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a b s t r a c t 

This paper addresses the issue of proportional-derivative (PD) controllers design for posi- 

tive linear systems in the discrete-time domain, which still remains a challenging problem 

in positive systems theory. The specific aim is to design a PD controller for a system with 

constant time delay, which simultaneously ensures closed-loop system stability and pre- 

serves positivity. Moreover, additive gain variation of the controller is considered in the 

synthesis process. Systematic formulation and tractable algorithms are developed to find 

the PD controller gains for positive stabilization. The performance of such methods is val- 

idated by numerical examples. 
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1. Introduction 

Positive system is a class of dynamic systems whose state and output variables are positive, or at least non-negative. The

research on positive linear systems traces back to David G. Luenberger who, for the first time, introduced the concept of

such class of systems in his fundamental book [24] . Since then, positive systems theory has found numerous applications

in industrial problems, such as biochemical engineering and traffic control [4,29] , to name just a few. The theory is be-

coming prominent since for many real-world physical systems, the descriptor variables usually have intrinsically positive or 

non-negative features, otherwise the system state will lose its physical attributes [12] . For example, the amount of electric

charges stored in a capacitor must always remain non-negative. Meanwhile, positive systems theory has also been signif- 

icantly employed in stochastic processes, considering the probability’s non-negative characteristic. Markov chains [37] and 

Poisson processes [16] are representative probabilistic models that can be regarded as special types of positive systems. 

With the recent progress in non-negative matrices [3,13] and co-positive programming [15] , an increasing number of math- 

ematical tools are employed to develop positive systems theory, which identifies its particularity and significance compared 

with other dynamic systems. Current researches on positive systems, especially positive linear systems, could be roughly 

divided into three types, i.e., positive controllability and controller design [11,32] , positive observability and observer design 

[8,22] , and positive realization [2] . In recent years, positive systems theory has also been combined with other branches of

control systems theory, such as cooperative control [35] and time-delay systems [42] . Much of the recent research interest 

has been distributed on widely different control issues, in particular, robust positive stabilization and system performance 

[10,14,18,25,30] , the Bounded Real Lemma [33] and the Kalman–Yakubovic–Popov Lemma [28] for positive systems, as well 

as decentralized and distributed control [9,26] . Though much effort has been devoted to tackling various control problems 
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E-mail addresses: jasonliu@um.edu.mo (J.J.R. Liu), james.lam@hku.hk (J. Lam), wangxmei@connect.hku.hk (X. Wang), kwokkw@hku.hk (K.-W. Kwok) . 

https://doi.org/10.1016/j.amc.2023.128016 

0 096-30 03/© 2023 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.amc.2023.128016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2023.128016&domain=pdf
mailto:jasonliu@um.edu.mo
mailto:james.lam@hku.hk
mailto:wangxmei@connect.hku.hk
mailto:kwokkw@hku.hk
https://doi.org/10.1016/j.amc.2023.128016


J.J.R. Liu, J. Lam, X. Wang et al. Applied Mathematics and Computation 452 (2023) 128016 

Table 1 

Notations employed in the paper. 

Notation Type Description 

R set set of real numbers 

R 
n set n -dimensional real Euclidean space 

R + set set of non-negative real numbers 

M set set of Metzler matrices 

S set set of Schur matrices 

H set set of Hurwitz matrices 

α(X ) scalar spectral abscissa of matrix X

ρ(X ) scalar spectral radius of matrix X

X T matrix transpose of X

sym (X ) matrix symmetric matrix X T + X

I (or I n ) matrix ( n × n ) identity matrix 

G (z) function transfer function 

X � (or �) 0 operator positive (semi-) definite 

X ≺ (or �) 0 operator negative (semi-) definite 

X > (or ≥) 0 operator ∀ i, j, [ X] i j > 0 (or ≥ 0 ) 

X � (or �) Y operator X − Y � 0 (or � 0) 

X > (or ≥) Y operator X − Y > 0 (or ≥ 0) 

| · | operator Euclidean norm for vectors 

 

 

 

 

 

 

 

 

 

 

of positive systems, the PD controller design, a fundamental methodology in feedback control systems [1,20,21] , is still a

challenging problem for such kind of systems. The major challenge stems from the difficulty in guaranteeing the difference 

operator’s positivity of PD controllers. More specifically, the input signal of the difference operator is not guaranteed to 

be monotonic, thus resulting in a sign-indefinite output signal. Therefore, the design of an appropriate gain preserving the 

system’s positivity has become the key issue. This matter is further complicated by the significant coupling between the 

centralized multivariable proportional and discrete-time derivative gains in the synthesis process. 

