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Background: To better understand the different clinical phenotypes across the

disease spectrum in patients with COVID-19 using an unsupervised machine learning

clustering approach.

Materials and Methods: A population-based retrospective study was conducted

utilizing demographics, clinical characteristics, comorbidities, and clinical outcomes of

7,606 COVID-19–positive patients on admission to public hospitals in Hong Kong in

the year 2020. An unsupervised machine learning clustering was used to explore this

large cohort.

Results: Four clusters of differing clinical phenotypes based on data at initial admission

was derived in which 86.6% of the deceased cases were aggregated in one of the

clusters without prior knowledge of their clinical outcomes. Other distinctive clinical

characteristics of this cluster were old age and high concurrent comorbidities as well

as laboratory characteristics of lower hemoglobin/hematocrit levels, higher neutrophil,

C-reactive protein, lactate dehydrogenase, and creatinine levels. The clinical patterns

captured by the cluster analysis was validated on other temporally distinct cohorts in

2021. The phenotypes aligned with existing literature.

Conclusion: The study demonstrated the usefulness of unsupervised machine learning

techniques with the potential to uncover latent clinical phenotypes. It could serve as a

more robust classification for patient triaging and patient-tailored treatment strategies.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a respiratory disease
caused by severe acute respiratory syndrome coronavirus (SARS-
CoV-2). This novel coronavirus was first reported in Wuhan,
China, in December 2019 and quickly spread worldwide (1).
Belonging to the same coronavirus family as SARS-CoV and
MERS-CoV, SARS-CoV-2 also exhibits a remarkable infectivity
power (2). Immediate practices have been taken to allocate
medical resources and plan for treatments. However, they might
not be as effective as expected due to a lack of knowledge about
SARS-CoV-2. A better understanding of the pathogenesis of
COVID-19 and its different clinical phenotypes and risk groups
is essential to address the immunopathology of the infection. The
accumulated observational data on COVID-19 positive patients
available to date serve as valuable resources. To probe this large
amount of clinical data, supervised machine learning approaches
have been applied to the diagnosis and prognosis of COVID-
19, risk stratification, and the prediction of different outcomes
(3–9). Unsupervised machine learning is an alternative approach
that does not require specific labels. It avoids using preconceived
knowledge or assumptions that may be subjected to biases and
unknown confounders. To this end, unsupervised clustering
techniques are often used for exploratory analysis to probe the
underlying patterns within big data sets, enabling identification
of latent clinical phenotypes and potentially deriving novel
insights from the associated correlations. For example, it has
been applied to derive the phenotypes of COVID-19 patients
using electronic health record (EHR) data on admission of 6,000
COVID-19–positive adults at the Mount Sinai Health System
in New York in the United States (10), 413 patients from
an individual-level published study (11), and 213 patients in
Wuhan Pulmonary Hospital (12). Hong Kong’s health system is
unique when dealing with the COVID-19 pandemic. Due to a
government-wide policy, all COVID-19–positive patients were
admitted to public hospitals regardless of their disease severity
or symptoms. Therefore, the data in Hong Kong can capture
the varying presentations of COVID-19. This study aims to use
unsupervised clustering analysis to discover different phenotypic
presentations across the disease spectrum of COVID-19 in
Hong Kong based on demographics and laboratory information
on admission to hospital.

MATERIALS AND METHODS

Study Design and Participants
This study protocol was approved by institutional review
boards in multiple hospitals across Hong Kong (see
Supplementary Material for further details). Patient-informed
consent was waived owing to the retrospective nature.

A retrospective search of patients’ electronic records was
conducted using the Hong Kong Hospital Authority Clinical
Data Analysis and Reporting System (CDARS). It covered 42
hospitals across the territory in Hong Kong. Patients who were
retrieved had a positive diagnosis of COVID-19 based on a
reverse-transcriptase polymerase chain reaction (RT-PCR) test
for SARS-CoV-2 fulfilling the testing criteria set by the Center

for Health Protection, Department of Health, Government of
Hong Kong SAR. The first cohort was retrieved from January 23
to December 31, 2020. The second cohort (used as a temporal
validation set) was retrieved from January 1 to February 15, 2021.

