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a b s t r a c t

The high cost of data labeling often results in node label shortage in real applications. To improve node
classification accuracy, graph-based semi-supervised learning leverages the ample unlabeled nodes to
train together with the scarce available labeled nodes. However, most existing methods require the
information of all nodes, including those to be predicted, during model training, which is not practical
for dynamic graphs with newly added nodes. To address this issue, an adversarially regularized graph
attention model is proposed to classify newly added nodes in a partially labeled graph. An attention-
based aggregator is designed to generate the representation of a node by aggregating information from
its neighboring nodes, thus naturally generalizing to previously unseen nodes. In addition, adversarial
training is employed to improve the model’s robustness and generalization ability by enforcing node
representations to match a prior distribution. Experiments on real-world datasets demonstrate the
effectiveness of the proposed method in comparison with the state-of-the-art methods. The code is
available at https://github.com/JiarenX/AGAIN.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Graphs naturally represent the data with complicated re-
ationships and rich information, as seen in social, biological,
nd citation networks. Since graph-structured data are usually
parse, nonlinear and high-dimensional, the analysis of graph-
tructured data is challenging. To tackle graph-analytic tasks, a
ommon approach is graph embedding which aims at learning
he low-dimensional node representation vectors [1]. The key
dea is to encode meaningful information like node features
nd graph structure into node representations (i.e., embedding
ectors). Based on graph embedding, node classification tasks
an be performed using classical machine learning techniques
ike a linear support vector machine (SVM) classifier [2]. Node
lassification has many practical applications, such as predict-
ng user types in e-commence networks [3], assigning topics
o papers in citation networks [4], and classifying protein roles
n biological networks [5]. However, in many scenarios, labels
re only available for a small subset of nodes due to the high
ost and technical difficulty of labeling by human. To lessen the
equirement of large amounts of labeled training nodes, a recent

∗ Corresponding author.
E-mail address: kwokkw@hku.hk (K.-W. Kwok).
ttps://doi.org/10.1016/j.knosys.2023.110456
950-7051/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
surge of research interest can be seen in semi-supervised learning
on graphs [4].

Graph-based semi-supervised learning leverages the ample
unlabeled nodes to train together with very few labeled nodes, so
that the node classification accuracy can be improved. In recent
years, substantial research effort has been devoted to designing
neural network models that directly operate on graphs, known
as graph neural networks (GNNs) [4,6]. In addition, a few GNN
models introduce attention mechanisms to graph embedding [7,
8]. Attention mechanisms allow the graph embedding model to
highlight neighbors that contain more task-relevant information,
consequently increasing the model capacity. Moreover, attention
mechanisms are likely to help the model to disregard the noisy
portions of a graph, thus improving model robustness.

Most existing graph embedding approaches are inherently
transductive, since they focus on generating representations for
nodes in a fixed graph. These methods optimize the represen-
tation of each node based on random walk [9,10] or matrix
factorization [11,12]. To predict nodes newly added to the graph
(i.e., unseen nodes), the transductive methods need non-trivial
modifications and additional training, consequently suffering from
expensive computation [5]. Many real applications involve un-
seen nodes. For example, new members may join social networks
in Twitter and Facebook. In addition, there are usually mas-

sive amounts of new publications added to citation networks
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n databases like PubMed and arXiv. An inductive approach [5,
3], that enables node representations to be quickly generated
or unseen nodes, is essential for such scenarios. Compared to
ransductive learning, the inductive learning problem is more
hallenging, since the model would have already been optimized
n the existing nodes before the introduction of new nodes.
Furthermore, noise, perturbations or even attacks are com-

only seen in graph-structured data. For instance, scientific pa-
ers may have spelling mistakes, missing words, or incorrect ex-
ressions; criminals tend to hide or fabricate their personal infor-
ation in social networks; fraudsters often manipulate the online

