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Abstract—Although the soft robot is gaining considerable 

popularity in dexterous and safe manipulation, accurate motion 

control is still an open problem to be explored. Recent 

investigations suggest that reinforcement learning (RL) is a 

promising solution but lacks efficient adaptability for Sim2Real 

transfer or environment variations. In this paper, we present a 

deep deterministic policy gradient (DDPG)-based control system 

for the continuous task-space manipulation of soft robots. 

Domain randomization is adopted in simulation for fast control-

policy initialization, while an offline retraining strategy is 

utilized to update the controller parameters for incremental 

learning. The experiments demonstrate that the proposed RL 

controller can track a moving target accurately (with RMSE of 

1.26 mm), and accommodate to external varying load effectively 

(with ~30% RMSE reduction after retraining). Comparisons 

among the proposed RL controller and other supervised-

learning-based controllers in handling additional tip load were 

also conducted. The results support that our RL method is 

appropriate for automatic learning such that there is no need of 

manual interference for data processing, particularly in cases 

with external disturbances and actuation redundancy. 
Index Terms—Deep reinforcement learning, Domain 

randomization, Incremental learning, Learning-based control, 

Soft robot control 

I. INTRODUCTION 

WING to the inherent compliance and softness, the soft 

robot has drawn increasing interest since its advent. 

There are emerging various applications of soft robots, such 

as the soft gripper suitable for delicate and deformable objects 

[1], flexible needle and endoscope in minimally invasive 

surgery (MIS)[2-4], and wearables or prostheses in 

rehabilitation [5]. However, due to the high nonlinearity of 

material and actuation, as well as the flexibility, the analytical 

model of soft robot cannot be fully defined, making its 

accurate control a challenging topic. 

To tackle the problem of modeling, a variety of methods 

have been proposed to approximate the kinematics/dynamics 

model of continuum robots, generally divided into model-

based and model-free solutions. Piecewise constant curvature 

(PCC) assumption has been widely applied in continuum 

robot modeling [6], and self-contained curvature sensors 

could assist in real-time closed-loop control[7]. Nonetheless, 

neglecting the dynamics behavior, the PCC-based controller 

can fail under external disturbance. Cosserat rod theory [8] 

takes forces into account, but the dynamics is modeled with a 

series of nonlinear partial differential equations (PDEs) which 

require large computational time. Finite element method 

(FEM) is also used to characterize the deformation [9], but the 

modeling is highly specific to the material and geometry, and 

also laborious. Avoiding model analysis of robots, model-free 

methods directly generate the mapping between actuation and 

task spaces. Since the mapping or control policy is trained 

using experimental sensory data, this method is also 

denominated as data-driven control. There have been various 

supervised learning algorithms successfully applied in 

continuum manipulator control, such as forward neural 

networks (FNNs) [10], locally weighted project regression 

(LWPR) [11] and locally Gaussian process regression 

(LGPR) [12]. Although these methods can train the global or 

local inverse kinematics (IK) mapping, which enable the soft 

manipulator to track goals and adapt to environment changes 

[13], they heavily rely on the quality of measured data. To 

avoid the problem of redundant mapping, careful elaboration 

on training data pre-processing is of importance, such as using 

sample pair filtering [12] and constrained optimization [14]. 

Usually, this requires manual adjustment on dataset 

distribution in a uniform pattern within the workspace, so as 

to alleviate the adverse data imbalance effect.  

Recently, reinforcement learning (RL) has become an 

attractive strategy in soft continuum robot control [15]. 

