issues of positive systems
with different performance indices (see [11], [16], [25], [29], [33],
[35], [36] and references therein). Taking advantage of the positivity
property of systems, one can discover some nice features that are
not usually present in the analysis of nonpositive systems. Exploring
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such nice features is exactly the major object in the study of positive
systems theory. As we know, synthesizing a closed-loop system with
positivity constraint is, in general, not an easy task by using the
fundamental theory of nonpositive systems simply. However, this
challenge can be surprisingly circumvented, since a stable positive
system admits a diagonal Lyapunov matrix in the stability condition.
Because of such a nice property, the state-feedback controller design
problem for a closed-loop system with positivity constraint becomes
much easier. In addition to the systems’ stability, it is found that
such a diagonal feature also exists in the KYP-type linear matrix
inequality characterization for H∞ performance of positive systems
[26], [32]. Therefore, the positivity-preserving and/or structured H∞

state-feedback control problem of positive systems can be straight-
forwardly formulated as a semidefinite programming problem that
is convex. Disappointingly, recent studies have shown that, such a
diagonal feature does not exist in the H2 performance characterization
for positive systems anymore. The main reason is that, the Lyapunov
matrix appearing in the H2 performance characterization is exactly
the controllability (or observability) Gramian of the closed-loop
system, which is usually not a diagonal matrix [4], [30]. Thus, the
positivity-preserving state-feedback control of positive systems under
H2 performance becomes fairly challenging due to nonconvexity.
To tackle such a challenging issue for a single positive system,
continuous-time systems were considered, and a useful algorithm for
the solvability of suboptimal gains has been developed. In particular,
Ebihara et al. [6], [7], [8] have made significant contributions to
address the issues of both continuous-time and discrete-time positive
dynamic systems and proposed a couple of conditions that are repre-
sented as linear matrix inequalities for the computation of suboptimal
gains.

More recently, the study of networked positive systems has become
a new trend, as a large-scale system that consists of multiple inter-
connected positive subsystems may exhibit complicated and peculiar
characteristics [22], [23], [31]. As such, it is worth investigating net-
worked positive systems in the area of positive systems theory [15],
[25], [34]. In this brief, we are going to address the H2 state-feedback
control problem for discrete-time networked systems with positivity
constraint. The main contributions of this work in comparison with
[8] are summarized as follows: 1) the H2 state-feedback control
problem for a single positive system is extended to that for networked
positive systems; 2) novel and effective synthesis characterizations for
the positive H2 control are derived in terms of matrix inequalities;
and 3) two tractable optimization algorithms are developed by using
the proposed theoretical results.

Notations: We use R to represent the sets of real numbers. For
symmetric matrices A, B ∈ Rn×n , the notation A > B (respectively,
A ≥ B) means that A − B is positive definite (respectively, positive
semidefinite). For matrices A, B ∈ Rm×n , the notation A ≻ B
(respectively, A ⪰ B) means that A − B is positive (respectively,
nonnegative). The symbol tr(P) denotes the trace of matrix P ∈

Rn×n . The symbol diag(A1, A2, . . . , AN ) denotes the block diagonal
matrix in which the matrices A1, A2, . . . , AN are diagonal elements.
The symbol ∗ represents the off-diagonal element of a symmetric

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on April 26,2023 at 04:33:59 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4100-9813
https://orcid.org/0000-0003-1879-9730
https://orcid.org/0000-0002-0294-0640


2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

matrix. Metzler matrix A is denoted by A ∈ M. Matrices are assumed
in compatible dimensions.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

In this section, we present some preliminary results to pave the
way for further analysis on H2 state-feedback control of networked
discrete-time systems with positivity constraint.

First, the following discrete-time linear system is considered:

G :

{
x(k + 1) = Ax(k) + Ew(k)

z(k) = Cx(k)
(1)

where A ∈ Rn×n , E ∈ Rn×m , and C ∈ Rr×n are system matrices,
and x(k), w(k), and z(k) are system state, disturbance input, and
performance output, respectively. The basic definition and a useful
result for the positivity of system (1) are provided as follows.