In the literature, a considerable amount of feedback methodologies have been applied to positive systems control for 

fulfilling various constraints and performance indices. For example, a finite-time output-feedback controller was designed 

in Liu et al. [19] for stabilization of positive time-varying discrete-time linear systems. Necessary and sufficient conditions 

of state-feedback controller design were established in linear programming for positive delay systems with semi-Markov 

process [27] . Static output-feedback (SOF) controllers were designed for discrete-time and discrete-time positive linear sys- 

tems [6,34] . Distributed controllers were employed for positive consensus of networked control systems [31] . An implicit 

assumption inherent in these approaches is that the implementation of controllers can be free of errors. However, in prac- 

tical applications, a certain degree of errors may be induced due to various factors such as the finite word length in digital

systems, the imprecision of analog systems, and the additional parameter fine-tuning after final implementation. Therefore, 

designing a non-fragile controller which is insensitive to the variations in its gain has received increasing attention [5,7,38–

41] . However, up to now, very few results have been dedicated to the design of such controllers for positive systems [37] .

This paper investigates the non-fragile PD controller design problem for linear time-delay positive discrete-time systems, 

where additive gain variation in the controller is considered. 

The main results and contributions of this work are summarized as follows: 

• The PD controller design problem of positive discrete-time systems with constant delay is tackled in this work; 
• A systematic formulation is proposed to design non-fragile PD controllers for such kind of systems; 
• Based on the necessary and sufficient conditions derived, two tractable linear-programming-based and semi-definite- 

programming-based algorithms are developed for calculating the solution. 

The rest of this paper is organized as follows. Section 2 presents some mathematical preliminaries and defines the prob-

lem to be solved. In Section 3 , based on a novel formulation of PD controller design, both analysis and synthesis conditions

are derived for such kind of systems. In Section 4 , numerical simulations are conducted to verify the obtained results. Sec-

tion 6 summarizes this paper with remarks. 

2. Preliminaries 

2.1. Notations 

The notations employed in this paper are summarized in the following table ( Table 1 ). 

In addition, the symbol diag (v i ) (i = 1 , 2 , . . . , n ) denotes a diagonal matrix with diagonal entries being the entries of

vector v := [ v 1 , v 2 , . . . , v n ] T . For matrix A ∈ R 

n ×n , we use a i j to denote the entry located at the i th row and the jth column.

Matrix A is called Metzler if all of its off-diagonal entries are non-negative, denoted by A ∈ M . Matrix A is called Hurwitz

if all of its eigenvalues have strictly negative real parts, denoted by A ∈ H . Matrix A is called Schur if the absolute value of

each its eigenvalue is less than one, denoted by A ∈ S . 
2 
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2.2. Positive systems theory 

Consider a linear discrete-time system with time delay { 

x (k + 1) = Ax (k ) + A d x (k − d) + Bu (k ) , 
y (k ) = Cx (k ) + C d x (k − d) , 
x (θ ) = ϕ(θ ) , θ = −d, −d + 1 , . . . , 0 

(1) 

where x (k ) ∈ R 

n is the state vector, u (k ) ∈ R 

p is the input, and y (k ) ∈ R 

q is the output. Furthermore, matrices A ∈ R 

n ×n ,

A d ∈ R 

n ×n , B ∈ R 

n ×p , C ∈ R 

q ×n and C d ∈ R 

q ×n are known real constant matrices. d ∈ N + is a constant time delay, and ϕ :

{−d, −d + 1 , . . . , 0 } → R 

n is the initial condition. 

To pave the way for further analysis, some useful results [12,17,23] , are provided as follows. 

Definition 1 ( [17] ) . The system in (1) is said to be positive, if for every θ ∈ Z (θ = −d, −d + 1 , . . . , 0) and every u (k ) ∈ R 

p 
+ ,

we have x (k ) ∈ R 

n + , y (k ) ∈ R 

q 
+ for k ≥ 0 . 

Lemma 1 ( [12] ) . The system in (1) is positive if and only if A , A d , B , C and C d are nonnegative matrices. 

Lemma 2 ( [12] ) . For any Metzler matrices A ∈ R 

n ×n and B ∈ R 

n ×n , if A ≤ B , then α(A ) ≤ α(B ) . 

Lemma 3 ( [17,23,36] ) . The positive system in (1) with u (k ) = 0 is asymptotically stable for all d ∈ N + , if and only if one of the

following conditions hold: 

1) The following positive system 

x (k + 1) = (A + A d ) x (k ) (2) 

is asymptotically stable; 

2) Matrix (A + A d ) is Schur stable, that is, ρ(A + A d ) < 1 ; 

3) Matrix (A + A d − I) is Hurwitz stable, that is, there exists a vector λ ∈ R 

n + such that λT (A + A d − I) ≺ 0 ; 

4) There exists a diagonal matrix P � 0 such that 

(A + A d ) P (A + A d ) 
T − P ≺ 0 ;

5) There exists a diagonal matrix P � 0 such that [
−P (A + A d ) 

T P 
# −P 

]
≺ 0 ; (3) 

6) There exist diagonal matrices P 0 � 0 and P n � 0 such that [
A 

T P 0 A + P n − P 0 A 

T P 0 A d 

# A 

T 
d 
P 0 A d − P n 

]
≺ 0 . (4) 

Through using the above fundamental results on matrix theory and positive systems theory, the PD controller design of 

the linear time-delay positive discrete-time system in (1) will be investigated in the following sections. 