Unlike supervised learning where the “answer key” (end-to-

end data) is exploited to obtain the mapping of task-actuation 

space, RL could train a controller during automatic 

exploration capable of deciding the optimal action, given the 

state [16]. Referred to whether the model of robot motion is 

known, RL could be categorized into model-based and model-

free algorithms. In soft robotics, it is challenging to obtain 

prior knowledge of robot structure or its interaction with the 

surrounding; therefore, model-free approaches are more 

prevalent in practice [13]. Q-learning, a popular model-free 

RL algorithm, including vanilla Q-learning [17], DQN [18] 

and DDQN [19], can store action-state values during training 

and also can pick the action with the highest value while 

testing. Such kind of methods has been validated in 

pneumatic artificial muscles (PAMs) to perform control tasks 

such as position tracking [20], path following with loads [21], 

and even complex interactions (e.g., drawer opening and 

handwheel rotating) [22]. However, the family of Q-learning 

can only estimate the state-action value in discrete space, 

which could sacrifice the control resolution and cannot be 
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applied in high-dimensional tasks. Deep deterministic policy 

gradient (DDPG), capable of continuous task-space control 

[23], was applied on pneumatic/hydraulic soft continuum 

arms [21, 24]. The “actor-critic” scheme in DDPG can 

approximate the environment and decision-maker, thus 

allowing the evaluation on continuous state-action pairs. 

Similar to supervised learning, model-free RL also relies on a 

large amount of training data. In practice, there are two main 

training approaches (i.e., acquiring the experience data) for 

RL-based controller: i) training in simulation [17, 18, 20], 

which is established using an ideal model such as PCC and 

Cosserat rod theory; ii) learning from scratch by real robots 

[25]. Simulation could generate abundant virtual data fast, 

therefore greatly shortening the training time, but it may 

suffer from a considerable Sim2Real gap [26]. Since model-

free RL is sensitive to data, it is possible to break down when 

encountering a condition never seen in pre-training. The latter 

approach circumvents the gap, but obtains trial-and-error 

experience on a physical robot, particularly at the initial stage, 

thus could be low-efficient, costly, and even harmful to the 

operation environment or robot itself. Therefore, the 

combination of simulation and transfer adaptation is expected 

for efficient RL-centered soft robot control, which has not yet 

been exploited in the aforementioned works. 

In this paper, we propose an adaptive RL-based control 

framework designed for soft continuum robots. The control 

policy is trained in a kinematics simulator first, then 

transferred to a real robot prototype with fine-tune technique 

to accommodate to motion disturbances. The core of adaptive 

learning can be described in two aspects. i) Domain 

randomization in simulation is to improve the controller’s 

generalization ability, and ii) offline retraining is to facilitate 

continuous update of the controller. Consequently, precise 

tracking performance could be assured, and the advantage 

over supervised learning methods can then be demonstrated. 

The major work contributions can be concluded below: 

1) Implementation of an RL-based controller in continuous 

task-space, which provides soft manipulators with fast 

initialization in simulation and rapid fine-tune of control 

policy in response to motion disturbance; 

2) Adaptive learning strategy enhanced by incorporating 

both domain randomization and offline retraining, 

designed for soft robot controller to accommodate to 

Sim2Real deviation; 

3) Experimental validations on accurate path-following 

ability, including comparison with supervised learning 

(FNNs, GPR) and simplified Jacobian model-based 

controllers. 

II. METHODOLOGY 

This section details the proposed RL control method for 

pneumatic-driven robots. Interaction of the robot with its 

surrounding is modelled by Markov decision process (MDP). 

The controller is initialized using DDPG algorithm in 

simulation. The strategy of domain randomization and offline 

retraining is employed to enhance the adaptability of RL-

based controller. 

A. Soft manipulator and task space definition 

We use the soft manipulator in [27], accredited to its 

generic structure (Fig. 1a) for experimenting on its non-linear 

behavior. There distribute three cylindrical fluidic chambers 

spaced 120° apart from each other (Fig. 1b). Three 

independent actuators inflate these three chambers, enabling 

the robot to bend omnidirectionally under different 

combinations of inflation pressure. Locating the end-effector 

at the robot tip is convenient for observing the robot 

deformation effect due to any external interaction. A bellow 

sheath enclosing the robot body is not only to maintain the 

repeatability of robot operation by protecting the soft 

actuators from its material fatigue or damage, but also to 

reinforce the actuation withstanding high pneumatic pressure 

(max. 8 bar), thus exhibiting comprehensive non-linear 

behavior for validating learning-based controls for soft robots. 

