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Modeling and Control of Soft Robotic Tail Based Aerial Maneuvering
(STAM) System: Towards Agile Self-Righting with a Soft Tail

Jawad Mehmood Butt∗1, Xiangyu Chu1, Hao Zheng1, Xiaomei Wang2, Ka-Wai Kwok2, and K.W. Samuel Au1

Abstract— Recent studies have demonstrated feasible aerial
maneuvering with rigid tails. However, soft robotic tails were
never investigated for aerial maneuvering applications, and no
modeling strategy was found that exploits the soft robotic tail
based aerial maneuvering (STAM) system kinematics for flight
phase control (aerial self-righting). In this work, we provide
the feasible solution to flight phase control of STAM systems
(1-DOF and 2-DOF) by proposing their forward kinematics,
differential kinematics, and flight phase models. We integrate
Piecewise constant curvature (PCC) and Augmented rigid robot
(ARR) modeling formulations to model the kinematics of 1-DOF
STAM (body-tail pitch or body-tail yaw) system and propose its
flight phase model & control. Then, we introduce the soft-tail
“arbitrary-plane” bending which aids the extension of inte-
grated modeling approaches to model the forward kinematics
of 2-DOF (pitch and yaw) soft tail. The 2-DOF STAM system
(body-tail pitch and yaw together) is composed of rigid body,
cable-driven soft tail, and actuation units, so we develop their
differential kinematics which maps the tail shape velocities with
the body orientation angular rates and the tail cable veloc-
ities respectively. Together with the forward and differential
kinematics, we present flight phase model and control of 2-
DOF STAM system which ensures the conservation of total
angular momentum. The simulations, which demonstrates the
self-righting maneuvers with STAM systems are provided and
the effective simulation results validates our proposed models.

I. INTRODUCTION

Despite recent advances in robotic agile locomotion [1],
[2], terrestrial robots capable of producing agile maneuvers in
the air still lag far behind their biological counterparts [3]. In-
spired by the dynamic capability of animal tails, researchers
have developed various tail-inspired robots that were capable
to generate agile maneuvers in the air. Initially, some simple
1-DOF tailed robots have been purposely developed to of-
fer aerial maneuvers such as self-righting, self-stabilization,
landing, and flipping [4]–[7], however, these maneuvers were
only restricted to the plane. This restriction was tackled by
the development of 2-DOF mechanically robust tailed-robots
[8], [9] that were able to achieve the spatial maneuvers with
appropriate controllers design [10]–[12]. These rigid-tail-
based robots have successfully achieved the aerial maneuver-
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Fig. 1: Overview of our STAM system where the rigid body,
soft tail and actuation system presents the animal trunk, tail
and actuation joints respectively.

ing objective i.e., flight phase orientation control relying on
the rigid-tail mechanisms. However, they still lag the natural
maneuvering agility due to the rigid robotic tail stiffness and
structural dissimilarity as compared to the animal tails [13].
To realize the bio-inspired dexterity and flexibility of robotic
tails, a fish inspired soft robotic tail [14], continuum robotic
tails (CRT) [15] [16] and articulated robotic tails (ART)
were proposed [17]–[20]. Despite success of these tails in
swimming [14], static stabilization, and spatial loading [13],
[18], [20] research investigations, only few flexible tails were
dynamically modeled [21] and empirically evaluated [16] to
leverage their abilities for inertial application i.e., quadruped
steering. However, soft robotic tails (SRT) were never used to
explore the aerial maneuvering application, and no modeling
strategy was found that exploits the STAM system (Fig. 1)
kinematics behavior for flight phase control (conservation
of total angular momentum) or aerial self-righting. Hence,
there needs a simple and systematic kinematics based flight
phase modeling approach which can guide the flight phase
controller design process for complex locomotion task such

2021 20th International Conference on Advanced Robotics (ICAR)
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as SRT based aerial maneuvering, which was unavailable in
the existing soft-tail research.