Definition 1 [10]: We call system (1) a positive system, if for any
x(0) ⪰ 0 and input w(k) ⪰ 0, the system state variable x(k) ⪰ 0 and
the system output z(k) ⪰ 0 for t ⪰ 0.

Lemma 1 [10]: System (1) is positive if and only if its system
matrices are all nonnegative.

In what follows, we assume that system (1) is always a positive
system. The H2 norm of system (1) (denoted by ∥G∥2) can be
characterized by the following lemma.

Lemma 2 [4], [30]: For a given γ > 0, the system in (1) is
asymptotically stable with H2 norm ∥G∥2 < γ , if and only if one
of the following two equivalent conditions holds.

1) Primal: ∃ P > 0 and Z > 0, such that tr(Z) < γ 2P AP E
∗ P 0
∗ ∗ I

 > 0 (2)

[
Z CP
∗ P

]
> 0. (3)

2) Dual: ∃ Q > 0 and W > 0, such that tr(W ) < γ 2Q AT Q CT

∗ Q 0
∗ ∗ I

 > 0 (4)

[
W ET Q
∗ Q

]
> 0. (5)

The linear matrix inequality conditions of this lemma are very
fundamental conclusions in the Gramian-based H2 performance
characterization [4], [28], [30].

B. Problem Formulation

Consider a discrete-time networked system constituting N agents,
where the i th agent is described by

xi (k + 1) = Ai i xi (k) +

N∑
i ̸= j

Ai j x j (k) + Bi ui (k) + Eiwi (k)

zi (k) = Ci x(k) + Di ui (k), i = 1, 2, . . . , N (6)

where Ai i ∈ Rn×n , Bi ∈ Rn×m , Ci ∈ Rr×n , Di ∈ Rc×p , and Ei ∈ Rn×p

are the i th agent’s system matrices, and xi (k) ∈ Rn , ui (k) ∈ Rm ,
wi (k) ∈ Rp , and zi (k) ∈ Rr are the i th agent’s local system
state, local control input, disturbance input, and performance output,
respectively. The interconnections of N agents are characterized by∑N

i ̸= j Ai j x j (k) ( j = 1, 2, . . . , N ). Similar to the problem setting

in [8], we assume that Ei and Ai j ( j = 1, 2, . . . , N ) are nonnegative.
System (6) can be expressed in a compact form

G :

{
x(k + 1) = Ax(k) + Bu(k) + Ew(k)

z(k) = Cx(k) + Du(k)
(7)

where

xT(k) :=
[
xT

1 (k), xT
2 (k), . . . , xT

N (k)
]T

uT(k) :=
[
uT

1 (k), uT
2 (k), . . . , uT

N (k)
]T

wT(k) :=
[
wT

1 (k), wT
2 (k), . . . , wT

N (k)
]T

zT(k) :=
[
zT

1 (k), zT
2 (k), . . . , zT

N (k)
]T

A :=
[
Ai j

]
N×N

B := diag(B1, B2, . . . , BN )

E := diag(E1, E2, . . . , EN )

C := diag(C1, C2, . . . , CN )

D := diag(D1, D2, . . . , DN ).

The following local state-feedback law:

ui (k) = Ki xi (k), i = 1, 2, . . . , N . (8)

With the state-feedback gain Ki ∈ Rm×n is applied to the system in
(6), and then, a closed-loop form is obtained as follows:

GF :

{
x(k + 1) = (A + BK )x(k) + Ew(t)
z(k) = (C + DK )x(t)

(9)

where K := diag(K1, K2, . . . , KN ).
In this brief, we investigate the decentralized H2 state-feedback

control problem for discrete-time networked linear systems with
positivity constraint. Based on the above model settings, the definition
of the problem that we are going to solve is given as follows.