 
Fig. 1. (a) Structural diagram of the soft robot body; (b) Cross-section 

showing three air chambers for omni-directional robot bending; (c) 

Schematic of the robot path following task with the end-effector projection 

at time 0, k and k+1.  

The actuator input at time step k (equilibrium) is denoted as

( ) mk q , where m expresses the dimension of actuation 

space (in this work, m = 3). The corresponding 

deformation/bending of robot could be represented as 

( ) ( )  6
,k k p n , where ( )kp and ( )kn  are, respectively, 

the position and orientation of robot end-effector in world 

frame. The task space is defined in the projection plane 

normal to end-effector at initial state (Fig. 1c), with the 

incremental 2D displacement presented as 

( ) ( ) ( ),
x y

k p k p k =    p . The objective of our study is to 

construct a controller, capable of instructing actuation 

command ( )kq  to accomplish the desired displacement 

( )* kp . 

B. RL-based control 

Here, we introduce the mathematical definition of 

parameters in RL and the training algorithm DDPG as follow. 

i) Markov Decision Process (MDP): Markov Decision 

Process (MDP) is used to characterize the interaction between 

the robot and the environment in our RL framework, 

involving state s, action a, state transition probability 

( )P | ,s a s  and reward r, where s  is the next state after 

action execution. In terms of robot control, the process could 

be explained such that the controller perceives state 

information s, then decides the action a. Afterwards, the 
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environment feeds back the next state s  and reward r. 

Generally, reward r, state s and action a are defined 

empirically upon the required robot task. Transition 

probability ( )P | ,s a s  is counted on the environment. In 

other words, RL with specific definition of parameters would 

also be applicable to various robots and tasks. 

Considering that the fluid-driven soft continuum robot is 

deformed by chamber inflation from m independent 

pneumatic/hydraulic actuators (here, m = 3), we define the 

action a as  1 2 3, ,a   =  =   α , where ( )1,2,3i i =  

is the length change of each chamber. To stimulate the robot 

bending towards the target, the state is defined as 

p ,p , p , p ,x y x ys F =    , where px  and p y  are the errors 

between end-effector and target, respectively, in x and y 

directions. Binary variable  0,1F   indicates whether the 

manipulator has reached the goal such that F = 1. The reward 

function is designed as: 

 
1

1

,  

,  

k k k

k k k

b err err err
r

b err err c err





−

−

− + − 
= 

− + − + 
 (1) 

where b is a penalty term on each transition, thus motivating 

the manipulator to reach the goal in as few steps as possible. 

And err is the distance error between robot position to target. 

The controller would be rewarded with a large value c when 

the manipulator touched the target within a threshold  . The 

transition probability ( )P | ,s a s , namely the kinematics 

model of the soft robot is unknown.  

With the defined parameters in MDP, the motion of soft 

robot guided by policy   could be mathematically depicted 

as a procedure ( )0 0 1 1 1, , , , , , , ,n n ns a s r a s r a = , where n is the 

motion step. The objective of RL is to maximize the 

cumulative reward during the transition, which is stated as: 

 ~P, 1

0

max t

t

t

r  


+

=

 
 
 
  (2) 

where ( )0,1   is a discount factor. And the control policy 




, which is able to direct the soft robot to obtain the 

maximum reward, is defined as the optimal controller.  

ii) Deep Deterministic Policy Gradient (DDPG): is a 

model-free RL algorithm designed for continuous control, 

integrating policy gradient and value-based method. The 

state-action value, also named as Q-value, is used to assess 

the quality of action in the algorithm. The framework consists 

of an “actor” network ( )|s    and a “critic” network 

( ), |s a   , where “actor” receives the observation, then 

outputs action, while “critic” evaluates the action under the 

specific state. To avoid the problem of bootstrapping, new 

definitions of target “actor” ( )|s  
 and target “critic” 

( ), |s a  
  are utilized. The update goal of “critic” is to 

minimize the approximation loss on state-action evaluation, 

i.e., to approach the real environment, which follows: 

 L    −  (3) 

 ( )( ) ( )( )
2

1 1

1
, | | , |

i i i i ii
L r s s s a

N

  
     

 

+ +
 = + −

  (4) 

where   is the learning rate for “actor” update, and N is the 

minibatch size. The objective of “actor” is to maximize the Q-

value obtained from “critic”, and its update follows:  

 ( ) ( ) ( ),

1
, | | | |

i i i
a s s a s s

i

s a s
N



   

 
      

= =
 +  

  (5) 

where   is the learning rate for “critic” update. The update 

of target networks follows: 

 ( )1     
 
 + −  (6) 

 ( )1     
 
 + −  (7) 

where   is the learning rate for target models. 