eviews of their products to attract customers on e-commerce
latforms. The general learning objective of existing graph em-
edding methods is to well preserve graph structure only, or to
ointly capture both structural properties and side information
ike node features. As a result, the noise in structure and fea-
ures can lead to poor performance of these methods [14–16].
n semi-supervised learning, a common regularization is to drive
onnected nodes to have the same label based on the homophily
ssumption [13,17]. As shown in [18], the working mechanism
f graph convolution [4] is a special form of Laplacian smoothing
hich mixes the features of a node and its neighbors. Therefore,
he relational effect of graph structures [16] is likely to worsen
he model performance, since manipulating one node or edge
ay misguide the predictions of relational nodes.
To improve the model robustness over noisy graphs, some pi-

neering research [19–21] employs adversarial training in graph
mbedding. These studies are largely inspired by recent genera-
ive adversarial models [22–24], which are shown to be effective
n learning robust representations. Similar to the adversarial au-
oencoder (AAE) [25], the basic idea is to match the learned
ode representations with a prior distribution using adversarial
raining. The underlying motivation is to enforce an additional
egularization on the node representations, and to introduce a
ertain amount of uncertainty in the learning process. This helps
mprove the model robustness against noisy graphs. Adversar-
al training also upholds the potential to avoid overfitting and
chieve relatively promising generalization performance. How-
ver, to our knowledge, none of these prior studies focuses on
obust graph embedding under the inductive semi-supervised
etting.
In this paper, we propose a novel method named Adversarially

egularized Graph Attention networks for INductive learning on
partially labeled graphs (AGAIN). On one hand, our method en-
codes graph structure and node features into node embeddings
with an attention-based aggregator. When aggregating the neigh-
borhood information, an attention mechanism is adopted to as-
sign different learnable weights to the sampled neighbors, captur-
ing the importance of each neighbor. At the inference time, the
learned aggregator can produce informative representations for
previously unseen nodes. On the other hand, adversarial training
is employed to learn robust node representations by enforcing the
representations to match a prior distribution.

The proposed method is evaluated on four datasets including
three citation networks (i.e., Cora, CiteSeer and PubMed) as well
as one social network named BlogCatalog. The main contributions
of this work are summarized as follows.

• The first adversarially regularized GNN model is proposed
and designed specifically to address the challenging induc-
tive learning problem on partially labeled graphs.

• Our model is devised to incorporate attention mechanism
and adversarial training, effectively generating informative
and robust node representations.

• Extensive experiments are conducted with real-world infor-
mation networks, showing our model is comparable with
or even superior to the state-of-the-art methods on the
benchmark inductive node classification tasks.
2

This rest of this paper is organized as follows. The relevant
literature is reviewed in Section 2. The proposed method is de-
scribed in Section 3. The experimental results are reported in
Section 4. Finally, the conclusions are summarized in Section 5.

2. Related work

2.1. Graph-based semi-supervised learning

On a partially labeled graph, graph-based semi-supervised
learning aims to jointly utilize both the scarce labeled and ample
unlabeled nodes to improve node classification accuracy. There
exist two learning paradigms: transductive learning and inductive
learning. Transductive learning [26,27] only aims at classifying
the unlabeled nodes that are observed in training time. Inductive
learning algorithms, such as manifold regularization [28] and
semi-supervised embedding [29], can generalize to unobserved
nodes. Planetoid [13] has both transductive and inductive vari-
ants. The inductive algorithm, Planetoid-I, learns a parameterized
classifier based on node features to facilitate predictions on nodes
unseen during training. Note that, graph-based semi-supervised
learning assumes the training and test nodes share the same label
space. In contrast, open-set learning [30] and out-of-distribution
detection [31] have test data from the classes that are unseen in
training data.