Problem PH2SC: Considering the positive discrete-time linear
system in (6) with the local state-feedback control law in (8), given
any γ > 0 and initial state x(0) > 0, determine a set of gain matrices
Ki (i = 1, 2, . . . , N ), such that the closed-loop system in (9) is
asymptotically stable with H2 performance ∥GF∥2 < 0, and the state
trajectories of agents remain nonnegative.

III. MAIN RESULTS

The analysis and synthesis conditions of Problem PH2SC are
derived in this section, by virtue of positive systems theory and H2

performance analysis.

A. Positive Decentralized H2 Control Analysis and Synthesis

It is well known that, even for positive systems, the Lyapunov
matrix in the H2 performance characterization is the controllability
(or observability) Gramian of the closed-loop system, which is
usually not diagonal [4], [30]. The following analysis result for
the positive decentralized H2 control of system (9) can be readily
obtained by Lemmas 1 and 2.

Proposition 1: For γ ≻ 0, Problem PH2SC is solved by
gain matrix K , if and only if the following two conditions hold
simultaneously.

1) Matrices A + BK ⪰ 0, C + DK ⪰ 0.
2) Primal: ∃ P > 0 and Z > 0, such that tr(Z) < γ 2, andP (A + BK )P E

∗ P 0
∗ ∗ I

 > 0 (10)

[
Z (C + DK )P
∗ P

]
> 0 (11)
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or Dual: ∃ Q > 0 and W > 0 such that tr(W ) < γ 2Q (A + BK )T Q (C + DK )T

∗ Q 0
∗ ∗ I

 > 0 (12)

[
W ET Q
∗ Q

]
> 0. (13)

In the following theorem, a novel primal–dual characterization that
is equivalent to the condition we summarized in Proposition 1 is
derived for the analysis of Problem PH2SC.

Theorem 1: For γ > 0, Problem PH2SC is solved by gain matrix
K , if and only if one of the following two conditions holds.

1) Primal: ∃ P > 0, Z > 0, and a scalar α > 0, such that
tr(Z) < γ 2, and

P + αBK K T BT AP E −αBK
∗ P 0 P
∗ ∗ I 0
∗ ∗ ∗ α I

 > 0 (14)

Z + αDK K T DT C P −αDK
∗ P P
∗ ∗ α I

 > 0 (15)

and matrices A + BK ⪰ 0, C + DK ⪰ 0.
2) Dual: ∃ Q > 0, W > 0, and a scalar β > 0, such that

tr(W ) < γ 2
Q + βK T K AT Q CT

−βK T

∗ Q 0 Q B
∗ ∗ I D
∗ ∗ ∗ β I

 > 0 (16)

[
W ET Q
∗ Q

]
> 0 (17)

and matrices A + BK ⪰ 0, C + DK ⪰ 0.
Proof: Since the nonnegative constraints on matrices

A + BK ⪰ 0 and C + DK ⪰ 0 are common in conditions
1) and 2), one only needs to show that inequalities (14) and (15)
are equivalent to inequalities (10) and (11). Define two nonsingular
matrices as follows:

T1 =


I 0 0 BK
0 I 0 0
0 0 I 0
0 0 0 I

, T2 =

I 0 DK
0 I 0
0 0 I

.

Performing a congruent manipulation to inequality (14) by T1 and
T T

1 yields 
P (A + BK )P E 0
∗ P 0 P
∗ ∗ I 0
∗ ∗ ∗ α I

 > 0 (18)

which indicates that inequality (10) holds. Performing a similar
matrix manipulation to inequality (15) by T2 and T T

2 , we haveZ (C + DK )P 0
∗ P P
∗ ∗ α I

 > 0 (19)

which also indicates that inequality (11) holds. This completes the
sufficiency part.

On the other hand, assuming that inequalities (10) and (11) hold,
there always exist two sufficiently large scalars α1 > 0 and α2 > 0,
such thatP (A + BK )P E

∗ P 0
∗ ∗ I

 >

0 0 0
∗ (1/α1)P PT 0
∗ ∗ 0

 ≥ 0

(20)[
Z (C + DK )P
∗ P

]
>

[
0 0
∗ (1/α2)P PT

]
≥ 0.