Although flight phase models with soft robotic tails were
never investigated but several modeling strategies for differ-
ent soft robots were proposed to understand their kinematic
and dynamic motions [22], [23]. The kinematic models
for soft robots were particularly illustrated with the as-
sumption of Piecewise Constant Curvature (PCC) i.e., the
transformation of infinite state space of the soft robots into
the finite space, based on their motion characteristics [22].
Following the PCC assumption, some notable works such
as finite element method (FEM) [24] and reduced-order
model [25] were proposed for quasi-static applications but
they usually required high gain feedback controllers and
faced difficulties to generalize the highly dynamic motions.
Besides, several finite-dimensional dynamic models such as
discrete Cosserat model [26], Euler-Lagrange model [27],
Kane’s model [28], Ritz-Galerkin model [29], and other PCC
based dynamic models [30], [31] were also proposed. These
dynamic models were exemplary in their proposed context
but rarely used in floating base soft robotic applications and
seem analytically complex for the flight phase or angular
momentum conservation modeling of the STAM system.
To ensure the modeling simplicity of the STAM system,
we target augmented rigid robot modeling approach [32],
[33] because it uses conventional Denavit-Hartenberg (DH)
formulation & PCC assumptions to model the soft robots,
and will be an efficient solution to model the hybrid system
(soft tail and rigid body). Hence, the objective of our work is
to exploit the STAM system kinematics with PCC & ARR
modeling methods [32], [33], and provide an analytically
simple solution to the flight phase modeling and control of
the STAM system.

In this work, the kinematics and flight phase model of
1-DOF STAM system are first derived by integrating the
PCC & ARR modeling convention [32], which explains a
systematic way to model the STAM systems. We then pro-
pose the soft tail arbitrary plane bending approach to extend
the integrated modeling methods for the forward kinematics
of the 2-DOF soft tail and STAM system. Together with
the forward kinematics, the differential kinematics of 2-DOF
STAM system are derived, i.e., the mapping of 2-DOF soft
tail shape velocities with the body orientation angular rates
and the actuation cable velocities respectively. These forward
and differential kinematics are then utilized to derive the
flight phase model of the 2-DOF STAM system. With the
help of proposed kinematics and flight phase models, the
flight phase control (kinematics based orientation control) is
also proposed. This control is used to simulate the 1-DOF
and 2-DOF STAM systems, which demonstrate the models
effectiveness for the self-righting maneuvers.

The rest of the paper is structured as follows. The forward
kinematics, differential kinematics and flight phase models
for STAM systems are presented in Section II. Section
III demonstrates the kinematics based orientation control
and section IV illustrates the aerial self-righting simulation,
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Fig. 2: Augmented Rigid Robot Structure to match the ith

segment of soft robot as a rigid robot. a) Soft robot with n cc-
segments, b) RPPR structure to match the robot kinematics,
b) RPPR structure to match the robot dynamics

which validates our proposed models and control. In the end,
a discussion is carried out in section V which elaborates the
empirical future of this work.

II. MODELING

This section presents the brief introduction to ARR mod-
eling method and showcase the challenges & assumptions in
STAM system modeling. The main aim is to formulate the
1-DOF and 2-DOF STAM system kinematics together with
their flight phase models, which help our STAM systems in
the conservation of the total angular momentum.

A. Brief Introduction to Augmented Rigid Robot Model

The kinematics of the soft robot are generally modeled by
piecewise constant curvature (PCC) method where the shape
of robot’s multiple segment is modeled by multiple constant
curvature (cc) arcs, which are then merged together such
that the overall curvature is differentiable. The PCC method
is also extended as the augmented rigid robot structure where
the kinematics of the soft robot are modeled by matching its
curvature by the combination of rigid revolute or prismatic
joints [33].

