

Towards Adaptive Continuous Control of Soft

Robotic Manipulator using Reinforcement Learning

Yingqi Li, Xiaomei Wang, Ka-Wai Kwok, Senior Member, IEEE

Abstract—Although the soft robot is gaining considerable

popularity in dexterous and safe manipulation, accurate motion

control is still an open problem to be explored. Recent

investigations suggest that reinforcement learning (RL) is a

promising solution but lacks efficient adaptability for Sim2Real

transfer or environment variations. In this paper, we present a

deep deterministic policy gradient (DDPG)-based control system

for the continuous task-space manipulation of soft robots.

Domain randomization is adopted in simulation for fast control-

policy initialization, while an offline retraining strategy is

utilized to update the controller parameters for incremental

learning. The experiments demonstrate that the proposed RL

controller can track a moving target accurately (with RMSE of

1.26 mm), and accommodate to external varying load effectively

(with ~30% RMSE reduction after retraining). Comparisons

among the proposed RL controller and other supervised-

learning-based controllers in handling additional tip load were

also conducted. The results support that our RL method is

appropriate for automatic learning such that there is no need of

manual interference for data processing, particularly in cases

with external disturbances and actuation redundancy.
Index Terms—Deep reinforcement learning, Domain

randomization, Incremental learning, Learning-based control,

Soft robot control

I. INTRODUCTION

WING to the inherent compliance and softness, the soft

robot has drawn increasing interest since its advent.

There are emerging various applications of soft robots, such

as the soft gripper suitable for delicate and deformable objects

[1], flexible needle and endoscope in minimally invasive

surgery (MIS)[2-4], and wearables or prostheses in

rehabilitation [5]. However, due to the high nonlinearity of

material and actuation, as well as the flexibility, the analytical

model of soft robot cannot be fully defined, making its

accurate control a challenging topic.

To tackle the problem of modeling, a variety of methods

have been proposed to approximate the kinematics/dynamics

model of continuum robots, generally divided into model-

based and model-free solutions. Piecewise constant curvature

(PCC) assumption has been widely applied in continuum

robot modeling [6], and self-contained curvature sensors

could assist in real-time closed-loop control[7]. Nonetheless,

neglecting the dynamics behavior, the PCC-based controller

can fail under external disturbance. Cosserat rod theory [8]

takes forces into account, but the dynamics is modeled with a

series of nonlinear partial differential equations (PDEs) which

require large computational time. Finite element method

(FEM) is also used to characterize the deformation [9], but the

modeling is highly specific to the material and geometry, and

also laborious. Avoiding model analysis of robots, model-free

methods directly generate the mapping between actuation and

task spaces. Since the mapping or control policy is trained

using experimental sensory data, this method is also

denominated as data-driven control. There have been various

supervised learning algorithms successfully applied in

continuum manipulator control, such as forward neural

networks (FNNs) [10], locally weighted project regression

(LWPR) [11] and locally Gaussian process regression

(LGPR) [12]. Although these methods can train the global or

local inverse kinematics (IK) mapping, which enable the soft

manipulator to track goals and adapt to environment changes

[13], they heavily rely on the quality of measured data. To

avoid the problem of redundant mapping, careful elaboration

on training data pre-processing is of importance, such as using

sample pair filtering [12] and constrained optimization [14].

Usually, this requires manual adjustment on dataset

distribution in a uniform pattern within the workspace, so as

to alleviate the adverse data imbalance effect.

Recently, reinforcement learning (RL) has become an

attractive strategy in soft continuum robot control [15].

Unlike supervised learning where the “answer key” (end-to-

end data) is exploited to obtain the mapping of task-actuation

space, RL could train a controller during automatic

exploration capable of deciding the optimal action, given the

state [16]. Referred to whether the model of robot motion is

known, RL could be categorized into model-based and model-

free algorithms. In soft robotics, it is challenging to obtain

prior knowledge of robot structure or its interaction with the

surrounding; therefore, model-free approaches are more

prevalent in practice [13]. Q-learning, a popular model-free

RL algorithm, including vanilla Q-learning [17], DQN [18]

and DDQN [19], can store action-state values during training

and also can pick the action with the highest value while

testing. Such kind of methods has been validated in

pneumatic artificial muscles (PAMs) to perform control tasks

such as position tracking [20], path following with loads [21],

and even complex interactions (e.g., drawer opening and

handwheel rotating) [22]. However, the family of Q-learning

can only estimate the state-action value in discrete space,

which could sacrifice the control resolution and cannot be

O

This work was supported by the Research Grants Council (RGC) of Hong
Kong (17209021, 17207020, 17205919), the Innovation and Technology

Commission (ITC) (MRP/029/20X) of the HKSAR Government under the

InnoHK initiative, Hong Kong, via Multi-scale Medical Robotics Center
(MRC) Ltd. and Centre for Garment Production Limited.