C. Kinematics simulation with domain randomization 

To obtain a rough kinematics control policy in a short time, 

a simulation environment is developed using constant 

curvature (CC) model [28]. The “interaction” in this study is 

defined as every time the robot acts, the virtual environment 

would feed back its state information and the reward. In other 

words, the transition probability ( )P | ,s a s  is given by CC 

assumption. The CC model theoretically defines the 

configuration of an ideal single-section robot. However, due 

to the deviations not considered in the assumption such as 

fabrication bias and material nonlinearity, it is almost 

impossible for the real robot to be deformed as same as the 

ideal model. Even though performing satisfactorily in 

simulation, the controller may result in a diverged 

performance break down in the real world. Domain 

randomization can improve the generalization ability of 

trained models by adding variations into simulation [29]. 

Here, observation and physical parameter randomizations are 

deployed: Gaussian noise is added to end-effector position p, 

to mimic the observation noise of sensors. Noise sampled 

from a continuous uniform distribution is added to the 

chamber length  , to simulate the actual deformation of real 

robots. 

In the first step of training, a large number of goals would 

be generated randomly within the workspace, namely the goal 

pool. At the start of each episode, a new goal would be picked 

from the pool, and the policy would “learn” to approach the 

goal within certain steps. Once the target is reached or the 

accumulative number of movements exceeds the maximum, 

the episode is regarded as terminated. The procedure of pre-

training strategy is summarized in Algorithm 1. In contrast to 

the training with a specified target path, such a method with 

random goals enables the controller to be applied in different 

position control tasks such as point targeting and various path 

following. 

Algorithm 1: Controller Pre-training in Simulation using DDPG 

Input: training episode M 

maximum movement times T 

1 Randomly generate virtual goal pool  

2 for episode=1, M do 

3 Reset the goal by random picking from  

4 for step=1, T do 

5 Train using DDPG 

6 if goal is reached then 

7 break 

8 end for 

9 end for 
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D. Incremental learning with offline retraining 

In addition to the effort in policy pre-training, i.e., 

introducing random noises into the simulation, adaptive 

learning in this research also leverages the technique of fine-

tuning during implementation on real robots. Offline 

retraining [30] is an encouraging strategy, enabling robots to 

adapt to new variations rapidly. The workflow of this method 

can be described as: First, collecting practical experience on 

real robots using pre-trained controller; Next, updating the 

pre-trained controller using the same algorithm as simulation, 

with a decreased learning rate; Then, collecting data using 

retrained policy for next update. This sampling-updating loop 

would not be ended until the performance is satisfying. The 

procedure of offline retraining is summarized in Algorithm 2. 

The control flowchart, Fig. 2, depicts the key procedure in the 

proposed control frame, including simulation, 

implementation on real robot and incremental learning.  

Algorithm 2: Offline Retraining on Real Robot 

Input:  Pre-trained control policy init  

Empty execution control policy exu  

Retraining episode M 

Empty replay buffer  

Output: Fine-tuned control policy  
 

1 Initialize exu init =  

2 for episode=1, M do 

3 Empty  

4 Collect experience data using exu  and store into  

5 Offline update exu   

6 end for 

7 Return exu  

III. EXPERIMENTS, RESULTS AND DISCUSSION 

The presented RL-based controller is applied in various 

path following tasks with/without disturbance, showing the 

performance of how the robot could track the moving-target 

along the path. Comparison with simple Jacobian model-

based and typical supervised learning-based controllers is 

also included. 