3. Main results 

In this section, we propose a formulation for PD controller design of linear time-delay positive discrete-time systems 

(1) , and then provide several positivity and stability results. Based on positive systems theory and Lyapunov theory, the 

positivity and stability design of PD controllers is derived and the corresponding semi-definite programming algorithm is 

developed. 

3.1. Formulation of non-fragile PD controller 

The main objective of this subsection is to provide a systematic framework for the tuning of the gains of the following

multi-variable PD controller: 

u (k ) = K P y (k ) + K D ̂  y (k ) (5) 

where K P ∈ R 

p×q , K D ∈ R 

p×q , and ˆ y (k ) is the output signal of the difference operator. Using the z-transformation, the multi-

input multi-output (MIMO) PD controller can be described as 

U(z) = K P Y (z) + K D H D (z) Y (z) 

where 

H D (z) := I q �
z − 1 

(6) 

z 

3 
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denotes the transfer function matrix. The symbols U(z) and Y (z) here are the z-transforms of input u (k ) and output y (k ) of

system (1) , respectively. 

To transform the tuning of controller parameters into an SOF control problem, we reformulate the transfer function 

matrix H D (z) into the following state-space form: {
ˆ x (k + 1) = 

ˆ A ̂

 x (k ) + 

ˆ B y (k ) 

ˆ y (k ) = 

ˆ C ̂  x (k ) + 

ˆ D y (k ) 
(7) 

where 

ˆ A = 0 , ˆ B = I q , ˆ C = −I q , ˆ D = I q . 

Notice that system (7) is a state-space realization given in an explicit form. Therefore, the closed-loop system in (1) with 

the PD controller in (5) can be reformulated as [
x (k + 1) 
ˆ x (k + 1) 

]
= 

[
A + BK P C + BK D C −BK D 

C 0 

][
x (k ) 
ˆ x (k ) 

]

+ 

[
A d + BK P C d + BK D C d 0 

C d 0 

][
x (k − d) 
ˆ x (k − d) 

]
. (8) 

Hence, the tuning of the PD controller parameters for the positive linear system in (1) is reduced to find an SOF controller

gain matrix K = 

[
K P K D 

]
for the overall closed-loop system in (8) . In order to formulate a systematic procedure to deter-

mine the SOF controller gain K, we further define that 

˜ A = 

[
A 0 

C 0 

]
, ˜ B = 

[
B 

0 

]
, ˜ C = 

[
C 0 

C −I 

]
, ˜ A d = 

[
A d 0 

C d 0 

]
, ˜ C d = 

[
C d 0 

C d 0 

]
, 

and 

˜ x (k ) = 

[
x (k ) 
ˆ x (k ) 

]
, ˜ x (k − d) = 

[
x (k − d) 
ˆ x (k − d) 

]
, 

then the closed-loop system in (8) can be represented in the following compact form: 

˜ x (k + 1) = ( ̃  A + 

˜ B K ̃

 C ) ̃  x (k ) + ( ̃  A d + 

˜ B K ̃

 C d ) ̃  x (k − d) . (9)

In the above derivations, the gain variations of the PD controller are not considered, while in real situations, they always

exist [37] . With the additive gain variations, the control input in (5) becomes 

u (k ) = (K P + �P ) y (k ) + (K D + �D ) ̃  y (k ) (10) 

where �P and �D denote the gain variations of K P and K D , respectively. The gain variations can be described as 

−�P ≤ �P ≤ �P and − �D ≤ �D ≤ �D (11) 

where �P , �P , �D and �D are non-negative matrices with compatible dimensions. Define � := 

[
�P �D 

]
. Using the non- 

fragile PD controller in (10) to the system (9) leads to the following system: 

˜ x (k + 1) = ( ̃  A + 

˜ B (K + �) ̃  C ) ̃  x (k ) + ( ̃  A d + 

˜ B (K + �) ̃  C d ) ̃  x (k − d) . (12)

Based on the above discussions, the problem to be solved in this paper is presented as follows. 

Problem PDTDS (PD Controller Design of Linear Time-Delay Positive Discrete-time Systems): Design the non-fragile PD 

controller gain in (10) , that is, K P and K D , for the positive discrete-time system in (1) such that the closed-loop system

in (12) is asymptotically stable under the controller gain variations in (11) , and the system state ˜ x (k ) always stays in the

non-negative orthant for all k , that is, ˜ x (k ) ≥ 0 for k ≥ 0 . 

The key point is how to choose the appropriate gains of PD controllers. The main obstacle of the design is to preserve

stability and positivity of the positive linear system in (1) simultaneously. In the following subsections, the Problem PDTDS 

is analyzed and solved utilizing positive systems theory and Lyapunov theory. 