Y. Li, X. Wang and K.W. Kwok are with Department of Mechanical

Engineering, The University of Hong Kong, Hong Kong (corresponding
author, Tel: +852-3917-2636; e-mail: kwokkw@hku.hk).

X. Wang is also with Multi-scale Medical Robotics Center (MRC) Limited.

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 23-27, 2022, Kyoto, Japan

978-1-6654-7927-1/22/$31.00 ©2022 IEEE 7074

20
22

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

 9
78

-1
-6

65
4-

79
27

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IR

O
S4

76
12

.2
02

2.
99

81
33

5

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 11,2023 at 04:22:38 UTC from IEEE Xplore. Restrictions apply.

applied in high-dimensional tasks. Deep deterministic policy

gradient (DDPG), capable of continuous task-space control

[23], was applied on pneumatic/hydraulic soft continuum

arms [21, 24]. The “actor-critic” scheme in DDPG can

approximate the environment and decision-maker, thus

allowing the evaluation on continuous state-action pairs.

Similar to supervised learning, model-free RL also relies on a

large amount of training data. In practice, there are two main

training approaches (i.e., acquiring the experience data) for

RL-based controller: i) training in simulation [17, 18, 20],

which is established using an ideal model such as PCC and

Cosserat rod theory; ii) learning from scratch by real robots

[25]. Simulation could generate abundant virtual data fast,

therefore greatly shortening the training time, but it may

suffer from a considerable Sim2Real gap [26]. Since model-

free RL is sensitive to data, it is possible to break down when

encountering a condition never seen in pre-training. The latter

approach circumvents the gap, but obtains trial-and-error

experience on a physical robot, particularly at the initial stage,

thus could be low-efficient, costly, and even harmful to the

operation environment or robot itself. Therefore, the

combination of simulation and transfer adaptation is expected

for efficient RL-centered soft robot control, which has not yet

been exploited in the aforementioned works.

In this paper, we propose an adaptive RL-based control

framework designed for soft continuum robots. The control

policy is trained in a kinematics simulator first, then

transferred to a real robot prototype with fine-tune technique

to accommodate to motion disturbances. The core of adaptive

learning can be described in two aspects. i) Domain

randomization in simulation is to improve the controller’s

generalization ability, and ii) offline retraining is to facilitate

continuous update of the controller. Consequently, precise

tracking performance could be assured, and the advantage

over supervised learning methods can then be demonstrated.

The major work contributions can be concluded below:

1) Implementation of an RL-based controller in continuous

task-space, which provides soft manipulators with fast

initialization in simulation and rapid fine-tune of control

policy in response to motion disturbance;

2) Adaptive learning strategy enhanced by incorporating

both domain randomization and offline retraining,

designed for soft robot controller to accommodate to

Sim2Real deviation;

3) Experimental validations on accurate path-following

ability, including comparison with supervised learning

(FNNs, GPR) and simplified Jacobian model-based

controllers.

II. METHODOLOGY

This section details the proposed RL control method for

pneumatic-driven robots. Interaction of the robot with its

surrounding is modelled by Markov decision process (MDP).

The controller is initialized using DDPG algorithm in

simulation. The strategy of domain randomization and offline

retraining is employed to enhance the adaptability of RL-

based controller.

A. Soft manipulator and task space definition

We use the soft manipulator in [27], accredited to its

generic structure (Fig. 1a) for experimenting on its non-linear

behavior. There distribute three cylindrical fluidic chambers

spaced 120° apart from each other (Fig. 1b). Three

independent actuators inflate these three chambers, enabling

the robot to bend omnidirectionally under different

combinations of inflation pressure. Locating the end-effector

at the robot tip is convenient for observing the robot

deformation effect due to any external interaction. A bellow

sheath enclosing the robot body is not only to maintain the

repeatability of robot operation by protecting the soft

actuators from its material fatigue or damage, but also to

reinforce the actuation withstanding high pneumatic pressure

(max. 8 bar), thus exhibiting comprehensive non-linear

behavior for validating learning-based controls for soft robots.

Fig. 1. (a) Structural diagram of the soft robot body; (b) Cross-section

showing three air chambers for omni-directional robot bending; (c)

Schematic of the robot path following task with the end-effector projection

at time 0, k and k+1.

The actuator input at time step k (equilibrium) is denoted as

() mk q , where m expresses the dimension of actuation

space (in this work, m = 3). The corresponding

deformation/bending of robot could be represented as

() ()  6
,k k p n , where ()kp and ()kn are, respectively,

the position and orientation of robot end-effector in world

frame. The task space is defined in the projection plane

normal to end-effector at initial state (Fig. 1c), with the

incremental 2D displacement presented as

() () (),
x y

k p k p k =    p . The objective of our study is to

construct a controller, capable of instructing actuation

command ()kq to accomplish the desired displacement

()* kp .