Observational data, including demographics (age and
sex), and 20 basic laboratory tests [white blood cell count
(WBC), neutrophil count (NEUT), lymphocyte count (LYM),
monocyte count (MON), hemoglobin (HGB), hematocrit (HCT),
platelet (PLT), albumin (Alb), total bilirubin (TBIL), alanine
aminotransferase (ALT), alkaline phosphatase (ALP), lactate
dehydrogenase (LDH), creatine kinase (CK), urea, creatinine
(Cr), C-reactive protein (CRP), sodium (Na), potassium (K),
phosphate (P), and calcium (Ca)] were retrieved on the first
day of admission (see Table 1). Blood tests with <50% of
available data were excluded (13). Patients’ comorbidities (19
systems) as specified by the international classification of disease
(ICD-9) (14) were retrieved up to 3 days before that individual’s
admission to avoid including input of coding for the current
admission. Mortality data was retrieved and set at 45 days after
discharge for each patient to ensure that death, if it occurred, was
likely related to COVID-19 and not from other causes. For more
detailed information, please refer to Supplementary Table 1.

Data Preparation and Preprocessing
Yeo–Johnson transformation was applied to provide multivariate
normal distributions (15). Patients with more than 40% missing
variables and inconsistent data were excluded (13). Multiple
imputation via chained equations (MICE) (16) was adopted to
handle missing data and produced the least biased estimation
under the verified assumption missing at random (MAR) (17).
Bayesian ridge regression was used to introduce variations. Ten
iterations and ascending order of imputations were set and
deemed to be sufficient (18).

Principal components analysis (PCA) was used to compress
intrinsically correlated and dependent numerical variables
and project them to low-dimension representations (see
Supplementary Figures 1, 2). Ten principal components
(PCs) were kept to preserve 80% of the variance (see
Supplementary Figure 3).

Model Training
k-prototype clustering (19) accounted for numerical data, and
categorical data were used to probe the underlying clinical
patterns of COVID-19–positive patients on admission. To
select the number of clusters, the within-cluster sum of
squared error (WCSS) was plotted from 1 to 10 clusters
(see Supplementary Figure 4). According to the elbow method,
four clusters were selected for the k-prototype model. The
partitioning of three and five clusters was also examined (see
Supplementary Figure 5).

Model Evaluation
To evaluate the generated clusters, a surrogate prediction model
was built to check if partitioning found by the k-prototype
model was still preserved. A gradient-boosting decision tree
model named LightGBM (20) was used to build the prediction
model. It predicted COVID-19 prognosis based on electronic
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TABLE 1 | Demographics and clinical characteristics of 7,606 COVID-19 positive

patients.

Patients characteristics

(n = 7,606)

Median (IQR)

or count (%)*

Missing

count (%)

I. Demographics

Age (years) 47 (32–61) 0 (0%)

Sex (Males) 3,697 (48.6%) 0 (0%)

II. Complete blood count

White blood cell count (*109/L) 5.3 (4.3–6.6) 0 (0%)

Neutrophil count (*109/L) 3.2 (2.4–4.3) 110 (1.4%)

Lymphocyte count (*109/L) 1.3 (1.0–1.8) 110 (1.4%)

Monocyte count (*109/L) 0.5 (0.4–0.7) 110 (1.4%)

Hemoglobin (g/dL) 13.7 (12.6–14.7) 0 (0%)

Hematocrit (L/L) 0.40 (0.37–0.43) 1 (<0.1%)

Platelet (*109/L) 214 (173-264) 5 (<0.1%)

III. Liver function

Albumin (g/L) 40.0 (37.2–43.5) 3 (<0.1%)

Total bilirubin (µmol/L) 7.9 (5.8–10.9) 8 (<0.1%)

Alanine aminotransferase (µ/L) 23.4 (16.0–36.0) 8 (<0.1%)

Alkaline phosphatase (µ/L) 66 (54–81) 8 (<0.1%)

IV. Kidney function

Urea (mmol/L) 3.9 (3.1–4.8) 5 (<0.1%)

Creatinine (µmol/L) 69.1 (58.0–83.0) 5 (<0.1%)

V. Inflammatory marker

C-reactive protein 0.4 (0.1–1.5) 872 (11.5%)

VI. Electrolyte

Sodium (mmol/L) 138 (137–140) 5 (<0.1%)

Potassium (mmol/L) 3.8 (3.5–4.1) 31 (0.4%)