(21)

Taking α = max{α1, α2}, and by Schur complement equivalence,
we have inequalities (18) and (19) hold. Performing a congruent
manipulation to inequality (18) by T −1

1 and T −T
1 yields inequal-

ity (14). Similarly, pre- and post-multiplying inequality (19) by T −1
2

and T −T
2 yields inequality (15). This completes the necessity part.

Based on the above discussion, we have that inequalities (14) and (15)
are equivalent to inequalities (10) and (11).

To show the equivalence of (16) and (12), we can similarly define

T3 =


I 0 0 −K T

0 I 0 0
0 0 I 0
0 0 0 I

.

Along the same lines, we can readily show that inequality (16) is
equivalent to inequality (12). The proof is completed. □

Remark 1: A novel primal–dual characterization is established for
the H2 state-feedback control of positive discrete-time networked
systems. The most prominent characteristic of Theorem 1 is that,
it gives a necessary and sufficient condition in which the Lyapunov
matrix P (or Q) and the controller gain K are completely separated.
This can be observed from the inequalities in (10)–(17). The property
allows us to parametrize the controller gains without imposing any
specific structures on the Lyapunov matrix. In other words, we can
impose some particular constraints on the controller K , such as
sparsity, positiveness, and negativenes, along with a free parameter
P in the computation, which is going to be presented in the sequel.

By employing the useful results that we have initially concluded
in Theorem 1, the corresponding necessary and sufficient conditions
on the synthesis of networked positive systems are derived in the
following theorem for Problem PH2SC.

Theorem 2: For given γ ≻ 0, Problem PH2SC is solved by gain
matrix K = (1/α)F (or K = (1/β)F), if and only if one of the
following two conditions holds.


P + αBK K T BT AP E αBK

∗ P 0 P
∗ ∗ I 0
∗ ∗ ∗ α I

 >


αB(K − M)(K − M)T BT 0 0 0

∗ 0 0 0
∗ 0 0 0
∗ 0 0 0

 ≥ 0 (22)

Z + αDK K T DT C P αDK
∗ P P
∗ ∗ α I

 >

αD(K − M)(K − M)T DT 0 0
∗ 0 0
∗ ∗ 0

 ≥ 0 (23)
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1) Primal: ∃ P > 0, Z > 0, F , M , and a scalar α > 0, such that
tr(Z) < γ 2, and

8 AP E −B F
∗ P 0 P
∗ ∗ I 0
∗ ∗ ∗ α I

 > 0 (24)

3 C P −DF
∗ P P
∗ ∗ α I

 > 0 (25)

and matrices Aα + B F ⪰ 0, Cα + DF ⪰ 0 where 8 :=

P − αB M MT BT
+ B F MT BT

+ B M FT BT and 3 := Z −

αDM MT DT
+ DF MT DT

+ DM FT DT.
2) Dual: ∃ Q > 0, W > 0, L , M , and a scalar β > 0, such that

tr(W ) < γ 2
Q−βMT M+LT M+MT L AT Q CT

− LT

∗ Q 0 Q B
∗ ∗ I D
∗ ∗ ∗ β I

 > 0

(26)[
W ET Q
∗ Q

]
> 0

(27)

and matrices Aβ + BL ⪰ 0, Cβ + DL ⪰ 0.
Proof: Taking F = αK and substituting it into inequalities as

in (22) and (23), shown at the bottom of the previous page, we have
8 AP E αBK
∗ P 0 P
∗ ∗ I 0
∗ ∗ ∗ α I

 > 0 (28)

3 C P αDK
∗ P P
∗ ∗ α I

 > 0 (29)

which can also be represented as (22) and (23), indicating that
inequalities (14) and (15) hold. This completes the sufficiency part.