3.2. Positivity and stability analysis 

Theorem 1. Problem PDTDS is solvable if and only if the following conditions hold: 

1) A + B (K P − �P ) C + B (K D − �D ) C ≥ 0 ; 

2) A d + B (K P − �P ) C d + B (K D − �D ) C d ≥ 0 ; 

3) −B (K + � ) ≥ 0 ; 
D D 

4 
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4) The following matrix is Schur stable: 

� := 

⎡ 

⎣ 

{
A + A d + B (K P + �P )(C + C d ) 

+ B (K D + �D )(C + C d ) 

}
−B (K D − �D ) 

(C + C d ) 0 

⎤ 

⎦ , (13) 

that is, ρ(�) < 1 . 

Proof. Regarding the proof, the necessary part is obvious, since the above four conditions always hold if Problem PDTDS is

solvable. We give the proof of sufficiency as follows. 

We first prove the positivity of the system in (12) . Since −�P ≤ �P ≤ �P and − �D ≤ �D ≤ �D , along with 1), A + 

B (K P + �P ) C + B (K D + �D ) C ≥ A + B (K P − �P ) C + B (K D − �D ) C ≥ 0 ; along with 3), −B (K D + �D ) ≥ −B (K D + �D ) ≥ 0 . Also

note that C > 0 due to Lemma 1 , then we have [
A + B (K P + �P ) C + B (K D + �D ) C −B (K D + �D ) 

C 0 

]
≥ 0 . 

Hence, we prove ( ̃  A + 

˜ B (K + �) ̃  C ) is nonnegative. Analogously, we can prove that ( ̃  A d + 

˜ B (K + �) ̃  C d ) is also nonnegative.

Then by Lemma 1 , the system (12) is positive. Moreover, we can prove that 

� ≥ ( ̃  A + 

˜ B (K + �) ̃  C ) + ( ̃  A d + 

˜ B (K + �) ̃  C d ) ≥ 0 . 

Hence, ( ̃  A + 

˜ B (K + �) ̃  C ) + ( ̃  A d + 

˜ B (K + �) ̃  C d ) − I is Metzler. By 4) and Lemma 2 , we have ρ( ̃  A + 

˜ B (K + �) ̃  C + 

˜ A d + 

˜ B (K +
�) ̃  C d ) < 1 . By Lemma 3 2), we prove the stability of system (12) . �

3.3. Positivity and stability design 

Considering the interval gain variations in the design, we will derive the conditions for positivity and stability analysis 

in the following theorems. First, a useful lemma, which is necessary in the proof of theorems in the following subsections,

is presented. 

Lemma 4. The condition 4) in Theorem 1 is equivalent to the following condition: There exist a diagonal matrix P � 0 , scalar

γ > 0 , and a matrix K = 

[
K P K D 

]
such that 


(γ , P, K P , K D ) := 

[
A P A 

T − P − γ B K K 

T B 

T 
A P C 

T + γ B K 

# C P C 
T − γ I 

]
≺ 0 (14) 

where 

A = 

[
A + A d + B ( �P + �D )(C + C d ) B �D 

(C + C d ) 0 

]
, 

B = 

[
B 

0 

]
, and C = 

[
C + C d 0 

C + C d −I 

]
. 

Proof. We first prove the necessity of the theorem. Assuming the problem is solvable, it is obvious that conditions 1) to 3)

hold. Note that 

� = A + B K C = 

[
A + A d + B ( �P + �D )(C + C d ) B �D 

(C + C d ) 0 

]

+ 

[
B 

0 

][
K P K D 

][C + C d 0 

C + C d −I 

]
. 

By Lemma 3 4), � = ( A + B K C ) is Schur stable. There exists a diagonal matrix P such that ( A + B K C ) P ( A + B K C ) T − P ≺ 0 .

Hence there exists a scalar γ > 0 such that C P C 
T − γ I ≺ 0 and ( A + B K C ) P ( A + B K C ) T − P + ( A + B K C ) P (γ I − C P C 

T 
) −1 P T ( A +

B K C ) T ≺ 0 . Through Schur complement equivalence, it follows that 

σ = 

[
( A + B K C ) P ( A + B K C ) T − P ( A + B K C ) P 

# C P C 
T − γ I 

]
≺ 0 . (15) 

Define the non-singular matrix T as follows: 

T = 

[
I −B K 

0 I 

]
. 

Pre- and post-multiplying � by T and T T , then we have T �T T = 
 ≺ 0 . Hence, condition 4) is necessary for solving the

problem. 
5 
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We then prove the sufficiency of the theorem. We decompose 
 in the following form: 


 = 

[
I −B K 

0 I 

][
( A + B K C ) P ( A + B K C ) T − P ( A + B K C ) P 

# C P C 
T − γ I 

][
I 0 

−K 

T B 

T 
I 

]
≺ 0 . 

By Schur complement equivalence, [
( A + B K C ) P ( A + B K C ) T − P ( A + B K C ) P 

# C P C 
T − γ I 

]
≺ 0 . 