B. RL-based control

Here, we introduce the mathematical definition of

parameters in RL and the training algorithm DDPG as follow.

i) Markov Decision Process (MDP): Markov Decision

Process (MDP) is used to characterize the interaction between

the robot and the environment in our RL framework,

involving state s, action a, state transition probability

()P | ,s a s and reward r, where s is the next state after

action execution. In terms of robot control, the process could

be explained such that the controller perceives state

information s, then decides the action a. Afterwards, the

7075

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 11,2023 at 04:22:38 UTC from IEEE Xplore. Restrictions apply.

environment feeds back the next state s and reward r.

Generally, reward r, state s and action a are defined

empirically upon the required robot task. Transition

probability ()P | ,s a s is counted on the environment. In

other words, RL with specific definition of parameters would

also be applicable to various robots and tasks.

Considering that the fluid-driven soft continuum robot is

deformed by chamber inflation from m independent

pneumatic/hydraulic actuators (here, m = 3), we define the

action a as  1 2 3, ,a   =  =   α , where ()1,2,3i i =

is the length change of each chamber. To stimulate the robot

bending towards the target, the state is defined as

p ,p , p , p ,x y x ys F =    , where px and p y are the errors

between end-effector and target, respectively, in x and y

directions. Binary variable  0,1F  indicates whether the

manipulator has reached the goal such that F = 1. The reward

function is designed as:

1

1

,

,

k k k

k k k

b err err err
r

b err err c err





−

−

− + − 
= 

− + − + 
 (1)

where b is a penalty term on each transition, thus motivating

the manipulator to reach the goal in as few steps as possible.

And err is the distance error between robot position to target.

The controller would be rewarded with a large value c when

the manipulator touched the target within a threshold  . The

transition probability ()P | ,s a s , namely the kinematics

model of the soft robot is unknown.

With the defined parameters in MDP, the motion of soft

robot guided by policy  could be mathematically depicted

as a procedure ()0 0 1 1 1, , , , , , , ,n n ns a s r a s r a = , where n is the

motion step. The objective of RL is to maximize the

cumulative reward during the transition, which is stated as:

 ~P, 1

0

max t

t

t

r  


+

=

 
 
 
 (2)

where ()0,1  is a discount factor. And the control policy




, which is able to direct the soft robot to obtain the

maximum reward, is defined as the optimal controller.

ii) Deep Deterministic Policy Gradient (DDPG): is a

model-free RL algorithm designed for continuous control,

integrating policy gradient and value-based method. The

state-action value, also named as Q-value, is used to assess

the quality of action in the algorithm. The framework consists

of an “actor” network ()|s   and a “critic” network

(), |s a   , where “actor” receives the observation, then

outputs action, while “critic” evaluates the action under the

specific state. To avoid the problem of bootstrapping, new

definitions of target “actor” ()|s  
 and target “critic”

(), |s a  
 are utilized. The update goal of “critic” is to

minimize the approximation loss on state-action evaluation,

i.e., to approach the real environment, which follows:

 L    − (3)

 ()() ()()
2

1 1

1
, | | , |

i i i i ii
L r s s s a

N

  
     

 

+ +
 = + −

 (4)

where  is the learning rate for “actor” update, and N is the

minibatch size. The objective of “actor” is to maximize the Q-

value obtained from “critic”, and its update follows:

 () () (),

1
, | | | |

i i i
a s s a s s

i

s a s
N



   

 
      

= =
 +  

 (5)

where  is the learning rate for “critic” update. The update

of target networks follows:

 ()1     
 
 + − (6)

 ()1     
 
 + − (7)

where  is the learning rate for target models.

C. Kinematics simulation with domain randomization

To obtain a rough kinematics control policy in a short time,

a simulation environment is developed using constant

curvature (CC) model [28]. The “interaction” in this study is

defined as every time the robot acts, the virtual environment

would feed back its state information and the reward. In other

words, the transition probability ()P | ,s a s is given by CC

assumption. The CC model theoretically defines the

configuration of an ideal single-section robot. However, due

to the deviations not considered in the assumption such as

fabrication bias and material nonlinearity, it is almost

impossible for the real robot to be deformed as same as the

ideal model. Even though performing satisfactorily in

simulation, the controller may result in a diverged

performance break down in the real world. Domain

randomization can improve the generalization ability of

trained models by adding variations into simulation [29].

Here, observation and physical parameter randomizations are

deployed: Gaussian noise is added to end-effector position p,

to mimic the observation noise of sensors. Noise sampled

from a continuous uniform distribution is added to the

chamber length  , to simulate the actual deformation of real

robots.

In the first step of training, a large number of goals would

be generated randomly within the workspace, namely the goal

pool. At the start of each episode, a new goal would be picked

from the pool, and the policy would “learn” to approach the

goal within certain steps. Once the target is reached or the

accumulative number of movements exceeds the maximum,

the episode is regarded as terminated. The procedure of pre-

training strategy is summarized in Algorithm 1. In contrast to

the training with a specified target path, such a method with

random goals enables the controller to be applied in different

position control tasks such as point targeting and various path

following.