A. Simulation 

Pre-training of control policy has to be conducted on 

simulation, in prior to its implementation on the robot 

platform. Four FNNs work individually as (target) “actors” 

and (target) “critics”, each of which is constructed with five 

hidden layers containing 128 neurons. The training was 

repeated for 5,000 episodes, and the tolerated maximum step 

in each episode was set to 200. Reaching threshold  = 0.5 

mm was chosen as 2.8% of the soft continuum diameter. The 

replay buffer acts as a memory pool, the size of which was set 

as 10,000. The training was implemented on computing 

workstation, AMD 3990X with graphic processing units 

(GPUs), NVIDIA RTX 3090. The trained results converged 

after ~500 episodes in ~3 hours. The trained RL-based 

controller was verified on an “∞”-shape path following task 

in virtual. The resultant root mean square error (RMSE) was 

1.32 mm. The test time of each step was 1 ms, implying the 

controller can respond promptly once the state was given. 

B. Experimental setup 

A compact soft continuum manipulator (Fig. 1a, Ø18×70-

mm) was made from a molded silicone (Dragon Skin20, 

Smooth-on Inc.). Its cylindrical surface was covered by a 

reinforced layer of bellow sheath. A closed-coil spring (Ø7 

mm) was integrated as a robot skeleton, which would 

empower the robot dynamics [27]. Maximum robot bending 

 
Fig. 2. Proposed RL-based robot control architecture. The controller, consisting of “actor” and “critic” models, is trained first in a virtual environment (Left), 

then transferred onto a real robot (Right). The “actor” model acts as controller generating the action command. The “critic” model evaluates the “actor”, thus 

fine-tuning the “actor”. The incremental learning unit is activated when encountering environment variations, providing “actor” and “critic” models with 

parameters update. 
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angle was confined below 90° (corresponding actuation 

pressure: ~2.5 bar), projecting the 2D plane within 35×35 mm. 

An endoscopic camera (Ø3.5 mm, Shanghai Yanshun Co., 

Ltd) was mounted on the robot tip cap for the purpose of 

visual exploration. An electromagnetic (EM) tracking system 

(NDI Medical Aurora) was used to provide position feedback 

to the presented controller. Two EM coils were attached onto 

the robot tip. All the processes, including sensing and control 

computation, were implemented on Python, so as to avoid 

communication time among different compliers. Running 

time intervals for sensing and control were minimized to 24 

ms and 1 ms, respectively. 

The control policy will determine the action for each step 

in the form of robot chamber length change α . However, 

the actuator (i.e., stepper motors in our setup, connected to 

cylinders and then soft robot) can only be commanded by 

motor position q , which adjusts the chamber length by 

pushing cylinders and varying the pressure inside chambers. 

Therefore, the relation between chamber length change α

and motor position q  needs to be established. We 

approximated it by means of fitting several sample pairs ( α  

to q ) using cubic spline data interpolation. The fitting result 

shows that their relation can be represented by a nonlinear 

curve upward. The larger the motor position, the smaller the 

slope. 

 
Fig. 3. Path “∞” following performance of the pre-trained controller. (a) 

Robot tracking started from the center [200, 200]. Warmer the color, bigger 

the deviation from the path; (b) Tracking error in two cycles of “∞”. The 

RMSE is 1.26 mm after the approaching stage. 

C. Path following using pre-trained controller 

To evaluate the training effectiveness, the pre-trained 

control policy was implemented on the soft manipulator in 

path following task. In this task, the robot is aimed at tracking 

a point moving along a 2-D reference “∞” path within 56×20 

mm (Fig. 3a). The tracking speed is expected to be constant. 

Four cycles (~500 time steps in total) were carried out in order 

to observe the resultant robot motion behaviors varied with 

the chamber pressures. The robot started from the center of 

projection plane [200, 200] and tracked on the moving goal 

shifting in each time step. Note that the actual trajectory of 

robot’s end-effector takes place in a spatial cambered surface, 

and the 2D projection on the x-y plane is regarded as the 

trajectory to be evaluated. Euclidean distance error at each 

time step is the distance measured from the end-effector 

position to the moving goal along the path. RMSE is used to 

indicate the overall accuracy for a period of tracking.  