Let us take a soft robot with n cc-segments as shown in
Fig. 2a. A configuration variable qi is defined to represent
the bending angle of soft robot’s ith cc segment. Let us
match the curvature of the ith cc segment of soft robot with
rigid Revolute-prismatic-prismatic-revolute (RPPR) structure
as shown in Fig. 2b, where we define the rigid joint con-
figuration variables for the ith cc segment as ςrigid(i) =
(qR, qP , qP , qR)T . Let us include the inertial influence on the
kinematic behavior of soft robot by matching the curvature
and center of mass of each cc segment of the soft robot
with the rigid RPPR structure and a point mass (Fig. 2c),
which also treats the inertial properties of soft robot and
augmented rigid structure equivalent [32]. The equivalent
RPPR rigid robot structure to describe ith cc segment is
formulated by classical DH parametrization Table I, where
a,d,θ,α are classical DH parameters, ei is the segment point
mass, and Li is the length of cc segment. For ith cc
segment, the corresponding map from soft configuration to
rigid configuration provided by ARR method is formulated
in (1) respectively. (Read [32], [33] for details).

ςrigid(i) =
[
qi
2 Li

sin(
qi
2 )

qi
Li

sin(
qi
2 )

qi

qi
2

]
. (1)
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Fig. 3: a) Body frame assignment by DH convention, b-d) Tail motions in pitch, yaw, and arbitrary directions, e-g) Augmented
rigid robot structures (RPPR) to model the curvature of soft tail in pitch, yaw, and arbitrary directions, h) n-segment soft
tail attached with body. *Note that (b-g) represents ith section of soft tail

TABLE I: Classical DH parametrization to describe ith cc
segment with RPPR rigid structure.

Link θ d a α mass
1 qi

2
0 0 π/2 0

2 0 Li
sin(

qi
2

)

qi
0 0 ei

3 0 Li
sin(

qi
2

)

qi
0 -π/2 0

4 qi
2

0 0 0 0

By using [34], the transformation matrix for ith cc segment
is written as T i = T 0

1T
1
2T

2
3T

3
4, which can be extended to

n-segment soft tail as T 0
n = T 0

i ...T
n−1
n .

B. Challenges and Assumptions in STAM System Modeling

The modeling and control of the soft-tailed robots for the
inertial-adjustment applications is a challenging task and it
has been rarely studied in the past [16], [21]. In this sec-
tion, we have discussed some challenges that are important
to ponder before the explanation of our proposed work.
First, mimicking animal-like robots for agile maneuvering
applications is practically unrealistic due to their complex
body structures. However, to achieve the natural imitation,
the agile maneuvering robots can be simply treated as the
robot with a rigid body (animal trunk), soft robotic tail
(animal tail), and the actuation units (tail actuation joints)
(Fig. 1). Second, to mimic the sweeping (pitch/yaw) and
spiral (roll) motion of the animal tail, we need a compliant
soft robot that can perform these maneuvers. In literature,
we have only found the cylindrical soft-robots driven by 4-
cables, which resembles the animal tail and can be used to
perform these motions. Third, we have discovered that the
twist motion of the assumed cylindrical soft robotic tail is
not same like the roll motion of the animal tail [13] [21]. It
is also not strong enough to adjust the body inertia in the roll

direction because of cylindrical soft-tail structural symmetry.
However, considering our work as a first step towards soft
agile locomotion, we can use the 2-DOF’s of the soft-tail
(in-plane bending (pitch) and out-of-plane bending (yaw))
because they can satisfy the natural tail sweeping motions
and are suitable for the body inertial-adjustment in the pitch
and yaw directions.

C. 1-DOF STAM System Modeling

We consider a n-segment soft tail capable of bend-
ing in either pitch or yaw direction. The ith segment of
soft tail have the configuration variable φi (tail pitch -
φpi or yaw - φyi ) where its curvature is matched with
a RPPR rigid joint structure. The joint variables of aug-
mented rigid components are ςi = [ςR, ςP , ςP , ςR], which
are combined for n-cc-segments in vector form as ς =
[{ςR, ςP , ςP , ςR}1, ..., {ςR, ςP , ςP , ςR}n]T ∈ R4n.