Phosphate (mmol/L) 1.04 (0.90–1.18) 2,778 (36.5%)

Calcium (mmol/L) 2.26 (2.18–2.34) 2,720 (35.8%)

VII. Others

Lactate dehydrogenase (µ/L) 193.0 (165.0–235.0) 238 (3.1%)

Creatine kinase (µ/L) 91 (63–143) 818 (10.8%)

*Decimal places were kept according to normal reference range.

patient record data, and the performance was demonstrated (8).
Eighty percent of features were used before training each decision
tree to prevent overfitting. Missing data were ignored in the
training. A separate cohort of 722 COVID-19 positive patients
admitted from January 1 to February 15, 2021, were retrieved as
a separate temporal validation set to assess the prediction (see
Supplementary Table 2). Shapley additive explanation (SHAP)
(21) was used to explain the feature importance of the prediction
model. The data processing was conducted using Python
version 3.8.5 (Python Software Foundation, Beaverton, USA) and
available libraries.

Statistical Analysis
Descriptive statistics were generated using SPSS version 26
(IBM Corp, Armonk, NY). Because the numerical data were
not normally distributed, medians and interquartile ranges were
reported. For categorical data, counts and percentages were
reported. The level of missing data was also reported.

To compare the intercluster dissimilarity of numerical
data, the central limit theorem (CLT) was applied, and

parametric ANOVA was conducted. A p < 0.05 equates to
statistical significance. Because the Levene’s test of equality
of error variances was statistically significant, equal variance
across clusters was not assumed. Games–Howell post-hoc tests
were performed for multiple comparisons. To compare the
intercluster dissimilarity of categorical data, a chi-square test was
conducted. Bonferroni post-hoc tests were performed formultiple
comparisons. Interquartile range (IQR) and charts were reported
and used for interpretation (22).

RESULTS

Initial data retrieval yielded a total of 8,562 patients. After data
preparation to deal with missing variables and inconsistent data,
a final number of 7,606 patients was kept (see Figure 1). The
demographics and clinical characteristics are shown in Table 1.

Four clusters were identified using demographics and
laboratory variables on admission. A separate analysis was done
on the deceased cohort (seeTable 2). The clusters were compared
with one another. Each cluster was compared with the derived
population and the most used normal reference range in the
cohort. Each cluster was also compared with the deceased cases.
A value was marked “high/low” if still within the reference range
but considered close to the cutoff values. A value was marked
“elevated/reduced” if it was outside the normal reference range
(see Table 2, Figure 2; Supplementary Table 3).

General Characteristics
The size of the four clusters were cluster 1: n = 1,959, cluster 2:
n = 2,224, cluster 3: n = 1,850, and cluster 4: n = 1,573. Clusters
1 and 2 had the youngest median age [cluster 1: 36 (IQR: 24–50),
cluster 2: 38 (IQR: 27–53)]. Increasing median age was observed
from cluster 1 to 4. Clusters 2 and 4 had a greater proportion of
males [cluster 2: n= 1,947 (87.5%), cluster 4: n= 1,023 (65.0%)].
The lymphocyte count was in the low value of the reference range
in four clusters [cluster 1: 1.7 (IQR: 1.3–2.2), cluster 2: 1.5 (IQR:
1.2–2.0), cluster 3: 1.1 (IQR: 0.8–1.3), cluster 4: 1.0 (IQR: 0.7–1.3),
normal reference range: 1.0–3.1]. Most of the indicators for liver
function, including total bilirubin and alanine phosphatase levels,
and for electrolytes, including sodium and potassium, were in the
normal reference range for four clusters. Specific cluster analysis
was discussed as follows.

Cluster 1
Of COVID-19–positive patients, 25.4% (n = 1,959) were
aggregated in cluster 1. Cluster 1 was characterized by
the youngest median age and the highest proportion of
females (85.5%) within the cluster. The laboratory test results
were unremarkable.

Cluster 2
Of COVID-19–positive patients, 28.9% (n = 2,224) were
aggregated in cluster 2. Cluster 2 was characterized as the largest
cluster with the highest proportion of males (87.5%) within
the cluster. Hemoglobin, hematocrit, and creatinine levels were
observed in the higher range of the reference values.
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FIGURE 1 | Flow chart showing the overall study design with data collection, preparation, model building, and prediction steps.