Fig. 3a and 3b indicate, respectively, the tracking footprint 

and error. It took ~10 time steps, namely the approaching 

stage, for the robot to catch up the moving goal originated 

from the start point. Afterwards, the robot could follow the 

target closely. The RMSE counted, excluding the 

approaching stage, is 1.26-mm, which is ~6.8% of the robot 

tip diameter. It can be seen that the tracking performance in 

different cycles is not identical at the same place. For instance, 

at the 1st and 2nd cycle, the robot tip would oscillate with a 

maximum distance error of 6 mm (time step: 125~180). But 

when operating at the 3rd cycle, it would move smoothly with 

the maximum error of 3 mm (time step: 250~305). It is 

generally caused by the nonlinear correlation between the 

chamber length and pressure. At the beginning, a large 

chamber pressure variation is needed but results in only a little 

change of the chamber length. Thus, the swift pressure 

variation might induce the robot tip shaking back and forth. 

This experiment demonstrates that the initial controller only 

trained in virtual environment can accomplish high-accuracy 

path following task in the reality. Furthermore, such 

controller performance also indicates that the strategy of 

domain randomization can facilitate to bridge the Sim2Real 

gap. 

D. Path following under varying load 

Varying load on the robot tip was applied so as to validate 

if the controller learning could enable the robot control 

adapted with such varying dynamic disturbance. First, the 

controller was pre-trained in simulation only taking account 

of soft robot kinematics. Then, while testing in the reality, a 

balloon cap that can hold water was mounted on the robot tip. 

As displayed in Fig. 4a, the load could be variable by 

injecting water into the balloon. The balloon setup weighing 

4 g could contain up to 15-g water. Namely, the controller 

needs to deal with a varying tip payload ranging from 4 g to 

19 g through its incremental learning. The robot was 

commanded to follow the path in two cycles, in each of which, 

water was injected and extracted in a regular rhythm and 

volume (Fig. 4b). Every injection/extraction would complete 

in few seconds. Once the 1st cycle is completed, the controller 

would update for 50 epochs offline using the collected data. 

The update took <5 s only. The tracking data in 1st and 2nd 

cycles were used to display the performance of pre-trained 

and updated controllers, respectively. 
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Fig. 4. Two-cycles path following of the fine-tuned controller under varying 

load. A 4 g balloon cap at the robot tip can be injected by water, changing the 

payload from 4 to 19 g. (a) Water injection at three stages: none, half load 

and full load; (b) Controllers got retrained in between the first and second 

cycles; (c) Corresponding errors of pre-trained and fine-tuned controllers.  

 

The tracking trajectory and error are plotted in Fig. 4b and 

4c, respectively. During the two stages with full load (marked 

as ② and ③) in the 1st cycle, the action bounced between the 

upper and lower limits, causing the robot tip oscillated along 

the reference path with a maximum deviation of 5.48 mm. At 

the same stages in the 2nd cycle, the oscillation was 

diminished or eliminated obviously, within a reduced 

deviation of 5.0 mm. For the 1st full-load stage (time step: 

62~90), the RMSE decreased from 2.06 mm to 1.35 mm (34.5% 

reduction); for the 2nd full-load stage (time step: 192~200), 

the RMSE declines from 0.84 mm to 0.61 mm (27.4% 

reduction). It can be summarized that our controller is able to 

keep tracking with less oscillation after offline retraining. 

Such controller updates can act every time when a 

cycle/period is finished, being helpful for accuracy 

enhancement in position control tasks featured with repeated 

workspace. However, the controller after incremental 

learning can only accommodate to new conditions within 

limited range, instead of eliminating oscillation thoroughly. 

Due to the nonlinearity of robot actuation, the robot tends to 

execute large action when the chamber pressure is close to its 

initial state (i.e., minimal value). When tracking without 

external disturbances, the large action would only cause little 

oscillation, whereas the full load could aggravate the 

oscillation. The RL-learned control mechanism gradually 

approaches the actual robot features (including fabrication 

bias of robot, and impact of the surrounding) by means of 

incremental learning. 