Hence, ( A + B K C ) P ( A + B K C ) T − P ≺ 0 , hence by Lemma 3 3), the system (12) is stable. The proof is completed. �

Theorem 2. Problem PDTDS is solvable if and only if there exist diagonal matrices P 1 � 0 , P 2 � 0 , scalar γ > 0 , and matrices

L P , L D , M P and M D such that the following conditions hold: 

1) γ A + B (L P − γ�P ) C + B (L D − γ�D ) C ≥ 0 ; 

2) γ A d + B (L P − γ�P ) C d + B (L D − γ�D ) C d ≥ 0 ; 

3) −B (L D + γ�D ) ≥ 0 ; 

4) �(γ , P 1 , P 2 , L P , L D , M P , M D ) := ⎡ 

⎢ ⎣ 

�11 �12 �13 �14 

# �22 �23 �24 

# # �33 �34 

# # # �44 

⎤ 

⎥ ⎦ 

≺ 0 (16) 

where 

A 11 = A + A d + B ( �P + �D )(C + C d ) , 

�11 = A 11 P 1 A 

T 

11 + B �D P 2 �
T 

D B 

T − P 1 − BL P M 

T 
P − M P L 

T 
P B 

T 

+ γ M P M 

T 
P − BL D M 

T 
D − M D L 

T 
D B 

T + γ M D M 

T 
D , 

�12 = A 11 P 1 (C + C d ) 
T , 

�13 = A 11 P 1 (C + C d ) 
T + BL P , 

�14 = A 11 P 1 (C + C d ) 
T − B �D P 2 + BL D , 

�22 = (C + C d ) P 1 (C + C d ) 
T − P 2 , 

�23 = (C + C d ) P 1 (C + C d ) 
T , 

�24 = (C + C d ) P 1 (C + C d ) 
T , 

�33 = (C + C d ) P 1 (C + C d ) 
T − γ I, 

�34 = (C + C d ) P 1 (C + C d ) 
T , 

�44 = (C + C d ) P 1 (C + C d ) 
T + P 2 − γ I. 

When the above conditions hold, the PD controller gains can be obtained by K P = (1 /γ ) L P and K D = (1 /γ ) L D . 

Proof. In the following, we will give a proof to show that Theorem 2 is equivalent to Theorem 1 . Substituting L P = γ K P 

and L D = γ K D into Theorem 2 1)–3), since γ > 0 , it follows that Theorem 1 1)–3) are equivalent to Theorem 2 1)–3). By

Lemma 4 , it suffices to show � ≺ 0 is equivalent to 
 ≺ 0 . 

Let 
 denote the expanded form of 
 in terms of A, B, C, etc, we notice that 
 is 4 × 4 in block matrix form. 


 = 
 = 

⎡ 

⎢ ⎣ 


11 
12 
13 
14 

# 
22 
23 
24 

# # 
33 
34 

# # # 
44 

⎤ 

⎥ ⎦ 

. (17) 

Assume � ≺ 0 . Substituting L P = γ K P and L D = γ K D into (16) , we have �i j = 
i j for all i , j except i, j = 1 . We also notice

that 


11 − �11 = − γ (BK P − M P )(BK P − M P ) 
T − γ (BK D − M D )(BK D − M D ) 

T ≺ 0 

which implies that 
11 ≺ 0 hence 
 ≺ 0 . 

On the other hand, we assume 
 ≺ 0 . If 
 ≺ 0 , there exist M P = BK P and M D = BK D , such that � = 
 ≺ 0 . This proves


 ≺ 0 implies � ≺ 0 . The proof is completed. �
6
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Remark 1. Inequality (14) is of quadratic matrix form and inequality (16) is of bi-linear matrix form. Solving these inequali-

ties is not an easy task since both of them are nonlinear, but one can develop a sequential algorithm to solve the inequality

(16) by fixing some variables. 

In particular, when the system in (1) is a single-input positive system, a linear-programming-based condition without 

conservatism can be developed in the following theorem for solution. 

Theorem 3. Assume that system (1) has only one input. Problem PDTDS is solvable if and only if there exist vectors p 1 � 0 ,

p 2 � 0 , and matrices K P and K D such that the following linear program holds: 

1) A + B (K P − �P ) C + B (K D − �D ) C ≥ 0 ; 

2) A d + B (K P − �P ) C d + B (K D − �D ) C d ≥ 0 ; 

3) −B (K D + �D ) ≥ 0 ; 

4) p T 1 (A + A d ) + (K P + �P )(C + C d ) + (K D + �D )(C + C d ) − p T 1 I + p T 2 (C + C d ) ≤ 0 ; 

5) −(K D − �D ) − p T 
2 

≤ 0 ; 

6) p T 
1 
B = 1 . 

When the linear program holds, the PD controller gains K P and K D can be obtained. 

Proof. In the following, we will give a proof that conditions 4)–6) in Theorem 3 are equivalent to Condition 4) in

Theorem 1 since the conditions 1)–3) in Theorems 1 and 3 are identical. 