Algorithm 1: Controller Pre-training in Simulation using DDPG

Input: training episode M

maximum movement times T

1 Randomly generate virtual goal pool

2 for episode=1, M do

3 Reset the goal by random picking from

4 for step=1, T do

5 Train using DDPG

6 if goal is reached then

7 break

8 end for

9 end for

7076

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 11,2023 at 04:22:38 UTC from IEEE Xplore. Restrictions apply.

D. Incremental learning with offline retraining

In addition to the effort in policy pre-training, i.e.,

introducing random noises into the simulation, adaptive

learning in this research also leverages the technique of fine-

tuning during implementation on real robots. Offline

retraining [30] is an encouraging strategy, enabling robots to

adapt to new variations rapidly. The workflow of this method

can be described as: First, collecting practical experience on

real robots using pre-trained controller; Next, updating the

pre-trained controller using the same algorithm as simulation,

with a decreased learning rate; Then, collecting data using

retrained policy for next update. This sampling-updating loop

would not be ended until the performance is satisfying. The

procedure of offline retraining is summarized in Algorithm 2.

The control flowchart, Fig. 2, depicts the key procedure in the

proposed control frame, including simulation,

implementation on real robot and incremental learning.

Algorithm 2: Offline Retraining on Real Robot

Input: Pre-trained control policy init

Empty execution control policy exu

Retraining episode M

Empty replay buffer

Output: Fine-tuned control policy  

1 Initialize exu init =

2 for episode=1, M do

3 Empty

4 Collect experience data using exu and store into

5 Offline update exu

6 end for

7 Return exu

III. EXPERIMENTS, RESULTS AND DISCUSSION

The presented RL-based controller is applied in various

path following tasks with/without disturbance, showing the

performance of how the robot could track the moving-target

along the path. Comparison with simple Jacobian model-

based and typical supervised learning-based controllers is

also included.

A. Simulation

Pre-training of control policy has to be conducted on

simulation, in prior to its implementation on the robot

platform. Four FNNs work individually as (target) “actors”

and (target) “critics”, each of which is constructed with five

hidden layers containing 128 neurons. The training was

repeated for 5,000 episodes, and the tolerated maximum step

in each episode was set to 200. Reaching threshold  = 0.5

mm was chosen as 2.8% of the soft continuum diameter. The

replay buffer acts as a memory pool, the size of which was set

as 10,000. The training was implemented on computing

workstation, AMD 3990X with graphic processing units

(GPUs), NVIDIA RTX 3090. The trained results converged

after ~500 episodes in ~3 hours. The trained RL-based

controller was verified on an “∞”-shape path following task

in virtual. The resultant root mean square error (RMSE) was

1.32 mm. The test time of each step was 1 ms, implying the

controller can respond promptly once the state was given.

B. Experimental setup

A compact soft continuum manipulator (Fig. 1a, Ø18×70-

mm) was made from a molded silicone (Dragon Skin20,

Smooth-on Inc.). Its cylindrical surface was covered by a

reinforced layer of bellow sheath. A closed-coil spring (Ø7

mm) was integrated as a robot skeleton, which would

empower the robot dynamics [27]. Maximum robot bending

Fig. 2. Proposed RL-based robot control architecture. The controller, consisting of “actor” and “critic” models, is trained first in a virtual environment (Left),

then transferred onto a real robot (Right). The “actor” model acts as controller generating the action command. The “critic” model evaluates the “actor”, thus

fine-tuning the “actor”. The incremental learning unit is activated when encountering environment variations, providing “actor” and “critic” models with

parameters update.

7077

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 11,2023 at 04:22:38 UTC from IEEE Xplore. Restrictions apply.

angle was confined below 90° (corresponding actuation

pressure: ~2.5 bar), projecting the 2D plane within 35×35 mm.

An endoscopic camera (Ø3.5 mm, Shanghai Yanshun Co.,

Ltd) was mounted on the robot tip cap for the purpose of

visual exploration. An electromagnetic (EM) tracking system

(NDI Medical Aurora) was used to provide position feedback

to the presented controller. Two EM coils were attached onto

the robot tip. All the processes, including sensing and control

computation, were implemented on Python, so as to avoid

communication time among different compliers. Running

time intervals for sensing and control were minimized to 24

ms and 1 ms, respectively.

The control policy will determine the action for each step

in the form of robot chamber length change α . However,

the actuator (i.e., stepper motors in our setup, connected to

cylinders and then soft robot) can only be commanded by

motor position q , which adjusts the chamber length by

pushing cylinders and varying the pressure inside chambers.

Therefore, the relation between chamber length change α

and motor position q needs to be established. We

approximated it by means of fitting several sample pairs (α

to q) using cubic spline data interpolation. The fitting result

shows that their relation can be represented by a nonlinear

curve upward. The larger the motor position, the smaller the

slope.