For 1-DOF STAM system, the body is combined with the
n-segment soft tail and the generalized coordinates are σ =
[θ, ς]T , where θ ∈ R1 is either body pitch (θp) or yaw (θy)
and σ ∈ R4n+1 is a vector that contains body and augmented
rigid joint states. Following (1), the non-linear constraints for
soft tail ith cc-segment which maps the soft tail state variable
to the rigid tail joint states are shown in (2).

ςi =
[
φi
2 Li

sin(
φi
2 )

φi
Li

sin(
φi
2 )

φi

φi
2

]
. (2)

Let us consider the simple pitch case (Fig. 3b,e), where
we use 1-segment soft tail (n = 1) attached to the rigid
body. The generalized coordinates for pitch case are defined
as σp = [θp, ςp]T , where σp ∈ R5 and ςp ∈ R4. (2) is used
to map φp ∈ R1 to ςp. We reformulate the DH parameters
for 1-DOF STAM system by using the DH parametrization
as shown in Table II, where do is the tail offset from body
center and L1 is the length of 1-segment tail.
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TABLE II: DH Parameters for 1-DOF STAM System.
Link θ d a α mass
b θp do 0 0 0

1 φp
2

0 0 π/2 0

2 0 L1
sin(

φp
2

)

φp
0 0 e1

3 0 L1
sin(

φp
2

)

φp
0 -π/2 0

4 φp
2

0 0 0 0

For flight phase model, we integrate the kinematic and
inertial behavior of the 1-DOF STAM system for the con-
servation of total angular momentum. At kinematic level
with inertia influence, we only need the inertia terms, body
and tail velocities. By using Table II, we extract individ-
ual position information of the body and rigid tail com-
ponents (pR, pp, pp, pR) from homogeneous transformation
[34]. Then we calculate body inertia (Mb ∈ R1) in pitch di-
rection from the solid cuboid moment of inertia formula and
use Mt = [MR,MP ,MP ,MR] = [

e1p
2
R

4 ,
e1p

2
P

4 ,
e1p

2
P

4 ,
e1p

2
R

4 ]
for tail inertial terms, where we write M = [Mb,Mt] ∈
R1×5. Let us define the body angular momentum as Hb,
and from the basic definition of angular momentum and [10],
[12], we get

Hb = M σ̇p (3)

By assuming the zero angular momentum throughout the
flight phase (Hb = 0), we rewrite the equation (3) for the
flight phase model as,

0 = Mbθ̇p +MRς̇R +MP ς̇P +MP ς̇P +MRς̇R, (4)

θ̇p is body pitch velocity, and ς̇R, ς̇P , ς̇P , ς̇R are the velocity
of each joint belongs to RPPR structure. By substituting the
derivatives of (2) we get ς̇R, ς̇P , ς̇P , ς̇R, and rewriting the
flight phase model as,

0 = Mbθ̇p +
1

2
M̄a + M̄bφ̇p, (5)

Rearranging (5) gives,

φ̇p = −M̄b
−1

( Mbθ̇p +
1

2
M̄a) , (6)

where M̄b = ( 1
2φp

cos
φp
2 −

1
φ2
p

sin
φp
2 ) ( 2MP ) and M̄a =

2MR. The flight phase equation (6) will be further used for
controller derivation in Section III-A

D. 2-DOF STAM System Modelling

1) Forward Kinematics of the Soft Tail
Let us consider a rigid body and soft tail consist of n-

cc-segments and each is assigned with a reference frame
{b} , {F 1} , ... {F n} (Fig. 3h). The ith segment of the soft
tail has two configuration variables, i.e., in-plane bending
(tail pitch - φpi ) and out-of-plane bending (tail yaw - φyi ).
With mutual effect of pitch and yaw the soft tail is bending
in an arbitrary plane which is referred as “Arbitrary plane
bending”. Here we present the arbitrary plane bending angle
for the ith segment as ψi, where ψ ∈ Rn is a set of all cc
segments arbitrary bending configuration variables. The term

ψi is proportionally related to the tail’s curvature in arbitrary
plane (kψi) that is defined as ψi = Likψi where Li is the
scalar length of ith segment.