Graph embedding is a broader research topic that focuses
on mapping the nodes to representation vectors in the low-
dimensional space. There are a number of recent approaches
that learn low-dimensional embeddings based on random walk
(e.g., DeepWalk [9], LINE [10], and node2vec [32]) and matrix
factorization (e.g., GraRep [11], HOPE [12], and M-NMF [33]). The
learning objective of these methods is to maximally preserve
the topological information. Under the assumption that node
features are available, some approaches are capable of exploiting
both the topological and feature information, such as TADW [34],
TriDNR [35], and UPP-SNE [36]. However, these methods are
transductive by training embeddings for individual nodes in a
fixed graph, and not designed specifically for semi-supervised
learning.

Beyond the classical graph embedding methods, increasing
research interest can be seen in graph neural networks (GNNs) [6]
which can be categorized as spectral and spatial approaches.
Spectral-based approaches introduce filters for graph convolu-
tions [4,37,38]. Among them, Kipf and Welling [4] simplified
the previous spectral convolutions to be a localized first-order
approximation for semi-supervised learning. This algorithm de-
pends on the graph Laplacian and all node features during train-
ing, and hence lies within the transductive setting. Imitating the
convolutional neural networks on images, the spatial approaches
define graph convolution directly based on the spatial relations
of a node and its neighborhood [5,8,39]. The well-known induc-
tive method, GraphSAGE [5], computes the node embeddings by
sampling a fixed-size neighborhood and then aggregating fea-
tures. The feature aggregation is based on the elementwise mean
of neighborhood (GS-mean), the inductive variant of GCN [4]
(GS-GCN), the LSTM architecture (GS-LSTM), and elementwise
max-pooling or mean-pooling operation (GS-pool). The perfor-
mance of GraphSAGE in several large-scale benchmarks is quite
impressive.

Furthermore, attention mechanisms have been widely adopted
in computer vision [40] and natural language processing [41].
The goal is to attend over important parts of the data, and to
improve the performance of a machine learning model. Atten-
tion mechanisms have also been introduced to designing GNN
models. GAT [8] assigns learnable weights to the entire neighbor-
hood nodes, yielding improved or matched performance in semi-
supervised node classification. Although the reported single-graph
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xperiments are transductive, GAT is capable of supporting in-
uctive learning on one graph. The reason is that GAT only
equires access to the local neighborhood of a node, instead of
he upfront knowledge about the whole graph. In addition, GAT
dds a self-loop to a node and treats the node itself as one of
ts neighbors, so that the previous node representation can be
nherently incorporated in the neighborhood aggregation process.
nlike the traditional multi-head attention, GaAN [42] controls
he importance of each attention head with a convolutional
ubnetwork. HAN [43] proposes a two-level attention (i.e., node
evel and semantic level) for learning on heterogeneous graphs.

Attention mechanism is also explored in this work. However,
ifferent from GAT, we sample a fixed size of neighboring nodes
efore calculating attention coefficients, in order to keep the com-
utational footprint consistent for every node. Additionally, we
tilize a skip connection [44] to incorporate the node represen-
ation of the previous layer. As introduced in GraphSAGE [5], such
kip connection operation has the potential to boost model per-
ormance. Moreover, the methods introduced above are mostly
nregularized and ignore the data distribution of learned node
epresentations, which may result in poor performance on sparse
nd noisy graphs in real applications. In this work, we utilize
dversarial training to address this issue.

.2. Graph adversarial attacks and defenses

Many studies on image [45–47] and text [48] have shown
hat neural networks are vulnerable to deliberate adversarial
erturbations in the input. There are two dominant types of
dversarial attacks [49,50], namely, poisoning attacks in which
he model is trained after the attack, and evasion attacks targeting
he test phase in which the learned model is assumed to be
ixed. Recently, it is also found that the performance of graph
mbedding methods including GNNs would drop significantly
nder malicious manipulations in graph structure or node fea-
ures [14–16]. Accordingly, some defense models are proposed
o improve the robustness of GNNs [51,52]. An additional hinge
oss is considered in [52] during the training process to achieve
ertified robustness under perturbations on the node features.
nherited from the principle of information bottleneck [53,54],
IB [51] learns minimal sufficient node representations that nat-
rally defend against attacks. To evaluate the model robustness,
IB employs adversarial attacks generated using Nettack [16],
nd simple feature attacks which inject Gaussian noise into the
eature vectors. In this work, similar feature attacks are also used
or robustness evaluation, due to the generality of Gaussian noise
njection.