Fig. 3. Path “∞” following performance of the pre-trained controller. (a)

Robot tracking started from the center [200, 200]. Warmer the color, bigger

the deviation from the path; (b) Tracking error in two cycles of “∞”. The

RMSE is 1.26 mm after the approaching stage.

C. Path following using pre-trained controller

To evaluate the training effectiveness, the pre-trained

control policy was implemented on the soft manipulator in

path following task. In this task, the robot is aimed at tracking

a point moving along a 2-D reference “∞” path within 56×20

mm (Fig. 3a). The tracking speed is expected to be constant.

Four cycles (~500 time steps in total) were carried out in order

to observe the resultant robot motion behaviors varied with

the chamber pressures. The robot started from the center of

projection plane [200, 200] and tracked on the moving goal

shifting in each time step. Note that the actual trajectory of

robot’s end-effector takes place in a spatial cambered surface,

and the 2D projection on the x-y plane is regarded as the

trajectory to be evaluated. Euclidean distance error at each

time step is the distance measured from the end-effector

position to the moving goal along the path. RMSE is used to

indicate the overall accuracy for a period of tracking.

Fig. 3a and 3b indicate, respectively, the tracking footprint

and error. It took ~10 time steps, namely the approaching

stage, for the robot to catch up the moving goal originated

from the start point. Afterwards, the robot could follow the

target closely. The RMSE counted, excluding the

approaching stage, is 1.26-mm, which is ~6.8% of the robot

tip diameter. It can be seen that the tracking performance in

different cycles is not identical at the same place. For instance,

at the 1st and 2nd cycle, the robot tip would oscillate with a

maximum distance error of 6 mm (time step: 125~180). But

when operating at the 3rd cycle, it would move smoothly with

the maximum error of 3 mm (time step: 250~305). It is

generally caused by the nonlinear correlation between the

chamber length and pressure. At the beginning, a large

chamber pressure variation is needed but results in only a little

change of the chamber length. Thus, the swift pressure

variation might induce the robot tip shaking back and forth.

This experiment demonstrates that the initial controller only

trained in virtual environment can accomplish high-accuracy

path following task in the reality. Furthermore, such

controller performance also indicates that the strategy of

domain randomization can facilitate to bridge the Sim2Real

gap.

D. Path following under varying load

Varying load on the robot tip was applied so as to validate

if the controller learning could enable the robot control

adapted with such varying dynamic disturbance. First, the

controller was pre-trained in simulation only taking account

of soft robot kinematics. Then, while testing in the reality, a

balloon cap that can hold water was mounted on the robot tip.

As displayed in Fig. 4a, the load could be variable by

injecting water into the balloon. The balloon setup weighing

4 g could contain up to 15-g water. Namely, the controller

needs to deal with a varying tip payload ranging from 4 g to

19 g through its incremental learning. The robot was

commanded to follow the path in two cycles, in each of which,

water was injected and extracted in a regular rhythm and

volume (Fig. 4b). Every injection/extraction would complete

in few seconds. Once the 1st cycle is completed, the controller

would update for 50 epochs offline using the collected data.

The update took <5 s only. The tracking data in 1st and 2nd

cycles were used to display the performance of pre-trained

and updated controllers, respectively.

7078

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 11,2023 at 04:22:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Two-cycles path following of the fine-tuned controller under varying

load. A 4 g balloon cap at the robot tip can be injected by water, changing the

payload from 4 to 19 g. (a) Water injection at three stages: none, half load

and full load; (b) Controllers got retrained in between the first and second

cycles; (c) Corresponding errors of pre-trained and fine-tuned controllers.

The tracking trajectory and error are plotted in Fig. 4b and

4c, respectively. During the two stages with full load (marked

as ② and ③) in the 1st cycle, the action bounced between the

upper and lower limits, causing the robot tip oscillated along

the reference path with a maximum deviation of 5.48 mm. At

the same stages in the 2nd cycle, the oscillation was

diminished or eliminated obviously, within a reduced

deviation of 5.0 mm. For the 1st full-load stage (time step:

62~90), the RMSE decreased from 2.06 mm to 1.35 mm (34.5%

reduction); for the 2nd full-load stage (time step: 192~200),

the RMSE declines from 0.84 mm to 0.61 mm (27.4%

reduction). It can be summarized that our controller is able to

keep tracking with less oscillation after offline retraining.

Such controller updates can act every time when a

cycle/period is finished, being helpful for accuracy

enhancement in position control tasks featured with repeated

workspace. However, the controller after incremental

learning can only accommodate to new conditions within

limited range, instead of eliminating oscillation thoroughly.

Due to the nonlinearity of robot actuation, the robot tends to

execute large action when the chamber pressure is close to its

initial state (i.e., minimal value). When tracking without

external disturbances, the large action would only cause little

oscillation, whereas the full load could aggravate the

oscillation. The RL-learned control mechanism gradually

approaches the actual robot features (including fabrication

bias of robot, and impact of the surrounding) by means of

incremental learning.