In Theorem 3 , since 6) p T 
1 
B = 1 is a scalar, we substitute it into 4) and 5) in the following way: 

p T 1 (A + A d ) + p T 1 B (K P + �P )(C + C d ) + p T 1 B (K D + �D )(C + C d ) − p T 1 I + p T 2 (C + C d ) ≤ 0 , (18)

−p T 1 B (K D − �D ) − p T 2 ≤ 0 . (19) 

We write (18) and (19) into the compact form: [
p 1 
p 2 

]T [
�11 − I −B (K D − �D ) 
(C + C d ) −I 

]
< 0 

where 

�11 = A + A d + B (K P + �P )(C + C d ) + B (K D + �D )(C + C d ) . (20)

By Lemma 3 3), we can conclude that ˜ A + 

˜ A d + 

˜ B (K + �)( ̃  C + 

˜ C d ) − I is Hurwitz, which is equivalent to the matrix in

(13) being Schur stable. 

On the other hand, if the matrix in (13) is Schur stable, according to Lemma 3 , [ ̃  A + 

˜ A d + 

˜ B (K + �)( ̃  C + 

˜ C d ) − I] is Hurwitz.

Hence, there exist ˜ p 1 > 0 and ˜ p 2 > 0 such that [
˜ p 1 
˜ p 2 

]T [
�11 − I −B (K D − �D ) 
(C + C d ) −I 

]
< 0 . 

Noticing that ˜ p T 
1 
B is a positive scalar, the following inequality also holds: 

1 

˜ p T 
1 
B 

[
˜ p 1 
˜ p 2 

]T [
�11 − I −B (K D − �D ) 
(C + C d ) −I 

]
< 0 

which means that there exist vectors p 1 = ˜ p 1 / ( ̃  p T 
1 
B ) and p 2 = ˜ p 2 / ( ̃  p T 

1 
B ) such that conditions 4) to 6) hold. The proof is

completed. �

3.4. Algorithmic solution 

Based on the discussions and derivations in the previous subsections, in particular, Theorem 2 , an iterative algorithm is

constructed to design the non-fragile PD controller gains for the positive linear system in (1) . 

Algorithm: Non-fragile PD Controller Design (NPDCD). 

Step 1: Set k = 1 and ε(0) = 0 . Select initial values M 

(1) 
P 

and M 

(1) 
D 

. 

Step 2: For fixed M P = M 

(k ) 
P 

and M D = M 

(k ) 
D 

, solve the following convex optimization problem with respective to γ > 0 ,

P 1 � 0 , P 2 � 0 , L P and L D : minimize ε(k ) subject to ⎧ ⎪ ⎨ 

⎪ ⎩ 

γ A + B (L P − γ�P ) C + B (L D − γ�D ) C ≥ 0 , 

γ A d + B (L P − γ�P ) C d + B (L D − γ�D ) C d ≥ 0 , 

−B (L D + γ�D ) ≥ 0 , 

�(γ , P 1 , P 2 , L P , L D , M P , M D ) ≺ ε(k ) I. 
7 
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Step 3: If ε(k ) ≤ 0 , STOP; a solution is obtained as K 

∗
P 

= (1 /γ ) L P and K 

∗
D 

= (1 /γ ) L D . Otherwise, go to next step. 

Step 4: If | ε(k ) − ε(k −1) | /ε(k ) < δ which is a prescribed tolerance, STOP. Otherwise, update k = k + 1 , M 

(k ) 
P 

= (1 /γ ) BL P , and

M 

(k ) 
D 

= (1 /γ ) BL D , then go to Step 2. 

Remark 2. In Step 1, the initial values M 

(1) 
P 

and M 

(1) 
D 

can be obtained by solving a structured observer gain matrix: 

M := 

[
M 

(1) 
P 

M 

(1) 
D 

0 0 

]
. (21) 

This will lead to the solvability of a positive observer design problem [22] . Solving the following LMIs with respect to two

diagonal matrices Q 1 � 0 and Q 2 � 0 , and two matrix variables S P and S D : 

• Q 1 A + (S P + S D ) C − Q 1 B ( �P + �D ) C ≥ 0 ; 
• Q 1 A d + (S P + S D ) C d − Q 1 B ( �P + �D ) C d ≥ 0 ; 
• −(S D + Q 1 B �D ) ≥ 0 ; [

Q # 

� Q 

]
≺ 0 (22) 

where 

Q = 

[
−Q 1 0 

0 −Q 2 

]
, 

� = 

⎡ 

⎣ 

{
Q 1 (A + A d + B ( �P + �D )(C + C d )) 
+ S P (C + C d ) + S D (C + C d ) 

}
−S D − Q 1 B �D 

Q 2 (C + C d ) 0 

⎤ 

⎦ . (23) 

Then M 

(1) 
P 

= Q 

−1 
1 

S P , and M 

(1) 
D 

= Q 

−1 
1 

S D . 

Remark 3. Although condition 4) of Theorem 2 remains a bi-linear matrix inequality, it becomes a linear matrix inequality

when M P and M D are given and fixed. With such an idea (see the Step 2 of Algorithm NPDCD), one can develop a sequential

minimization algorithm which is represented as the semi-definite programming for solution. 

4. Case study 

In this section, we will verify the effectiveness of our theoretical results and algorithms through using two illustrative 

examples. 