Assume that inequalities (14) and (15) hold. Taking M = K , then
inequalities (14) and (15) lead to (28) and (29), since αBK K T BT

=

αBK K T BT
+ αB(K − M)(K − M)T BT

= −αB M MT BT
−

αBK MT BT
−αB M K T BT and αDK K T DT

= αDK K T DT
+αD(K −

M)(K − M)T DT
= −αDM MT DT

− αDK MT DT
− αDM K T DT.

Moreover, Aα+B F = Aα+αBK ⪰ 0 and Cα+DF = Cα+αDK ⪰

0. Therefore, the condition in 1) of Theorem 2 is equivalent to the
condition in 1) of Theorem 1.

Regarding condition 2), by taking L = βK and following a similar
line as above, we can readily show that condition 2) in Theorem 2
is equivalent to condition 2) in Theorem 1. The whole proof is
completed. □

Remark 2: By introducing two additional variables, that is, α (or
β) and F , another novel equivalent condition is derived for the
synthesis of Problem PH2SC in Theorem 2 where the actual gain
matrix is solved implicitly by K = (1/α)F (or K = (1/β)F). Note
that there is no conservatism in the synthesis result, although we have
introduced new variables to the condition.

B. Optimization Algorithms for Solution

In this section, two semidefinite programming algorithms are
developed to solve Problem PH2SC, among which the first one is
associated with the following results.

Proposition 2: For given γ ≻ 0, Problem PH2SC is solved
by a gain matrix K = SH−1, if ∃ P > 0, Z > 0,

S := diag(S1, S2, . . . , SN ), and H := diag(H1, H2, . . . , HN ), such
that the following two conditions hold.

1)

AH + BS ⪰ 0, C H + DS ⪰ 0. (30)

2) tr(Z) < γ 2 P AH + BS E
∗ H + H T

− P 0
∗ ∗ I

 > 0 (31)

[
Z C H + DS
∗ H + H T

− P

]
> 0 (32)

where Hi (i = 1, 2, . . . , N ) is an M-matrix (that is, Hi is a
matrix of which the eigenvalues have nonnegative real parts,
and the off-diagonal elements are nonpositive [3]).

Proof: It follows from (31) and (32) that H + H T > P > 0,
which further indicates that the eigenvalues of H locate at the
open right half-plane. Since the off-diagonal elements of Hi are
nonpositive, the matrix Hi (or H ) is an M-matrix. Therefore, we have
H−1

⪰ 0. For condition 1), we have matrices (AH + BS)H−1
=

A+ BK ⪰ 0 and (C H + DS)H−1
= C + DK ⪰ 0, which guarantees

the positivity. Using [ [8], Lemma 1], and a change of variables
readily yields condition 2). □

As the constraints we derived in Proposition 2 are represented
as linear matrix inequalities, a convex optimization algorithm for
minimizing ρ := γ 2 can be developed as follows.

Algorithm H2SC1:

Minimize ρ

s.t. {tr(Z) < ρ, (30), (31), (32)}

w.r.t. {P > 0, Z > 0, S, H ∈ M}.

Although Algorithm H2SC1 remains conservative, it can provide
us with good starting points for the primal–dual iterative algorithm
to be developed. By using the results concluded in Theorem 2,
we can develop a primal–dual iterative algorithm for the solvability
of Problem PH2SC as follows.

Algorithm H2SC2:
Step 1. Set i = 1, ρ(0)

= 0, δ = 0,γ̃ = γ̃ 0 ≻ 0. Compute an
M (1) using Algorithm H2SC1.
Step 2. Fix M = M (i), minimize ρ(i)

= ρ

s.t.



tr(Z) < ρ,

(24),

(25), w.r.t.{P > 0, Z > 0, α > 0, F}.

Aα + B F ⪰ 0,

Cα + DF ⪰ 0,

If ρ(i)
⪯ γ̃ 2, a feasible K = (1/α)F is found. STOP.