E. Comparison among: RL-, model- and supervised

learning-based controllers

Experimental comparison among our RL-controller,

model-based and two kinds of supervised learning-based

controllers is carried out. It aims to explore an appropriate

work condition for RL-based controller, also to optimize its

strength in soft robot control. The model-based controller was

constructed using CC assumption (aka. Jacobian model- or

model-based controller in this study). It can assure a relative

stable performance when the robot motion keeps in the quasi-

static state. Both NN- and GPR-based controllers are in

category of supervised learning methods. A 3-hidden-layer

FNN model was used in the NN-based controller. Target

position is taken as input and the chamber length of soft robot

as output, and input-output pairs were sampled in virtual

environment. In fairness to the comparison, no post-

processing was followed. In GPR algorithm, data clustering

was also disregarded. The training was run with the tool of

scikit-learn in Python. In prior to its validation on the real

robot prototype, these three controllers were tested in the

circle path (30×30 mm) following task in simulation. All the

four controllers can track/follow the moving goal smoothly,

with the RMSE of 1.44 mm, 0.84 mm and 1.07 mm,

respectively, using model-, NN- and GPR-based controllers.

The promising performance in simulation indicates the

training of NN- and GPR-based control policy is correct. In

regard to the experiment on real robot, the control

performance was evaluated by the circle path following tasks

with and without a constant load (25.3 g) applied. There were

210 time steps in one cycle, and each test includes two cycles

for observing whether the deviation would be reduced in the

2nd cycle.

Fig. 5. shows the tracking performance with and without

the load. The RL- and model-based controllers made the

tracking started from the center, then catching up the goal

within 10 steps only. Similar to previous experiments (in

Section III. C and D), there appear oscillations in actual

trajectories. The slight deviation (<0.85 mm) of the RL-based

controller indicates its fast convergence ability (Fig. 5a).

However, the robot using model-based controller still moved

with obvious vibration, resulting in a zig-zag trajectory (Fig.

5b). Both the NN- and GPR-based controllers, despite their

promising tracking results in simulation, cannot catch up the

goal point precisely (Fig. 5c), with RMSE of 10.78 mm and

11.12 mm, respectively. Due to their unacceptable

performances (>10 mm), we skip them and just do the

comparison between RL-based and model-based controllers

in our further experiments.

Fig. 5a and 5b plot the tracking performance of RL- and

model-based controllers with and without the load. Although

the extra load induced larger amplitude of oscillations, the

robot using RL-based controller was still capable to follow

the circle with the RMSE of 1.70 mm only. Similarly in using

7079

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 11,2023 at 04:22:38 UTC from IEEE Xplore. Restrictions apply.

model-based controller, the load also intensified the

oscillation/shake along the path, the overall RMSE of which

was 1.86 mm. It can be observed that the trajectory in Fig. 5a

is smoother and more stable than the one in Fig. 5b (marked

as ②③④). To further compare the two controllers’

performance in regard of oscillation, the RMSE of a particular

period (time step: 320~420, typical oscillation period, marked

as② in Fig. 5a and ④ in Fig. 5b) was calculated. Whether

with or without the constant load, the RL-based controller

could promote the tracking performance (~20% reduction in

RMSE, 18.5%~63.6% reduction in maximum deviation error)

compared with the model-based controller. Detailed

experimental results are summarized in Table 1.

TABLE 1. RMSE AND MAXIMUM DISTANCE ERROR COMPARISON WITH

OTHER THREE TYPES OF CONTROLLERS IN CIRCLE PATH FOLLOWING TASK.

w/o load w/ load

RMSE* Max. err. RMSE* Max. err.

Model-based 1.35 5.88 2.38 6.75

NN-based 11.57 18.23
N/A

GPR-based 11.80 18.70

Our RL-based 1.09 2.14 1.85 5.5

Improv.** 19.3% 63.6% 22.3% 18.5%

* The RMSE during time step 320~420 is presented for comparison.

** “Improv.” denotes the improvement of RL- over the model-based controllers.

In addition to accuracy validation tests, we also applied

the soft manipulator with RL-based controller in a vision task.

The soft robot was fixed downward, with the tip camera

viewing a printed badge picture (Fig. 6a). Its camera field of

view (FoV: 120°) would visualize only part of the badge at

one shot. The soft robot was commanded to follow a circle

path (10×10 mm) and save an image every step, in order to

capture and reconstruct the full view of the badge. A series of

images were mosaicked (Fig. 6b) using the Computer Vision

Toolbox in MATLAB. The reconstruction of 2D scene using

mosaicking is more or less conform to the real scenario, which

indicates that the proposed controller enables soft robot to

move swimmingly.

Fig. 6. (a) Camera at the robot tip viewing downwards a printed HKU badge.

Two electromagnetic (EM) positional tracking coils were attached at the tip,
providing the controller with sensing feedback; (b) Mosaicked image result.