To derive the relation between ψi and 2-DOF tail (ith

section) bending angles (φyi ,φpi ), we relate the curvature
of ith segment as kψi =

√
k2φpi

+ k2φyi
and get the desired

bending relation as,

ψi =
√
φ2
pi + φ2

yi . (7)

where kφpi and kφyi are the curvature variable in tail pitch
and yaw directions (Fig. 3-b-d). The arbitrary plane bending
angle is then used to formulate the DH parametrization of the
2-DOF soft tail by augmented rigid robot formulation (use
Table I with ψi and see Fig. 3-e-g). The homogenous trans-
formation of ith cc segment is written as T i = T 0

1T
1
2T

2
3T

3
4

and for 2-DOF STAM system with n-segment tail, the
transformations are accumulated as T bn = T biT

i
i+1...T

n−1
n

This helps us to explicitly control the arbitrary plane bending
by inducing the simultaneous tail pitch and yaw input.

2) Body-Tail Kinematics
For 2-DOF STAM system, a rigid body is attached with

n-segment soft tail (Fig. 3h). The rigid body has the yaw
(θy) and pitch (θp) configuration variable (θ = [θy, θp] ∈
R2) and the soft tail has configuration variable φ =
[φy1 , φp1 ...φyn , φpn ] ∈ R2n. In this work, for simplification
purpose we assume the rigid body is attached with a 1-
segment soft tail where φ = [φy, φp] ∈ R2. The differential
kinematics between the rigid body and soft tail are derived
here to relate the body orientation angular rates with the tail
shape velocities geometrically through a Jacobian matrix Jθφ
that reduces the coupling effect between the tail and body
motions (in yaw and pitch directions).

Remark 1: The arbitrary plane bending with the reduced
pitch and yaw coupling can be achieved by the explicit
relation between the body and tail configuration variables.
Explicit relationship (differential kinematics) is defined as
the relationship of body pitch with tail pitch and relationship
of body yaw with tail yaw.

Note that these geometrical relationships are derived only
for the 1-segment soft tail but can easily be extended for the
multi-segments soft tail. The geometric relation of φp with
θp and φy with θy are shown in Fig. 4. We considered these
geometrical relations as pure pitch and yaw relations and is
derived as

a =
cos(φp)L1

φp
, b =

cos(φy)L1

φy
, (8)

θp,φp = sin−1(
do
a

) and θy,φy = cos−1(
do
b

), (9)

where do is the distance between body center and tail origin,
and L1 is the length of the tail segment. The terms θ∗,φ∗

defines the body state variables w.r.t to tail state variables.
Without the loss of generality, it is practically assumed that
body pitch or yaw is not disturbed by tail yaw or pitch
respectively so θp,φy = 0 and θy,φp = 0. Taking the time
derivative of θ∗,φ∗ yields the Jacobian Jθφ ∈ R2×2 as,
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Fig. 4: Geometric description of the differential kinematics
relating body orientation and tail shape parameters

Jθφ =


0

d0
L1 cos(φp)

+
d0 sin(φp)φp
L1 cos(φp)2√

1− d0
2 φp2

L1
2 cos(φp)2

d0
L1 sin(φy)

+
d0 cos(φy)φy
L1 sin(φy)2√

1− d0
2 φy2

L1
2 sin(φy)2

0

 ,
(10)

where Jθφ relates θ̇ = Jθφφ̇.
3) Cable-Tail Kinematics
The goal of this section is to calculate the Jacobian matrix

J lφ that relates the approximate change in cable length
with the tail shape velocities. We have assumed two pulleys
connected with two different motors (for yaw and pitch
motions) that wraps cables around its surface to produce
linear cable displacement from motor rotation.