Otherwise, go to next step.
Step 3. If |ρ(i)

− δ|/ρ(i)
≺ θ (a prescribed positive tolerance),

STOP. Otherwise, go to next step.
Step 4. If |ρ(i)

−ρ(i−1)
|/ρ(i)

≺ θ , set δ = ρ(i), i = i +1, update
M (i)

= (1/α)F , go to Step 5. Otherwise, set i = i + 1, update
M (i)

= (1/α)F , then go to Step 2.
Step 5. Fix M = M (i), minimize ρ(i)

= ρ

s.t.



tr(W ) < ρ,

(26),

(28), w.r.t.{Q > 0, W > 0, β > 0, L}.

Aβ + BL ⪰ 0,

Cβ + DL ⪰ 0,

If ρ(i)
⪯ γ̃ 2, a feasible K = (1/β)L is found. STOP.

Otherwise, go to next step.
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TABLE I
H2 PERFORMANCE OF THE CLOSED-LOOP SYSTEM WITH

CONTROLLERS IN EXAMPLE 1

Step 6. If |ρ(i)
− δ|/ρ(i)

≺ θ , STOP. Otherwise, go to next
step.
Step 7. If |ρ(i)

−ρ(i−1)
|/ρ(i)

≺ θ , set δ = ρ(i), i = i +1, update
M (i)

= (1/β)L , go to Step 2. Otherwise, set i = i + 1, update
M (i)

= (1/β)L , then go to Step 5.
Remark 3: In Step 1, we compute a starting point M (1) using

Algorithm H2SC1. We denote the H2 performance of the closed-loop
system with M (1) by γ0. Algorithm H2SC2 contains two different
inner loops (from Steps 2 to 4 or from Steps 5 to 7) and a single
outer loop (from Steps 2 to 7). The first inner loop with the starting
point M (1) can always find a set of new points K guaranteeing that
ρ(i+1)

⪯ ρ(i)
⪯ γ 2

0 , that is, γ (i+1)
⪯ γ (i)

⪯ γ0 for i ⪰ 1. While
the first inner loop gets stuck at a local minimum K = M (i), it will
jump to the second inner loop, which possesses the same convergence
property as the first one. Therefore, throughout the overall iterations
of Algorithm H2SC2, we have that γ (i+1)

⪯ γ (i)
⪯ γ0 for

i ⪰ 1.

IV. ILLUSTRATIVE EXAMPLES

In this section, two illustrative examples are employed to verify
the proposed results and algorithms in Section III. The algorithms
are implemented with Yalmip and SeDuMi in MATLAB 2014a.

A. Example 1

The positive discrete-time linear system in (6) is considered,
in which

A11 =

 0 0.06 0
0.39 0.45 0.36
0.37 0 0.39

, A12 =

0.18 0 0
0 0.06 0
0 0.11 0


A21 =

 0 0.4 0
0 0 0.1

0.08 0 0

, A22 =

0.5 0.1 0.4
0.2 0.9 0
0 0 1.5


E1 =

1.5845
0

1.2905

, E2 =

 0
1.8621
1.6147


B1 =

0.5 0
0 1.2

1.3 0

, B2 =

0 1.5 0
0 0.1 0
0 0 3


D1 =

[
0.20 0.22
0.17 0

]
, D2 =

[
0.29 0

0 0.17

]
C1 =

[
0 0.8 0.2

]
, C2 =

[
0.4 0.8 0

]
.

Using Algorithm H2SC1 to the networked positive system, two
controller gains were obtained as follows:

K1 =

[
0.1052 0.0531 0.0167

−0.0296 −0.3166 −0.2758

]
(33)

K2 =

[
−0.3114 −0.0632 0.1936
0.0177 0.0027 −0.4752

]
. (34)

Using Algorithm H2SC2 with the starting point (33) and (34), two
improved controller gains were obtained after five iterations

K1 =

[
0.0047 0 0

−0.0043 −0.375 −0.3

]
(35)

K2 =

[
−0.3333 −0.0667 0.1724

0 0 −0.5

]
. (36)

Fig. 1. Sum of squares of system unit-pulse responses with controllers
(35) and (36).