IV. CONCLUSION

This paper proposes an RL-based adaptive control

framework, which enables the fluid-driven soft robot well-

controlled in continuous task-space. Provided with sufficient

exploration in simulation, where domain randomization is

applied, our RL controller could “learn” to track targets

precisely even encountering large Sim2Real gap. The offline

retraining scheme encourages the coarse control policy to

fine-tune itself towards specific task, thus adapting to the

environment variations.

In view of the strong durability, the soft robot consisting of

bellow sheath and spring is chosen for demonstration. Our

roughly pre-trained RL controller is first verified on the soft

robotic manipulator for path following. The acceptable

tracking accuracy (1.26 mm in RMSE) was obtained. It

supports that the technique of domain randomization used in

simulation effectively can improve the generalization ability

of control policy. In the path following task varied with

payload (4~19 g), the controller could weaken the oscillation

at RMSE reduction of ~30%, while maintaining the soft

robot’s movement in a stable and smooth state. In comparison

Fig. 5 Circle path following in two cycles (21 s per cycle). Besides free-space tests without load, a set of tests with an additional constant load (25.3 g) was

conducted when using the RL-based and Jacobian model-based controllers. Tracking errors (upper) and trajectories (lower) of (a) RL-based controller, (b)

Jacobian model-based controller, (c) NN- and GPR-based controllers. The tracking RMSE of four controllers are annotated in tracking error plots.

7080

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 11,2023 at 04:22:38 UTC from IEEE Xplore. Restrictions apply.

with model-based, NN-based and GPR-based controllers, our

RL controller could reduce the tracking error by >20%,

proving its eligibility for redundant control and biased dataset.

In future work, we will further explore the adaptive

learning ability of RL-based control policy. In terms of

simulation-based model training, more effective Sim2Real

transfer strategies will be studied, such as domain adaptation

[26], which would improve the controller’s adaptability even

with more sudden changing interaction. Additionally, we will

employ computational mechanics in accounts for more

realistic hyper-elastic deformation or dynamics, e.g., FEM

and Cosserat rod theory. In regards of implementation on real

robots, we intend to investigate incremental learning

algorithms such as policy relaxation and importance

weighting [31], which would speed up the control adaptation

with varying disturbance by the robot surroundings.

Moreover, advanced self-contained curvature sensors such as

fiber Bragg gratings (FBGs), could be applied to offer precise

chamber length feedbacks as well as end-effector pose, since

they are capable for configuration-related measurement for

soft robots. The soft continuum robot with outstanding

adaptive ability would be considered to perform more

intelligent manipulation tasks in unstructured environments,

such as catching a randomly-walking object. The strong

adaptability would also enable our RL-based control

framework to generalize on soft robots with various

morphology or multiple end-effectors, even micro-scale

medical robots such as [32]. After setting specific kinematics

or FEA model for the robot to be used, as well as the desired

task space, automatic learning can be conducted to generate a

corresponding RL controller.

REFERENCES

[1] Z. Gong et al., “A soft manipulator for efficient delicate grasping in
shallow water: Modeling, control, and real-world experiments,” The
International Journal of Robotics Research, vol. 40, no. 1, pp. 449-469,
2021.

[2] G. Fang et al., “Soft robotic manipulator for intraoperative MRI-
guided transoral laser microsurgery,” Science Robotics, vol. 6, no. 57,
p. eabg5575, 2021.

[3] K.-W. Kwok, H. Wurdemann, A. Arezzo, A. Menciassi, and K.
Althoefer, “Soft Robot-Assisted Minimally Invasive Surgery and
Interventions: Advances and Outlook,” Proceedings of the IEEE, 2022.

[4] V. Vitiello, K.-W. Kwok, and G.-Z. Yang, “Introduction to robot-
assisted minimally invasive surgery (MIS),” in Medical Robotics:
Elsevier, 2012, pp. 1-P1.

[5] M. Zhu, S. Biswas, S. I. Dinulescu, N. Kastor, E. W. Hawkes, and Y.
Visell, “Soft, Wearable Robotics and Haptics: Technologies, Trends,
and Emerging Applications,” Proceedings of the IEEE, 2022.

[6] R. J. Webster III and B. A. Jones, “Design and kinematic modeling of
constant curvature continuum robots: A review,” The International
Journal of Robotics Research, vol. 29, no. 13, pp. 1661-1683, 2010.

[7] Z. Dong et al., “Shape tracking and feedback control of cardiac catheter
using MRI-guided robotic platform—Validation with pulmonary vein
isolation simulator in MRI,” IEEE Transactions on Robotics, 2022.

[8] A. A. Alqumsan, S. Khoo, and M. Norton, “Robust control of
continuum robots using Cosserat rod theory,” Mechanism and Machine
Theory, vol. 131, pp. 48-61, 2019.

[9] T. M. Bieze, F. Largilliere, A. Kruszewski, Z. Zhang, R. Merzouki, and
C. Duriez, “Finite element method-based kinematics and closed-loop
control of soft, continuum manipulators,” Soft Robotics, vol. 5, no. 3,
pp. 348-364, 2018.