.3. Generative adversarial models

The deep generative model, i.e., generative adversarial net-
orks (GANs) [55], builds a minimax adversarial game for two
layers: the generator and the discriminator. The discriminator
s usually a multi-layer perceptron (MLP) which is trained to tell
part whether an input sample comes from the real data distribu-
ion or the generator. Simultaneously, the generator is trained to
enerate samples as close to the real samples as possible to fool
he discriminator. Being inspired by GANs, Makhzani et al. [25]
mployed adversarial training to perform variational inference by
atching the representations with a prior distribution. This ad-
ersarial autoencoder (AAE) achieves competitive performance in
emi-supervised classification on images. Some other generative
dversarial models are proposed to learn robust representations
or images [22,24] and text [23].

Recently, the adversarial regularization has been applied to

raph-structured data in several studies. The first one is ANE [19]

3

which combines an inductive variant of DeepWalk and the adver-
sarial training for learning robust node representations. ARGA [20]
and ARVGA [20] further utilize the node features together with
topological information in a similar adversarial learning scheme.
NetRA [21] circumvents the need of a pre-defined fixed prior, and
further employs Wasserstein GANs [56] to overcome the unstable
problem during training. However, the inductive semi-supervised
learning that this work focuses on is not considered in the prior
art.

3. Proposed method

In this section, we first introduce the problem and main no-
tations. Then we present an overview of the model architecture,
followed by a detailed description of each component. Finally, the
algorithm of our model is provided together with an analysis of
the computational complexity.

3.1. Problem definition and notations

An information network can be expressed as an attributed
graph G (V , E,X), where V is the set of nodes, E is the set of edges
epresenting the relationships between nodes, and X ∈ RN×D is
he feature matrix. N is the number of nodes and D is the feature
imension. x⊤

v is one row in the feature matrix X representing
he feature vector of node v ∈ V . The topological structure of
nweighted graph G can be represented as an adjacency matrix
∈ RN×N with each element aij set as 0 or 1, specifying whether
n edge exists between two nodes. The degree of the i-th node
is the number of its connected edges, i.e., degree (v) =

∑
j aij.

he average degree is further defined as ⟨k⟩ = 2 |E| /N , indicating
he density of an undirected graph.

As shown in Fig. 1, in this work, we investigate the clas-
ification of nodes that are newly added to a partially labeled
ttributed graph. The main notations used in this paper are sum-
arized in Table 1. A set of nodes, V , consists of labeled nodes V L
nd unlabeled nodes VU. Some of the unlabeled nodes (i.e., V o

U)
re observed during training, and the rest (i.e., V n

U) are unob-
erved. Unobserved nodes, V n

U, are added to the original graph
uring test phase.
Graph embedding aims at mapping a node, v ∈ V , to a

ow-dimensional embedding vector uv . u⊤
v is one row within

epresentation matrix U ∈ RN×d, where d is the embedding
imension. As shown in Fig. 1, the attributed graph is partially
abeled, that is, only a small percentage of nodes are with labels.
o perform node classification on top of embeddings, the semi-
upervised learning is defined as learning a classifier, f : V ↦−→

, using both labeled nodes (i.e., V L) and observed unlabeled
odes (i.e., V o

U). Label matrix, Y ∈ RN×C , contains binary element,
vk, indicating whether node v is associated with class k. The total
umber of classes in Y is C . There are two learning paradigms.
he transductive learning only aims to predict the observed un-
abeled nodes in the graph, that is, V o