The H2 performance of the closed-loop system with controllers
(33)–(36) is summarized in Table I. From the table, we can see that
Algorithm H2SC1 provided an acceptable solution, and Algorithm
H2SC2 provided an improved solution. Notice that in the time
domain, the H2 norm of system has the following characteriza-
tion: ∥GF∥

2
2 = 6∞

k=0tr{G̃F(k)G̃T
F(k)}, where G̃F(k) is the unit-pulse

response matrix [30]. For instance, the matrix G̃F(k) in this example
is a 4 × 4 matrix of which the element in the first row and
second column represents the unit-pulse response of system channel
Input 2 to Output 1. Therefore, the sum of squares of system
unit-pulse responses (sampling period is 0.1 s) with controller gains
(35) and (36) is shown in Fig. 1 from which we can see that the
suggested control strategy appears to be effective to control the
networked positive system in this example. Besides, we can further
verify the positivity of the closed-loop system with controller gains
(35) and (36) by Lemma 1.

B. Example 2

The positive discrete-time linear system in (6) is considered,
in which the system matrices are

A11 =

[
0.7 0.2
0.1 0.5

]
, A22 =

[
0.3 0.9
0 0.59

]
A33 =

[
0.2 0
0.2 0.5

]
, A12 = AT

21

[
0.27 0
0.23 0.31

]
A13 = AT

31

[
0.24 0

0 0

]
, A23 = AT

32

[
0.04 0
0.3 0.2

]
E1 =

[
0.46
0.65

]
, E2 =

[
0.29
0.75

]
, E3 =

[
0.55
0.42

]
B1 =

[
0.11
0.14

]
, B2 =

[
0.01
0.96

]
, B3 =

[
0.97
0.12

]
D1 = 0.5, D2 = 0.1, D3 = 0.19, C1 =

[
0.26 0.75

]
C2 =

[
0.89 0.72

]
, C3 =

[
0.4 0.93

]
.

It can be easily verified that this open-loop system is unstable. Using
Algorithm H2SC1 to the networked positive system, three controller
gains were obtained as follows:

K1 =
[
−0.7050 −1.7991

]
(37)
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Fig. 2. Sum of squares of system unit-pulse responses with controllers (40)
to (42).

TABLE II
H2 PERFORMANCE OF THE CLOSED-LOOP SYSTEM WITH

CONTROLLERS IN EXAMPLE 2

K2 =
[
0.0017 −0.6106

]
(38)

K3 =
[
−0.2002 0.0091

]
. (39)

Using Algorithm H2SC2 with the starting point of (37)–(39), three
improved controller gains were obtained after seven iterations

K1 =
[
−0.7143 −1.8182

]
(40)

K2 =
[
0 −0.6146

]
(41)

K3 =
[
−0.2062 0

]
. (42)

The H2 performance of the closed-loop system with controllers
(37)–(42) is summarized in Table II. From the table, we can see that
Algorithm H2SC1 provided an acceptable solution as the starting
point, and Algorithm H2SC2 provided an improved solution. The
system unit-pulse response (sampling period is 0.1 s) with controller
gains (40)–(42) under the expected H2 performance is shown in
Fig. 2. The suggested control strategy appears to be very effective
to control the networked positive system. Besides, we can further
verify the positivity of the closed-loop system with controller gains
(40)–(42) by Lemma 1.

V. CONCLUSION

This brief studied the H2 state-feedback control problem for
networked discrete-time systems with positivity constraint. This
challenging problem for a single positive system was raised in the
field of positive systems theory recently. In contrast to most works,
which only provide sufficient synthesis conditions, the problem was
studied within a primal–dual framework, and the necessary and
sufficient synthesis conditions were proposed. Based on the derived
conditions, a primal–dual iterative algorithm was developed for
solution. Two illustrative examples were employed for the verification
of our proposed results and algorithms. In the future, we will
extend our approach to address the cooperative H2 control issues
of interconnected positive systems or stochastic systems that may

exhibit positive property [9], [21], [37] as well as the observed-based
consensus problem of positive agents [1], [12], [13], [14].
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