4.1. Multi-input case 

Consider the positive discrete-time system in (1) with the following system matrices: 

A = 

[ 

0 . 5150 0 . 2908 0 . 5218 

0 . 0158 0 . 5393 0 . 2442 

0 . 1289 0 . 4340 0 . 0569 

] 

, A d = 

[ 

0 . 0029 0 . 0787 0 . 0771 

0 . 0514 0 . 0816 0 . 0333 

0 . 0501 0 . 0730 0 . 0588 

] 

, 

B = 

[ 

0 . 0126 0 . 0342 

0 . 0133 0 . 0371 

0 . 0747 0 . 0409 

] 

, C = 

[
0 . 0806 0 . 0596 0 . 0436 

0 . 0162 0 . 0947 0 . 0261 

]
, 

C d = 

[
0 . 0934 0 . 0993 0 . 0529 

0 . 0178 0 . 0722 0 . 0281 

]
, �P = �D = 

[
0 0 . 5 

0 . 5 0 

]
, �P = �D = 

[
0 . 1 0 

0 0 . 1 

]
. 

The spectral radius of this system is 1 . 0110 > 1 , which implies that it is unstable. By Remark 1 , the initial value can be

calculated that 

M 

(1) 
P 

= 

[ 

0 . 6131 −1 . 4229 

0 . 5518 −1 . 4604 

−0 . 0324 −0 . 4049 

] 

, M 

(1) 
D 

= 

[ −0 . 0789 −0 . 0756 

−0 . 0643 −0 . 0578 

−0 . 0729 −0 . 0953 

] 

. 

By implementing Algorithm NPDCD using the YALMIP along with MATLAB R2020b, a feasible solution is obtained as 

K P = 

[
−2 . 7308 9 . 9992 

9 . 9992 −39 . 6525 

]
, K D = 

[
0 . 2396 −0 . 5673 

−0 . 5673 0 . 1991 

]
. (24) 
8 



J.J.R. Liu, J. Lam, X. Wang et al. Applied Mathematics and Computation 452 (2023) 128016 

 

 

 

 

 

 

 

 

Substituting (24) into the conditions 1)–3) of Theorem 1 , we can verify that 

A + B (K P − �P ) C + B (K D − �D ) C = 

[ 

0 . 5114 0 . 1838 0 . 4980 

0 . 0120 0 . 4229 0 . 2183 

0 . 1161 0 . 3357 0 . 0314 

] 

≥ 0 , 

A d + B (K P − �P ) C d + B (K D − �D ) C d = 

[ 

0 . 0 0 0 0 0 . 0085 0 . 0528 

0 . 0483 0 . 0052 0 . 0069 

0 . 0363 0 . 0012 0 . 0317 

] 

≥ 0 , 

−B (K D + �D ) = 

[ 

0 . 0778 0 . 0195 

0 . 0844 0 . 0204 

0 . 1122 0 . 1522 

] 

≥ 0 . 

The matrix in (13) is 

� = 

⎡ 

⎢ ⎢ ⎣ 

0 . 5185 0 . 2013 0 . 5554 0 . 0961 0 . 0292 

0 . 0679 0 . 4378 0 . 2302 0 . 1043 0 . 0308 

0 . 1650 0 . 3596 0 . 0730 0 . 1401 0 . 1936 

0 . 1740 0 . 1588 0 . 0965 0 0 

0 . 0341 0 . 1669 0 . 0542 0 0 

⎤ 

⎥ ⎥ ⎦ 

(25) 

which preserves the positivity of the system (1) . Further, the eigenvalues of the corresponding matrix (25) are {−0 . 1209 −
0 . 0743i , −0 . 1209 + 0 . 0743i , 0 . 0149 , 0 . 3439 , 0 . 9123 } . Hence, ρ(Z) = 0 . 9123 < 1 , which guarantees the stability according to

Theorem 1 . 

To illustrate the non-fragility of the solution (24) in system (12) with the system matrices mentioned above, one consid-

ers 

˜ x (k + 1) = ( ̃  A + 

˜ B (K + �(n ) ) ̃  C ) ̃  x (k ) + ( ̃  A d + 

˜ B (K + �(n ) ) ̃  C d ) ̃  x (k − d) (26)

in which 

�(n ) = 

[
�(n ) 

P 
�(n ) 

D 

]
, 

we randomly generate the system with 100 different gain variations. The variations are evenly distributed in the given 

interval. For example, �(n ) 
P 

= −�P + (n/ 100) × ( �P + �P ) and �(n ) 
D 

= −�D + (n/ 100) × ( �D + �D ) . We generate the corre-

sponding system matrices, and hence we have 100 different systems for (26) . 

To simulate, the initial condition is chosen to be 

˜ x (θ ) = 

⎡ 

⎢ ⎢ ⎣ 

sin (2 θ ) + 1 

2 cos (0 . 5 θ ) + 2 

3 sin (θ ) + 3 

0 

0 

⎤ 

⎥ ⎥ ⎦ 

, θ = −5 , −4 , . . . , 0 . (27) 

The state responses of system (9) with controller (24) subject to gain variations are shown in Fig. 1 . We can see that the

system state converges to zero for the system with different gain variations, hence the gain matrix in (24) guarantees the

positivity and asymptotic stability of the system. 