E. Comparison among: RL-, model- and supervised 

learning-based controllers 

Experimental comparison among our RL-controller, 

model-based and two kinds of supervised learning-based 

controllers is carried out. It aims to explore an appropriate 

work condition for RL-based controller, also to optimize its 

strength in soft robot control. The model-based controller was 

constructed using CC assumption (aka. Jacobian model- or 

model-based controller in this study). It can assure a relative 

stable performance when the robot motion keeps in the quasi-

static state. Both NN- and GPR-based controllers are in 

category of supervised learning methods. A 3-hidden-layer 

FNN model was used in the NN-based controller. Target 

position is taken as input and the chamber length of soft robot 

as output, and  input-output pairs were sampled in virtual 

environment. In fairness to the comparison, no post-

processing was followed. In GPR algorithm, data clustering 

was also disregarded. The training was run with the tool of 

scikit-learn in Python. In prior to its validation on the real 

robot prototype, these three controllers were tested in the 

circle path (30×30 mm) following task in simulation. All the 

four controllers can track/follow the moving goal smoothly, 

with the RMSE of 1.44 mm, 0.84 mm and 1.07 mm, 

respectively, using model-, NN- and GPR-based controllers. 

The promising performance in simulation indicates the 

training of NN- and GPR-based control policy is correct. In 

regard to the experiment on real robot, the control 

performance was evaluated by the circle path following tasks 

with and without a constant load (25.3 g) applied. There were 

210 time steps in one cycle, and each test includes two cycles 

for observing whether the deviation would be reduced in the 

2nd cycle. 

Fig. 5. shows the tracking performance with and without 

the load. The RL- and model-based controllers made the 

tracking started from the center, then catching up the goal 

within 10 steps only. Similar to previous experiments (in 

Section III. C and D), there appear oscillations in actual 

trajectories. The slight deviation (<0.85 mm) of the RL-based 

controller indicates its fast convergence ability (Fig. 5a). 

However, the robot using model-based controller still moved 

with obvious vibration, resulting in a zig-zag trajectory (Fig. 

5b). Both the NN- and GPR-based controllers, despite their 

promising tracking results in simulation, cannot catch up the 

goal point precisely (Fig. 5c), with RMSE of 10.78 mm and 

11.12 mm, respectively. Due to their unacceptable 

performances (>10 mm), we skip them and just do the 

comparison between RL-based and model-based controllers 

in our further experiments.  

Fig. 5a and 5b plot the tracking performance of RL- and 

model-based controllers with and without the load. Although 

the extra load induced larger amplitude of oscillations, the 

robot using RL-based controller was still capable to follow 

the circle with the RMSE of 1.70 mm only. Similarly in using 
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model-based controller, the load also intensified the 

oscillation/shake along the path, the overall RMSE of which 

was 1.86 mm. It can be observed that the trajectory in Fig. 5a 

is smoother and more stable than the one in Fig. 5b (marked 

as ②③④ ). To further compare the two controllers’ 

performance in regard of oscillation, the RMSE of a particular 

period (time step: 320~420, typical oscillation period, marked 

as② in Fig. 5a and ④ in Fig. 5b) was calculated. Whether 

with or without the constant load, the RL-based controller 

could promote the tracking performance (~20% reduction in 

RMSE, 18.5%~63.6% reduction in maximum deviation error) 

compared with the model-based controller. Detailed 

experimental results are summarized in Table 1.  
 

TABLE 1. RMSE AND MAXIMUM DISTANCE ERROR COMPARISON WITH 

OTHER THREE TYPES OF CONTROLLERS IN CIRCLE PATH FOLLOWING TASK.  

 
w/o load w/ load 

RMSE* Max. err. RMSE* Max. err. 

Model-based 1.35 5.88 2.38 6.75 

NN-based 11.57 18.23 
N/A 

GPR-based 11.80 18.70 

Our RL-based 1.09 2.14 1.85 5.5 

Improv.** 19.3% 63.6% 22.3% 18.5% 

* The RMSE during time step 320~420 is presented for comparison. 