[10] M. Giorelli, F. Renda, G. Ferri, and C. Laschi, “A feed-forward neural
network learning the inverse kinetics of a soft cable-driven manipulator
moving in three-dimensional space,” in 2013 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2013: IEEE, pp. 5033-
5039.

[11] K.-H. Lee et al., “Nonparametric online learning control for soft
continuum robot: An enabling technique for effective endoscopic
navigation,” Soft robotics, vol. 4, no. 4, pp. 324-337, 2017.

[12] G. Fang et al., “Vision-based online learning kinematic control for soft
robots using local gaussian process regression,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 1194-1201, 2019.

[13] X. Wang, Y. Li, and K.-W. Kwok, “A Survey for Machine Learning-
Based Control of Continuum Robots,” Frontiers in Robotics and AI, p.
280, 2021.

[14] J. D. Ho et al., “Localized online learning-based control of a soft
redundant manipulator under variable loading,” Advanced Robotics,
vol. 32, no. 21, pp. 1168-1183, 2018.

[15] S. Bhagat, H. Banerjee, Z. T. Ho Tse, and H. Ren, “Deep reinforcement
learning for soft, flexible robots: Brief review with impending
challenges,” Robotics, vol. 8, no. 1, p. 4, 2019.

[16] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238-1274, 2013.

[17] X. You et al., “Model-free control for soft manipulators based on
reinforcement learning,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017: IEEE, pp. 2909-2915.

[18] Q. Wu et al., “Position control of cable-driven robotic soft arm based
on deep reinforcement learning,” Information, vol. 11, no. 6, p. 310,
2020.

[19] H. You, E. Bae, Y. Moon, J. Kweon, and J. Choi, “Automatic control
of cardiac ablation catheter with deep reinforcement learning method,”
Journal of Mechanical Science and Technology, vol. 33, no. 11, pp.
5415-5423, 2019.

[20] S. Satheeshbabu, N. K. Uppalapati, G. Chowdhary, and G. Krishnan,
“Open loop position control of soft continuum arm using deep
reinforcement learning,” in 2019 International Conference on Robotics
and Automation (ICRA), 2019: IEEE, pp. 5133-5139.

[21] S. Satheeshbabu, N. K. Uppalapati, T. Fu, and G. Krishnan,
“Continuous control of a soft continuum arm using deep reinforcement
learning,” in 2020 3rd IEEE International Conference on Soft Robotics
(RoboSoft), 2020: IEEE, pp. 497-503.

[22] H. Jiang et al., “Hierarchical control of soft manipulators towards
unstructured interactions,” The International Journal of Robotics
Research, vol. 40, no. 1, pp. 411-434, 2021.

[23] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[24] Y. Zhang, T. Wang, N. Tan, and S. Zhu, “Open-Loop Motion Control
of a Hydraulic Soft Robotic Arm Using Deep Reinforcement Learning,”
in International Conference on Intelligent Robotics and Applications,
2021: Springer, pp. 302-312.

[25] R. Morimoto, S. Nishikawa, R. Niiyama, and Y. Kuniyoshi, “Model-
Free Reinforcement Learning with Ensemble for a Soft Continuum
Robot Arm,” in 2021 IEEE 4th International Conference on Soft
Robotics (RoboSoft), 2021: IEEE, pp. 141-148.

[26] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in
deep reinforcement learning for robotics: a survey,” in 2020 IEEE
Symposium Series on Computational Intelligence (SSCI), 2020: IEEE,
pp. 737-744.

[27] H.-C. Fu et al., “Interfacing soft and hard: a spring reinforced actuator,”
Soft robotics, vol. 7, no. 1, pp. 44-58, 2020.

[28] X. Wang et al., “Learning-based Visual-Strain Fusion for Eye-in-hand
Soft Robot Pose Estimation and Control,” IEEE Transactions on
Robotics, (under review), 2022.

[29] O. M. Andrychowicz et al., “Learning dexterous in-hand manipulation,”
The International Journal of Robotics Research, vol. 39, no. 1, pp. 3-
20, 2020.

[30] R. Julian, B. Swanson, G. S. Sukhatme, S. Levine, C. Finn, and K.
Hausman, “Never stop learning: The effectiveness of fine-tuning in
robotic reinforcement learning,” arXiv preprint arXiv:2004.10190,
2020.

[31] Z. Wang, H.-X. Li, and C. Chen, “Incremental reinforcement learning
in continuous spaces via policy relaxation and importance weighting,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 31,
no. 6, pp. 1870-1883, 2019.

[32] L. Lindenroth, S. Bano, A. Stilli, J. G. Manjaly, and D. Stoyanov, “A
fluidic soft robot for needle guidance and motion compensation in
intratympanic steroid injections,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 871-878, 2021.

7081

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on May 11,2023 at 04:22:38 UTC from IEEE Xplore. Restrictions apply.