U. Inductive learning further
seeks to generalize the classification model to nodes that are
unseen in the graph during training, that is, V n

U. This work focuses
on the inductive semi-supervised learning.

As stated in Section 1, the robustness of a graph embedding
model against noisy input is an important issue, since noise
and perturbations are commonly seen in graph-structured data.
Therefore, in this work, we assume the inputs to be noisy when
evaluating robustness. For an attributed graph, these inputs are
usually feature matrix and structural information such as adja-
cency matrix, PPMI matrix [57] and random walk. Being inspired
by the feature attacks in GIB [51], we randomly select a percent-
age of nodes in the graph, and add independent Gaussian noise
to each dimension of the node features. The Gaussian noise is
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Fig. 1. Inductive learning under semi-supervised setting. The node classification model is trained on the original graph in which only a small percentage of nodes
ave labels. Then the learned model is directly applied to make predictions on nodes that are newly added and unseen during training.
Table 1
Main notations.
Notation Description

G An attributed graph
V , E , A Node set, edge set, and binary adjacency matrix of G
xv , X Feature vector of node v ∈ V and feature matrix of G
uv , U Embedding vector of node v ∈ V and representation matrix of G
Y , Ŷ Label matrix and prediction score matrix of G

N Number of nodes in G
n Number of labeled nodes per class in G
|E|, ⟨k⟩ Number of edges and average degree in G
D, d Feature dimension and embedding dimension
C Number of classes in Y

fϕ (·), lψ (·), dw(·) GNN encoder, node classifier, and discriminator
ϕ,ψ,w Sets of parameters in fϕ(·), lψ(·) and dw(·)
nmax Maximum training epoch
nD Number of discriminator training per generator iteration
K Maximum search depth
B A batch of nodes
pr Discriminator learning rate
pc Weight decay coefficient
s Neighborhood sample size
σ Nonlinear activation function
AGG Aggregator function
α Attention coefficient
h Latent representation

η Percentage of nodes with noise
λ Feature noise ratio
∆ Performance gap
t
t
t
s

injected during the test phase in which the model is fixed. As
introduced in Section 2, this kind of noise injection belongs to the
evasion attacks. As shown in [51], the resilience to feature attacks,
or the lack of it, can be reflected by the consequent performance
under feature noise.

3.2. Overview of model architecture

Fig. 2 shows the model architecture of the proposed method,
.e., AGAIN. There are two main components, i.e., inductive learn-
ng and adversarial training. Specifically, the Graph Attention
etworks for INductive learning (GAIN) consist of GNN encoder

fϕ(·) and node classifier lψ(·). GNN encoder encodes the topo-
ogical information and node features of an input graph into
ow-dimensional node embedding vectors with the attention-
ased aggregator. Node embeddings are further transformed by
node classifier, lψ(·), which is a fully-connected layer followed
y a softmax activation, into predictions of node labels. Moreover,
he adversarial training imposes a prior distribution on the node
mbeddings. Discriminator, dw(·), aims at discriminating the prior
amples and the embedding vectors. It is a standard multi-layer
erceptron (i.e., MLP), in which the output is a single neuron
ollowed by a sigmoid activation, indicating the probability of an
nput sample to be real. Note that GNN encoder f (·) also plays
ϕ

4

he role of generating fake samples (i.e., embedding vectors) in
he adversarial training. Hence, the GNN encoder is shared by
he inductive learning and adversarial training components. Three
ets of parameters, ϕ,ψ and w, are involved in fϕ(·), lψ(·) and
dw(·), respectively.

3.3. Inductive learning

As illustrated in Fig. 3, in the neighborhood sampling stage,
rather than considering the whole neighborhood of a given target
node, a fixed size of neighbors are randomly sampled at each
search depth. In case that sample size is larger than the node
degree, neighbors are sampled with replacement. The sampling
is an outward process in which the far neighborhood is gradually
discovered. The maximum search depth is denoted as K . Then the
nodes aggregate information from their sampled neighbors. Note
that the aggregation is an inward process. As the process iterates,
more and more information is gained from far neighborhood by
the target node.