Cluster 3
Of COVID-19–positive patients, 24.0% (n = 1,850) were
aggregated in cluster 3. Cluster 3 was characterized by a higher
proportion of females (76.1%) within the cluster.White blood cell
counts were observed in the lower range of the reference values.

Cluster 4
Of COVID-19–positive patients, 20.4% (n= 1,573) were grouped
in cluster 4. Significantly, cluster 4 captured 123 out of 142
(86.6%) deceased cases. Cluster 4 was characterized by being
the smallest cluster with the oldest median age and a higher
proportion of males. In terms of blood tests, hemoglobin,
hematocrit, lymphocyte, and albumin levels were observed in
the lower range. Neutrophil, urea, and C-reactive protein were
observed in the higher range of the reference values. Lactate
dehydrogenase was elevated. Cluster 4 also had the highest
comorbidity scores with triple the rate of immunity disorders
and diseases of the circulatory systems; double the rate of
diseases of the nervous systems; and a higher proportion of

disease of the digestive system, genitourinary system, skin and
subcutaneous tissue musculoskeletal system, other symptoms,
injuries, and morphology of neoplasms compared with the other
clusters. Cluster 4 captured almost all clinical characteristics of
the deceased cases with the deceased cases having an even older
median age and higher comorbidity scores.

Deceased Cohort
There were 142 deceased cases in 7,606 censored COVID-19–
positive patients. The deceased cohort was characterized by an
old median age and a higher proportion of males. In terms of
blood tests, lymphocyte, platelet, and albumin were observed in
the lower range of the reference values. Urea and creatinine were
observed in the higher range of the reference value. C-reactive
protein and lactate dehydrogenase, although still in the reference
range, were comparable to that of cluster 4 appearing higher than
the other clusters. The comorbidity scores of the deceased cohort
were high. There was a high degree of concordance with cluster 4.
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TABLE 2 | Demographics and clinical characteristics of four clusters and deceased cohort for comparison.

Characteristics

(unit; normal reference range**)

Cluster 1

(n = 1,959)

Cluster 2

(n = 2,224)

Cluster 3

(n = 1,850)

Cluster 4

(n = 1,573)

p-value Deceased

cohort

Median (IQR) or count (within cluster %)

I. Demographics

Age

(years)

36a***

(24–50)

38b

(27–53)

51c

(38–61)

65d

(57–75)

<0.001 81

(74–87)

Sex

(Males)

285a

(14.5%)

1947b

(87.5%)

442c

(23.9%)

1023d

(65.0%)

87

(61.3%)

II. Complete blood count

White blood Cell count

(*109/L; 3.7–9.2)

6.2a

(5.2–7.5)

5.6b

(4.7–6.8)

3.8c

(3.2–4.3)

5.8d

(4.8–7.1)

<0.001 6.9

(5.1–9.0)

Neutrophil count

(*109/L; 1.7–5.8)

3.7a

(2.9–4.8)

3.3b

(2.6–4.2)

2.2c

(1.7–2.7)

4.0d

(3.2–5.3)

<0.001 4.9

(3.5–7.4)

Lymphocyte count

(*109/L; 1.0–3.1)

1.7a

(1.3–2.2)

1.5b

(1.2–2.0)

1.1c

(0.8–1.3)

1.0d

(0.7–1.3)

<0.001 1.0

(0.7–1.3)

Monocyte count

(*109/L; 0.1–0.8)

0.5a

(0.4–0.7)

0.6b

(0.4–0.7)

0.4c

(0.3–0.5)

0.5a

(0.4–0.7)

<0.001 0.6

(0.3–0.8)

Hemoglobin

(g/dL; 11.7–14.9)

13.0a

(12.1–13.6)

15.1b

(14.5–15.7)

13.2c

(12.3–13.9)

13.3c

(12.1–14.2)

<0.001 12.2

(10.7–13.4)

Hematocrit

(L/L; 0.35–0.45)

0.38a

(0.36–0.40)

0.44b

(0.43–0.46)

0.39c

(0.37–0.41)

0.39c

(0.36–0.42)

<0.001 0.36

(0.32–0.40)

III. Liver function

Albumin

(g/L; 35.0–52.0)

41.2a

(38.8–43.9)

43.0b

(40.9–45.5)

40.0c

(37.0–42.0)