** “Improv.” denotes the improvement of RL- over the model-based controllers. 

In addition to accuracy validation tests, we also applied 

the soft manipulator with RL-based controller in a vision task. 

The soft robot was fixed downward, with the tip camera 

viewing a printed badge picture (Fig. 6a). Its camera field of 

view (FoV: 120°) would visualize only part of the badge at 

one shot. The soft robot was commanded to follow a circle 

path (10×10 mm) and save an image every step, in order to 

capture and reconstruct the full view of the badge. A series of 

images were mosaicked (Fig. 6b) using the Computer Vision 

Toolbox in MATLAB. The reconstruction of 2D scene using 

mosaicking is more or less conform to the real scenario, which 

indicates that the proposed controller enables soft robot to 

move swimmingly. 

 
Fig. 6. (a) Camera at the robot tip viewing downwards a printed HKU badge. 

Two electromagnetic (EM) positional tracking coils were attached at the tip, 
providing the controller with sensing feedback; (b) Mosaicked image result. 

IV. CONCLUSION 

This paper proposes an RL-based adaptive control 

framework, which enables the fluid-driven soft robot well-

controlled in continuous task-space. Provided with sufficient 

exploration in simulation, where domain randomization is 

applied, our RL controller could “learn” to track targets 

precisely even encountering large Sim2Real gap. The offline 

retraining scheme encourages the coarse control policy to 

fine-tune itself towards specific task, thus adapting to the 

environment variations. 

In view of the strong durability, the soft robot consisting of 

bellow sheath and spring is chosen for demonstration. Our 

roughly pre-trained RL controller is first verified on the soft 

robotic manipulator for path following. The acceptable 

tracking accuracy (1.26 mm in RMSE) was obtained. It 

supports that the technique of domain randomization used in 

simulation effectively can improve the generalization ability 

of control policy. In the path following task varied with 

payload (4~19 g), the controller could weaken the oscillation 

at RMSE reduction of ~30%, while maintaining the soft 

robot’s movement in a stable and smooth state. In comparison 

 
Fig. 5 Circle path following in two cycles (21 s per cycle). Besides free-space tests without load, a set of tests with an additional constant load (25.3 g) was 

conducted when using the RL-based and Jacobian model-based controllers. Tracking errors (upper) and trajectories (lower) of (a) RL-based controller, (b) 

Jacobian model-based controller, (c) NN- and GPR-based controllers. The tracking RMSE of four controllers are annotated in tracking error plots. 
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with model-based, NN-based and GPR-based controllers, our 

RL controller could reduce the tracking error by >20%, 

proving its eligibility for redundant control and biased dataset. 

In future work, we will further explore the adaptive 

learning ability of RL-based control policy. In terms of 

simulation-based model training, more effective Sim2Real 

transfer strategies will be studied, such as domain adaptation 

[26], which would improve the controller’s adaptability even 

with more sudden changing interaction. Additionally, we will 

employ computational mechanics in accounts for more 

realistic hyper-elastic deformation or dynamics, e.g., FEM 

and Cosserat rod theory. In regards of implementation on real 

robots, we intend to investigate incremental learning 

algorithms such as policy relaxation and importance 

weighting [31], which would speed up the control adaptation 

with varying disturbance by the robot surroundings. 

Moreover, advanced self-contained curvature sensors such as 

fiber Bragg gratings (FBGs), could be applied to offer precise 

chamber length feedbacks as well as end-effector pose, since 

they are capable for configuration-related measurement for 

soft robots. The soft continuum robot with outstanding 

adaptive ability would be considered to perform more 

intelligent manipulation tasks in unstructured environments, 

such as catching a randomly-walking object. The strong 

adaptability would also enable our RL-based control 

framework to generalize on soft robots with various 

morphology or multiple end-effectors, even micro-scale 

medical robots such as [32]. After setting specific kinematics 

or FEA model for the robot to be used, as well as the desired 

task space, automatic learning can be conducted to generate a 

corresponding RL controller. 
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