When aggregating neighborhood information, we introduce an
attention mechanism [8] to assign different learnable weights to
the neighbors, indicating their relative importance in assisting the
learning of target node. As shown in Fig. 3, at step k, attention
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Fig. 2. Model architecture of AGAIN. The upper and lower tiers illustrate induc-
ive learning and adversarial training, respectively. GNN encoder is empowered
y the attention-based aggregator.

oefficient αk
vu can be computed as follows.

αk
vu =

exp
(
σ1

((
ak

)⊤
[W khk−1

v ;W khk−1
u ]

))
∑

m∈Sv exp
(
σ1

((
ak

)⊤
[W khk−1

v ;W khk−1
m ]

)) (1)

where Sv is the set of immediate neighbors of node v; hk−1
v (v ∈

V ) and hk−1
u (u ∈ Sv) are the latent representations of target

node v and neighboring node u at the previous step (i.e., k − 1),
respectively; ak and W k are the weight vector and matrix for
linear transformations, respectively. Note that, at step k = 0, the
latent representation is the node feature vector, that is, h0

v = xv .
Therefore, the latent representations are initialized with node
features and updated step by step. Here, nonlinear activation, σ1,
is a leaky ReLU function, i.e., σ1(x) = max(0.2x, x).

The latent representation of neighborhood can then be derived
as follows.

hk
S = AGGk(hk−1

u | u ∈ Sv) =

∑
u∈Sv

αk
vuh

k−1
u (2)

in which AGGk is the aggregator function at step k. Then the latent
representation of node v at step k (i.e., hk

v) can be calculated.

hk
v = σ2([W k

vh
k−1
v ;W k

Sh
k
S]), (3)

hk
v = hk

v/∥h
k
v∥2, (4)

whereW k
v andW k

S are also weight matrices for linear transforma-
tions; nonlinear activation, σ2(x) = max(0, x), is a ReLU function.
Note that we implement a skip connection [44] in Eq. (3) to incor-
porate the node representation of previous layer. As introduced
in GraphSAGE [5], such skip connection operation can potentially
boost model performance.

The final representation output at step K is denoted as uv ,
which is the learned representation (i.e., embedding vector) of
node v.

uv = hK
v = fϕ (xv, xS) , v ∈ V , (5)

in which fϕ is the GNN encoder, xv is the feature vector of node v,
and xS is the feature matrix of the sampled neighboring nodes. For
notational convenience, in the following descriptions, we simply
use fϕ(xv) to denote uv . Note that embedding vector, uv , is also
the fake sample in adversarial training indicated by a sign ‘‘−’’ in
Fig. 2.
5

Finally, prediction score vector, ŷv , can be calculated by feed-
ing embedding vector uv into node classifier lψ(·).

ŷv = lψ(uv), v ∈ V . (6)

ŷ⊤

v is one row in prediction score matrix Ŷ ∈ RN×C . Under semi-
supervised setting, the inductive learning component is trained
by minimizing the cross-entropy loss of labeled nodes as follows.

LGAIN = − E
v∈B

[
C∑

k=1

Yvk log(Ŷvk)

]
(7)

where B is a sampled batch from the training nodes; binary
element Yvk within label matrix Y indicates whether a node v ∈

B belongs to class k; and Ŷvk is the corresponding element in
prediction score matrix Ŷ .