36.0d

(32.0–39.0)

<0.001 34.0

(29.0–38.1)

Total bilirubin

(µmol/L; 5.0–21.0)

7.0a

(5.0–9.7)

9.5b

(7.0–12.9)

6.6c

(5.0–9.0)

8.2d

(6.2–11.3)

<0.001 8.2

(6.0–11.6)

Alanine aminotransferase

(µ/L; 0.0–34.4)

18.0a

(13.1–27.0)

29.0b

(20.0–45.0)

20.0a

(14.0–28.5)

29.0b

(20.0–44.0)

<0.001 20.8

(14.0–33.2)

Alkaline phosphatase

(µ/L; 30–120)

67a

(54–87)

69b

(58–82)

60c

(50–73)

67b

(56–84)

<0.001 72

(59–103)

IV. Kidney function

Urea

(mmol/L; 2.8–8.1)

3.4a

(2.7–4.1)

4.2b

(3.6–5.0)

3.6c

(2.9–4.3)

4.9d

(3.9–6.6)

<0.001 7.0

(5.3–10.0)

Creatinine

(µmol/L; 49.0–90.0)

57.0a

(50.8–64.0)

80.0b

(72.0–90.0)

72.0c

(62.8–84.0)

82.0d

(69.0–101.0)

<0.001 101.1

(73.0–137.7)

V. Inflammatory marker

C–reactive protein

(mg/dL; 0.0–5.0)

0.2a

(0.1–0.4)

0.3b

(0.1–0.7)

0.5c

(0.2–1.2)

3.6d

(1.6–7.2)

<0.001 3.6

(1.3–8.6)

VI. Electrolyte

Sodium

(mmol/L; 136–145)

139a

(137–140)

139a

(138–140)

139b

(137–140)

136c

(133–138)

<0.001 136

(133–140)

Potassium

(mmol/L; 3.4–4.8)

3.8a

(3.5–4.0)

3.9b

(3.6–4.1)

3.7c

(3.4–3.9)

3.8a

(3.5–4.1)

<0.001 4.0

(3.7–4.3)

Phosphate

(mmol/L; 0.88–1.45)

1.11a

(0.98–1.27)

1.07b

(0.95–1.20)

1.02c

(0.89–1.15)

0.95d

(0.83–1.09)

<0.001 1.08

(0.90–1.23)

Calcium

(mmol/L; 2.15–2.55)

2.31a

(2.25–2.38)

2.33a

(2.26–2.39)

2.22b

(2.16–2.28)

2.17c

(2.10–2.24)

<0.001 2.14

(2.06–2.25)

VII. Others

Lactate dehydrogenase

(µ/L; 0.0–246.4)

176.5a

(154.0–208.0)

182.2b

(161.0–210.0)

191.0c

(164.0–220.0)

263.0d

(212.0–350.0)

<0.001 249.0

(199.1–378.8)

Creatine kinase

(µ/L; 39–308)

67a

(49–91)

104b

(76–151)

82c

(59–120)

141d

(85–258)

<0.001 131

(71–250)

**Most used normal reference range.

***Each subscript letter denotes a cluster whose column proportions do not differ significantly from each other at the 0.05 significance level. The clusters with different letter are

significantly different from each other at the 0.05 significance level.
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FIGURE 2 | Distinguishable clinical characteristics of four clusters with deceased cases for reference. (A) Demographics: Cluster 4 has the highest mean age, and

Cluster 2 has the highest proportion of males. Cluster 1 is the youngest group with the lowest proportion of males. (B) Complete blood count: Cluster 3 has the

smallest range of white blood cell count; Cluster 4 has a larger range of neutrophil count and smallest range of lymphocyte count. Cluster 2 has the largest median for

hemoglobin and hematocrit. (C) Liver function: Cluster 4 has the smallest mean value of albumin. (D) Kidney function: Cluster 4 has a higher range of urea and

creatinine. (E) Inflammatory marker: Cluster 4 has a more extensive range of C-reactive protein. (F) Others: Cluster 4 has elevated lactate dehydrogenase. (A value of

1.5 times more than the IQR and away from the bottom or top of the box is considered an outlier.) (G) Any comorbidity: Cluster 4 has the most significant proportion

with at least one comorbidity. (H) Clinical outcome: Highest fatality observed in Cluster 4.