From the geometrical relationship between the pulleys,
cables and the soft robot tail (see Fig. 5 - A general scenario
where the change in pulley motion produces the change in
cable length at the robot center-line). We can easily calculate
the relation as lp =

kp+rc
cos(φp)

and ly =
ky+rc
cos(φy)

, where lp is the
change in length of pitch cables (assumed at the soft center
line), ly is the change in the length of yaw cables (assumed
at the soft center line), rc is the radius of the pulley, kp, ky
are soft tail curvature in pitch and yaw direction respectively.
To move in the opposite direction we can use these relations
with negative signs. Taking the time derivative we can get
the desired Jacobian J lφ ∈ R4×2 as

J lφ =

[
J1 0 −J1 0
0 J2 0 −J2

]T
, (11)

where J1 =
(
φy
ly

+rc) sin(φy)

cos(φy)2
and J2 =

(
φp
lp

+rc) sin(φp)

cos(φp)2
. From

Eq. 11 we can easily get rate of change in length in arbitrary
plane as l̇ = J lφφ̇, where l̇ ∈ R4.

4) Flight Phase Model
To induce the 2-DOF aerial maneuvering motion, we

derive the angular momentum equation expressed in body
frame (Hb) as,

Hb = Icwb + J̄θφ
¯̇
φ, (12)

where J̄θφ =

Jθφ(1, 1) Jθφ(1, 2) 0
Jθφ(2, 1) Jθφ(2, 2) 0

0 0 0

 ∈ R3×3, ¯̇
φ =

[
φ̇y, φ̇p, 0

]T ∈ R3×1 is the tail bending rates (no roll

Fig. 5: Geometric visual description of the change in length
of the soft robot by change in length of cable via pulley
motion (General scenario applied to both pitch motion and
yaw motion because we assume two individual pulleys for
two different motions).

included), wb =
[
wy, wp, 0

]T ∈ R3×1 is the body angular
velocity in body frame (identically zero roll velocity). The
term Ic is formulated as,

Ic = Ib − et(p̂bt)(p̂bt) (13)

where Ib ∈ R3×3 is the body moment of inertia, et is the
tail mass, and p̂bt is skew symmetric matrix of position vector
from tail to body.

The flight phase model is briefly described by (12), which
explains that the total system angular momentum is the
sum of joint space tail variables and the body angular
momentum. Using the property of conservation of angular
momentum altogether with the assumption of initial zero
angular momentum and zero external disturbance, Hb will
be zero during the flight phase. Based on this property and
assumptions, we can get the angular velocity in the body
frame as follows,

wb = −(Ic)−1J̄θφ
¯̇φ. (14)

III. CONTROL SYNTHESIS

The objective of this section is to apply the kinematics
based orientation control to evaluate the effectiveness of the
proposed models for the conservation of the total angular
momentum. Here we derive the analytical control laws
for 1-DOF and 2-DOF STAM systems that enforces tail
cable velocities to extract required tail shape velocities for
achieving the desired body orientation.

A. Kinematics Control for 1-DOF STAM System

To apply the kinematics based orientation control to the
1-DOF STAM system (to control the body pitch), we rewrite
(6).

φ̇p = −M̄b
−1

(Mbθ̇p +
1

2
M̄a) . (15)

Eq. 15 describes the relation between the body pitch velocity
and tail pitch velocity. As our actual input is the cable
velocity, thus we need an explicit relation to relate the
cable, tail and body. From the derived J l,φ, J l,φ(2, 2) and
J l,φ(4, 2) are the Jacobian entries that relates the tail pitch
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Fig. 6: Aerial self-righting animation scenario with 2-DOF flight phase control where body reached its desired states in 0.4s
from initial states [φy ,φp] = [10o, 8o] by the motion inducing by soft tail. The first seven snaps shows the 2-DOF body
orientation at t = 0s , 0.07s, 0.14s, 0.20s, 0.27s, 0.35s and 0.4s respectively. The last snap shows that how tail is responding
from t = 0-4s and its different stages of control.