3.4. Adversarial training

An adversarial training model is employed to regularize the
embedding vectors. The learned embeddings can be enforced to
match a certain prior distribution. It builds an adversarial training
platform for two players, namely, generator gθ(·) and discrimina-
tor dw(·), to play a minimax game. Specifically, generator, gθ(·),
represents a nonlinear transformation from the input graph to
embedding vectors. In this work, GNN encoder, fϕ(·), play the
role of gθ(·). A real sample, z , is sampled from prior distribution
Pg(z), while embedding vector fϕ(x) is treated as the fake sample.
Discriminator, dw(·), is a standard multi-layer perceptron. The
output of discriminator, which is of one dimension followed by
a sigmoid activation, indicates the probability of an input sample
to be real. The value function of adversarial training can be
expressed as follows [55].

min
ϕ

max
w

E
z∼Pg(z)

[log dw(z)] + E
x∼Pdata(x)

[log(1 − dw(fϕ(x)))] (8)

in which Pdata(x) is the feature distribution of nodes.
During training, the discriminator is trained to distinguish

prior samples from embedding vectors, while the generator aims
to fit node embeddings to the prior distribution, thus misguiding
the discriminator. We can separate the training of discriminator
and generator. The loss function of discriminator is defined as

LDIS(w; x, z) = − E
z∼Pg(z)

[log dw(z)] − E
x∼Pdata(x)

[log(1 − dw(fϕ(x)))].

(9)

The loss function of generator is

LGEN(ϕ; x) = − E
x∼Pdata(x)

[log(dw(fϕ(x)))]. (10)

In many practices of previous studies [22,25], the Gaussian or
Uniform distribution is chosen as a prior for learning robust
representations. Note that, in this work, the prior distribution
produces real samples, rather than serving as a source of noise
for generating fake samples as in [55].

3.5. Algorithm

3.5.1. AGAIN minibatch training
The minibatch training procedure of AGAIN is shown in Algo-

rithm 1. In the inductive learning phase, GNN encoder fϕ(·) and
node classifier lψ(·) are updated to minimize the cross-entropy
loss of labeled nodes (Steps 2–10). The total labeled nodes of an
attributed graph are randomly shuffled first, and then equally
divided into several batches which are then processed one by
one. Therefore, a batch of labeled nodes can be considered to be
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Fig. 3. Illustration of the neighborhood sampling and the subsequent information aggregation process. The sign ‘‘×’’ denotes matrix multiplication. Attention coefficient
s activated by the leaky ReLU nonlinearity before softmax operation.
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Algorithm 1 AGAIN Minibatch Training

Input: Graph G (V , E,X); maximum training epoch nmax; maxi-
mum search depth K ; number of discriminator training per
generator iteration nD; attention-based aggregator function
AGGk (including weight vector ak, weight matrix W k, and
nonlinear activation σ1), k ∈ {1, . . . , K }; weight matrices W k

v

and W k
S , k ∈ {1, . . . , K }; nonlinearity σ2.

1: for epoch < nmax do
2: Sample a batch of labeled nodes (i.e., B) with initial repre-

sentations set as h0
v = xv(v ∈ B) and sample the neighboring

features xS (including those of the immediate neighbors, i.e.,
Sv).

3: for k = 1, . . . , K do
4: hk

S = AGGk(hk−1
u | u ∈ Sv)

5: hk
v = σ2([W k

v hk−1
v ;W k

S h
k
S])

6: hk
v = hk

v/ ∥ hk
v ∥2

7: end for
8: uv = hK

v = fϕ(xv, xS), ŷv = lψ (uv).
9: Compute the cross-entropy loss using Eq. (7)

10: Backpropagate loss and update ϕ and ψ
11: for n < nD do
12: Sample a batch of nodes xv(v ∈ B) and compute

embeddings uv
13: Sample a batch from the prior distribution zi ∼

Pg(z)(i = 1, . . . , |B|)
14: Compute LDIS using Eq. (9)
5: Backpropagate loss and update w
6: end for
7: Sample a batch of nodes xv(v ∈ B) and compute

embeddings uv
8: Compute LGEN using Eq. (10)
9: Backpropagate loss and update ϕ
0: end for

randomly sampled from the total labeled nodes. Taking one of the
selected labeled nodes as a target node, we sample its neighbor-
ing nodes and aggregate neighborhood information to compute
its embedding vector and label prediction. Cross-entropy loss is
calculated based on the predictions and ground-truth labels using
Eq. (7). When executing from Steps 2–10, although only one batch
of labeled nodes is considered, the whole graph, except for the
test data, is accessible in the neighborhood aggregation process.
In other words, in addition to the feature vector of a target node,
the features of its neighboring nodes, which are sampled from the
whole graph, are also involved in the computation of target node
embedding vector.