Evaluation
Cluster analysis was also applied to a separate temporal validation
set with the results of seven out of eight (87.5%) deceased cases
being captured by cluster 4.

To further verify if criteria generated by k-prototype clustering
were properly followed, SHAP was used to determine the feature
importance used in the classification (see Figure 3). Overall,
white blood count has the highest mean SHAP value for the
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FIGURE 3 | SHAP plots demonstrating differential importance of different features and clusters. (A) Mean SHAP value of the prediction, (B) SHAP value for cluster 1,

(C) SHAP value for cluster 2, (D) SHAP value for cluster 3, (E) SHAP value for cluster 4. ALT, Alanine aminotransferase; Alb, albumin; ALP, alkaline phosphatase; Ca,

calcium; CRP, C-reactive protein; CK, creatine kinase; Cr, creatinine; HCT, hematocrit; HGB, hemoglobin; LDH, lactate dehydrogenase; LYM, lymphocyte count;

MON, monocyte count; NEUT, neutrophil count; P, phosphate; PLT, platelet; K, potassium; Na, sodium; TBIL, total bilirubin; WBC, white blood cell.
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prediction, followed by creatinine, hemoglobin, hematocrit, C-
reactive protein, and platelet. High platelet and low creatinine
were most important in classifying patients into cluster 1.
Elevated hemoglobin and hematocrit were most important in
classifying patients into cluster 2. Reduced white blood cell count
was themost important in classifying patients into cluster 3. High
C-reactive protein and old age were most important in classifying
patients into cluster 4.

DISCUSSION

Unsupervised clustering was used to probe the latent phenotypes
of 7,606 COVID-19–positive patients in Hong Kong across 2020.
Based on age, sex, and 20 laboratory blood tests on admission,
one of the four generated clusters aggregated 86.6% of deceased
cases without prior information of their clinical outcomes. The
clinical characteristics of this cluster, including the oldest median
age; highest aggregated comorbidity; and the laboratory tests
of hemoglobin, hematrocrit, and lymphocyte were observed
to be in the lower range of normal, whereas neutrophil, C-
reactive protein, and lactate dehydrogenase were observed to be
in the higher range of normal. Findings are comparable with
poor prognostic features based on contemporaneous literature.
Notably, when applied to a separate validation cohort, cluster
4 was still able to identify seven out of eight (87.5%) deceased
cases. A potential clinical utility may be to call for early medical
attention and resource to patients that belong to cluster 4 at
the initial diagnosis at hospitalization. The clinical characteristics
of cluster 4 and deceased cases in this study aligned with
previous findings (23–25). First, old age reflects a weaker immune
system to fight against pathogens, including pneumonia (26).
It is a well-established risk factor correlated with chronicity
and comorbidity in COVID-19 prognosis (10, 27). On the
other hand, increased neutrophil count and high neutrophil-to-
lymphocyte ratio can be elicited by deep airway and alveolar
damage. They represent an acute inflammatory response and
are indicators of a poor prognosis and higher disease severity
for COVID-19 (28–31). In line with cluster 4 and the deceased
cases in this study, at an early stage of COVID-19, lymphocyte
counts typically decrease, whereas white blood cell count may
or may not decrease (32). In addition, patients with severe
COVID-19 outcomes have exhibited abnormally high C-reactive
protein levels, lactate dehydrogenase, and neutrophils, implying
an inflammatory response and severe pneumonia (33). Although
C-reactive protein level is not affected by physical status, age,
and sex (34), it may be used to early diagnose severe pulmonary
disease secondary to bacterial infection (35).

A greater proportion of males than females were infected with
COVID-19 in contemporary literatures as well as MERS-CoV
and SARS-CoV infection (24, 36, 37). It can be a cofounder
in evaluating the sex-based difference in the susceptibility of
COVID-19 (38). In this retrospective study, the proportion of
males and females was roughly equal across all age groups (see
Figure 4) on admission. No significant difference in disease
prevalence existed between males and females. Under this
condition, a higher proportion of males was still observed in

FIGURE 4 | Population pyramid of the different age and sex with mortality

subgroup.

cluster 4 (65.0%) and deceased cases (61.3%). It indicates being
male as a risk factor for mortality (37, 39, 40). This reduced
disease susceptibility of females is hypothesized to be related to
the major roles of the X chromosome and sex hormones in innate
and adaptive immunity (41). Nonetheless, this correlation needs
further exploration and investigation.