shape with the tail pitch cable velocity in the anticlockwise
and clockwise pitch directions. Here we denote, J l,φ(∗, 2) =
J l,φ(2, 2) = −J l,φ(4, 2) depending upon the direction of
actuation. Substituting (15) in l̇ = J l,φ(∗, 2)φ̇p (here l̇ ∈
R1), we get the the final control relation that relates the body
orientations and tail cable velocities as:

l̇ = −J lφ(∗, 2)M̄b
−1

( Mbθ̇p +
1

2
M̄a) . (16)

B. Kinematics Control for 2-DOF STAM System

We have also applied the kinematics control onto the 2-
DOF STAM system to control the body orientation. To make
the relation between the cable velocities, tail shape velocities
and the body orientation, we will use two Jacobian relations
(Jθφ,J lφ) as described earlier. By using φ̇ = J+

l,φ l̇ and
φ̇ = J−1

θφ θ̇ we get our proportional control equation as:

l̇prop = gpJ lφJ
−1
θφ (θdes − θ), (17)

where θdes ∈ R2 is the desired body orientation and gp ∈
R4×4 is the diagonal proportional gain matrix. Looking at the
J l,φ ∈ R4×2, the first two rows relates the cable direction
with the soft tail shape velocities in one direction, while
the last two rows keeps the direction in opposite direction.
This confirms that, we can control the soft tail or indirectly
the body orientation in anticlockwise and the clockwise
direction. Thus, in our simulation, we keep track of our body
initial conditions and use the Jacobian entries (either first
two rows or last two rows denoted by J∗

lφ ∈ R2×2, and
the reduced order proportional gain matrix as ḡp ∈ R2×2) to
define the tail control direction. The reduced order controller
equation is ˙̄lprop = ḡpJ

∗
lφJ

−1
θφ (θdes − θ) ∈ R2. Also, we

argue that the proportional control is not sufficient because
it cannot overcome the effect of the tail velocities on the
body, thus we have also applied the derivative control to
reduce the effect of tail velocities on the body orientation

as:
l̇d = gd(φ̇des − φ̇), (18)

where gd ∈ R2×2 is the diagonal derivative gain matrix and
φ̇des ∈ R2 is the desired tail shape velocities. The overall
kinematic control is l̇kin = ˙̄lprop + l̇d ∈ R2. The stability
analysis of the PD type controller for fully actuated STAM
system is not discussed here because it is similar to most of
the stability analysis of fully actuated system found in [35].

IV. SIMULATION RESULTS

Inspired by the self-righting characteristic of the animals
through their tails, we have designed the simulation envi-
ronment for 1-DOF and 2-DOF STAM systems with main
simulation parameters (Table. III), which demonstrate the
effectiveness of the soft-tail to control the body orientation
in a free-fall scenario.

A. Simulation of 1-DOF STAM System

This section describes the simulation results of the planar
orientation control of 1-DOF STAM system, where the tail
pitch aids the body pitch to reach its desired position. In
the simulation, we have made three cases where the initial
body configuration of the body pitch was set as 34o, 74o

and 120o, and the desired body orientation was 0o. The
choice of initial conditions are random but are restricted to a
maximum of 120o because of natural flying cat imitation and
low controller gain selection. The results in Fig. 7 shows the
body can reach to the desired body orientation from different
initial configurations with the aid of the tail movement.

B. Simulation of 2-DOF STAM System

The results are shown in Fig. 8 that illustrates the 2-DOF
orientation control with the proposed approach. With the
zero desired states and zero initial angular velocities, the
initial body states (yaw, pitch) of [10o, 8o] and [20o, 30o]
were provided. By tail action, the body reached its desired

536



Fig. 7: Simulation results of 1-DOF orientation control: (a)
Three graphical illustrations illustrate three different cases
where the body is falling from three different pitch initial
conditions, (b) the tail response for three different body
falling cases respectively.