For comparison purpose, a set of solutions for the stabilization of system (9) with PD control without considering posi-

tivity is given as follows: 

K P = 

[
−10 . 5078 −1 . 9736 

−1 . 9736 −1 . 2955 

]
, K D = 

[
−5 . 5756 −20 . 4725 

−10 . 4725 −0 . 0214 

]
. (28) 

The state responses of system (9) with controller (28) subject to the gain variations in (26) are shown in Fig. 2 . 

We can see that the system state has a negative value component during the evolution, and the gain matrix in (28) can-

not guarantee the positivity of the system. 

4.2. Single-input case 

Consider the positive discrete-time system in (1) with the following system matrices: 

A = 

[ 

0 . 4382 0 . 2688 0 . 1705 

0 . 5398 0 . 1410 0 . 2590 

0 . 4830 0 . 0403 0 . 2731 

] 

, A d = 

[ 

0 . 0979 0 . 0584 0 . 0943 

0 . 0927 0 . 0113 0 . 0214 

0 . 0598 0 . 0399 0 . 0170 

] 

, B = 

[ 

0 . 4220 

0 . 5757 

0 . 1860 

] 

, 

C = 

[
0 . 0347 0 . 0436 0 . 0285 

0 . 0620 0 . 0416 0 . 0905 

]
, C d = 

[
0 . 0683 0 . 0084 0 . 0919 

0 . 0104 0 . 0013 0 . 0368 

]
, 

�P = �D = 

[
0 . 2 0 

]
, �P = �D = 

[
0 0 . 2 

]
. 
9
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Fig. 1. State responses of system (9) with (24) subject to gain variations. 

Fig. 2. State responses of system (9) with (28) subject to gain variations. 

 
The spectral radius of this system is 1 . 0589 > 1 , which implies that it is unstable. By implementing the linear program of

Theorem 3 , a feasible solution is obtained as 

K P = 

[
2 . 0178 −4 . 0788 

]
, K D = 

[
−0 . 4689 −0 . 3086 

]
. (29) 
10 
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Substituting (29) into the conditions 1)–3) of Theorem 1 , we can verify that 

A + B (K P − �P ) C + B (K D − �D ) C = 

[ 

0 . 3356 0 . 2133 0 . 0063 

0 . 3998 0 . 0653 0 . 0350 

0 . 4378 0 . 0158 0 . 2007 

] 

≥ 0 , 

A d + B (K P − �P ) C d + B (K D − �D ) C d = 

[ 

0 . 1215 0 . 0612 0 . 0801 

0 . 1248 0 . 0151 0 . 0020 

0 . 0702 0 . 0411 0 . 0107 

] 

≥ 0 , 

−B (K D + �D ) = 

[ 

0 . 1135 0 . 1302 

0 . 1548 0 . 1777 

0 . 0500 0 . 0574 

] 

≥ 0 . 

The matrix in (13) is 

� = 

⎡ 

⎢ ⎢ ⎣ 

0 . 4867 0 . 2904 0 . 1282 0 . 1979 0 . 2146 

0 . 5650 0 . 1021 0 . 0940 0 . 2699 0 . 2928 

0 . 5210 0 . 0640 0 . 2299 0 . 0872 0 . 0946 

0 . 1030 0 . 0519 0 . 1204 0 0 

0 . 0725 0 . 0429 0 . 1273 0 0 

⎤ 

⎥ ⎥ ⎦ 

(30) 

which has preserved the positivity of system (1) . Further, the eigenvalues of the corresponding matrix (30) are 

{ 0 , 0 . 0320 + 0 . 1135i , 0 . 0320 − 0 . 1135i , −0 . 2070 , 0 . 9617 } . Hence, ρ(Z) = 0 . 9617 < 1 , which guarantees the stability according

to Theorem 1 . 

5. Conclusion 

This paper studied the problem of PD controllers design for positive linear systems in the discrete-time domain. It aims 

at designing a PD controller for the system with constant time delay, which can ensure closed-loop system stability as 

well as preserve positivity. Moreover, the PD controller has additive gain variations in the synthesis process. A systematic 

formulation was developed to find the PD controller gains for positive stabilization. The methodology and algorithm were 

provided in the study, and the performance of such methods was validated by numerical examples. In our future work, we

intend to expand upon this study by exploring the design of PI controllers for positive systems with time-varying delays. 

Acknowledgment 

This work was supported in part by the University of Macau ( SRG2022-0 0 054-FST ), in part by the Research Grants

Council of Hong Kong ( 17205721 , 17209021 , T42-409/18-R ), in part by the National Natural Science Foundation of China

( 62273286 ), in part by the Innovation and Technology Commission ( MRP/029/20X ), and in part by the Multi-Scale Medical

Robotics Center Limited, InnoHK. 

References 
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