The complications of COVID-19 include severe pneumonia,
septic shock, acute respiratory distress syndrome (ARDS), and
multiple organ failure (31, 42). Although lung has been the
primary organ involved in the infection, elevated creatinine and
urea levels were also detected in cluster 4 and in the deceased
cases, which implies that impaired renal function was a potential
early indicator of poor prognosis. Additionally, a low albumin
level, reflective of liver synthetic function, was also observed.
These abnormal laboratory variables imply that indicators for
early multiorgan failure were important and is likely a reflection
of systemic inflammatory response. For the reduced hemoglobin
and hematocrit levels detected in cluster 4 and the deceased, a
prior study suggests that SARS-CoV-2 may attack the heme on
1-beta chain of hemoglobin through CD147, and CD26, ACE2
receptors or by simulating hepcidin to increase tissue ferritin,
block ferroprotein, causing the iron deficiency, and thus lower
hemoglobin level (43).

In previous clustering analysis (10–12), both three and
four clusters have been identified, which were similar to the
number chosen by this study. Previous clusters have also
found some correlations for a poor prognosis, such as old
age and high comorbidity scores (12, 28), being male, high
lymphocytes high neutrophil count (11), and albumin level
(12). In respect to the clinical outcomes, our study shows the
greatest power to differentiate a cluster by aggregating 86.6%
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deceased cases and capturing most of their clinical characteristics
and correlations.

There were several key strengths to our study. First, a large
sample size of 7,606 COVID-19–positive patients was included.
This adds to greater statistical power and generalizability. The
data were collected from a single integrated EHR system fully
covering the Hong Kong population, meaning the clinical
data set is representative of this cohort. Second, all patients
that were tested positive despite mild or no symptoms were
nevertheless hospitalized in Hong Kong. Our study is unique
capturing a wide spectrum of clinical severity. On the contrary,
most other countries only tend to admit patients with severe
symptoms to the hospitals. Third, we validated our clusters on
a separate temporal validation with further feature explanation
using SHAP. It was demonstrated that criteria fromPCA-based k-
prototype clustering were correctly captured, used, and inferred.
Granular analysis of these distinct clusters should give a better
understanding of different clinical representations of COVID-
19 on admission. Besides this, delineating interactions between
specific chronicity and poor prognosis regarding different clinical
groups can help understand the mechanism of COVID-19.

There were a few limitations to our study. First, for a
retrospective study using observational data, the sampling was
not random. There may be the potential of selection and recall
bias. Although all age groups were represented, they were
not evenly distributed. The results and interpretations will be
best applied to the Hong Kong cohort with race dominated
by patients of Chinese ethnicity although there were several
imported cases of different ethnic origins. Owing to a lack of
accurate data on ethnicity, we could not perform further sub-
analysis. Second, as with any large-scale studies coveringmultiple
hospitals, there may be different standards and measurement
protocols. It was observed that the normal reference ranges
of laboratory variables varied mildly across institutions and
according to age and sex. Because no significant discrepancy
was detected, the data were put together directly using their
original values. Although a linear mapping could have been
used to reduce the systematic noise, variations due to age and
sex need to be further distinguished. Finally, some potential
important clinical and laboratory data with more than 50%
of missing data were excluded from the study. They include
BMI, blood pressure, oxygen saturation, D-Dimer, need for
assisted ventilation, ITU admission, etc., which are potentially
useful for severity assessment and prognostication. These may
additionally aid prediction and more accurate allocation of
medical resources in the future. Owing to a lack of testing or

accurate documentations, these were not able to be included
in this large scale multi-institutional study. These variables
are recommended to be documented or performed in the
future. However, they were not routinely recorded nor taken
in usual clinical practice in Hong Kong at the time of the
study period.

CONCLUSION

Unsupervised clustering was used to probe the latent phenotypes
of 7,606 COVID-19–positive patients in Hong Kong across
the year 2020. Based on age, sex, and 20 laboratory variables
on admission, one of the four generated clusters aggregated
86.6% deceased cases without prior knowledge of their clinical
outcomes. Further understanding of the different COVID-19
clinical phenotypes may pave the way for more individualized
patient risk stratification and treatment.
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