Fig. 8: Simulation results of 2-DOF orientation control:
(a),(c) show that the body achieve the desired orientation
from two different initial orientations, (b),(d) describe the
tail velocities in two different orientation scenarios.

states in the span of 0.5s as shown in Fig. 8a and Fig. 8c
respectively. Also, we argue that tail pitch velocity is always
greater than its yaw velocity. This is due to the fact that in
the arbitrary plane, yaw motion is the curvilinear deflection
and it helps the tail to move out of the plane and then follows
the leading curvature provided by the pitch motion. This
argument is supported by Fig. 8b and 8d.

C. Aerial Self-Righting Animation Scenario

In the end, we show the animation snapshots in Fig. 6 that
explains the 2-DOF orientation control of the body by the
help of the soft tail. We here represent the body as a cuboid.
Looking from the left, the body is at the initial conditions of
θ = [10o, 8o] and the tail possesses no curvature. Following
the time, from t = 0s to t = 0.399s, the tail is bending
in the arbitrary plane and forced the body to change its
orientation to the desired states. At last, mimicking the real-
time scenario, the tail takes 0.40s to aid the body in achieving
its desired states. It is important to note that one end of
the tail is fixed with the body and the tail is bending in
an arbitrary plane at an angle ψ. The last snapshot in Fig. 6
illustrates the arbitrary plane curvature (ψ) and we can easily

TABLE III: Simulation Parameters.
Parameters Values Units
Tail mass 0.2 kg

Body mass 0.8 kg
Tail length 0.4 m

Tail Offset from Body Origin 0.15 m
Body Moment of Inertia (Ib

(xx,yy,zz)
) 0.0075 kgm2

observe the action of proportional and derivative control that
helps to stabilize the tail in the end.

V. DISCUSSION

This paper provides the preliminary mathematical deduc-
tion of a model to accomplish soft-tail-based self-righting,
and validates the orientation control performance via simu-
lation. Aiming at transferring this virtual simulation outcome
to an actual robotic system, we could notice that a key
mechanical component is lacking, that is, a forceful soft
actuator which can act as the artificial tail. An appropri-
ate choice should enable fast-dynamic response and large-
payload maneuvering, while an ordinary soft manipulator
molding by elastic materials is far from qualification. A novel
spring-reinforced actuator proposed in our previous work
[36] is expected to take this tail-mimicking role.

Constructed by closed-coil spring backbone and silicone-
bodied muscle, such an actuator is situated in the interme-
diate state of endoskeletal mechanisms and muscular hy-
drostats [36]. It enables a robust 0-to-90 bending in only 0.5s,
satisfying the rigorous response-speed requirement reflected
in our simulation (Fig. 8), where the tail took around 0.5s for
the body orientation control. Another notable advantage of
the soft actuator comes from its approximately-linear omni-
directional bending behavior, which significantly reduces the
control or modeling burden of the actuator itself. It has
also been tested via lifting and shifting a load, indicating
its potential integration and coordination with a relative-
heavy robot body. With the design of robotic tail determined,
our future work will focus on implementing the modeling
strategy to the real-time practical system. Experimental vali-
dations will also be conducted to promote our study in more
generalized applications.

VI. CONCLUSION

This work proposed the kinematics modeling strategy to
model the 1-DOF and 2-DOF soft-tail based aerial maneu-
vering (STAM) systems, derivation of flight phase models
for the conservation of total angular momentum and the
kinematics based orientation control. We have first integrated
the PCC and ARR methods to model the forward kinematics
of the 1-DOF STAM and derived its flight phase model. We
then proposed the soft-tail arbitrary plane bending strategy
to reformulate the ARR based DH parametrization for the
forward kinematics of the 2-DOF soft tail. For 2-DOF STAM
system, we derived the differential kinematics to map the
tail shape velocities with the body orientation angular rates
and the tail cable velocities respectively. By using these
kinematic formulations we derived the flight phase model
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for the 2-DOF STAM system, which is crucial for the
conservation of the total angular momentum. In the end,
we proposed the flight phase (kinematics based) orientation
control, which is used to simulate the STAM systems for
effective aerial self-righting maneuvers.
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