In adversarial training phase, the adversarial networks first
pdate discriminator d (·) to tell apart real samples (vectors
w

6

Algorithm 2 AGAIN Testing

Input: Graph G (V , E,X); test nodes (i.e., V n
U ); maximum search

depth K ; trained GNN encoder fϕ (·) (including attention-
based aggregator function AGGk, weight matrices W k

v and W k
S ,

and nonlinearity σ2, k ∈ {1, . . . , K }); trained node classifier
lψ (·).

1: Set the initial representations as h0
v = xv(v ∈ V n

U ) and sample
the neighboring features xS (including those of the immediate
neighbors, i.e., Sv).

2: for k = 1, . . . , K do
3: hk

S = AGGk(hk−1
u | u ∈ Sv)

4: hk
v = σ2([W k

v hk−1
v ;W k

S h
k
S])

5: hk
v = hk

v/ ∥ hk
v ∥2

6: end for
7: uv = hK

v = fϕ(xv, xS), ŷv = lψ (uv).
8: Calculate the classification accuracy based on label prediction

ŷv and ground truth label.

from prior distribution) from fake samples, i.e., embedding vec-
tors (Steps 11–16). In addition, GNN encoder, fϕ(·), serve as a
enerator to confuse the trained discriminator and update it-
elf (Steps 17–19). Therefore, the parameters of GNN encoder
ϕ(·) are updated by inductive learning and adversarial training
lternatively.
The computational complexity of inductive learning is propor-

ional to the number of parameters |ϕ| and |ψ| in every epoch.
ence, the overall complexity is O(nmax(|ϕ| + |ψ|)). Similarly,
he computational complexity of generator and discriminator
s typically linear with the number of parameters |ϕ| and |w|,
espectively. Therefore, the complexity of adversarial training is
(nmax(nD |w| + |ϕ|)).

.5.2. AGAIN testing
Algorithm 2 outlines the process of testing. In the testing

hase, since GNN encoder fϕ (·) and node classifier lψ (·) have
een trained, their learnable parameters are fixed. Then the fea-
ures of test nodes and their sampled neighboring features are
ed into the trained model to obtain node embeddings and la-
el predictions (Steps 1–7). Finally, the classification accuracy is
alculated based on the label predictions and ground truth labels.
It can be seen in Fig. 1 that, in the test phase, the local neigh-

orhoods of existing nodes would change, and the local structures
f new nodes are newly formed. The proposed inductive learning
odel can handle both situations and compute the representa-

ions for all nodes in the graph. GNN encoder, fϕ (·), generates
ode representations by aggregating the neighborhood informa-
ion (see Eqs. (2)–(4)). Once the GNN encoder is trained based on
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Table 2
Summary of datasets.
Dataset #Nodesa N #Edges |E| Average degree ⟨k⟩ #Labels C #Features D

Cora 2708 5429 4.0 7 1433
CiteSeer 3327 4732 2.8 6 3,703
PubMed 19,717 44,338 4.5 3 500

BlogCatalog 5196 171,743 66.1 6 8189

a ‘‘#Nodes’’ means the number of nodes. The rest can be deduced by analogy.
he available information of the original graph, its parameters are
ixed in the test phase. Although the graph topology has changed
uring testing, the GNN encoder can still compute node represen-
ations. In Eq. (2), as long as the updated or new neighborhood
nformation is provided, the representation of neighborhood can
e computed, enabling subsequent calculation.

. Experiments

In this section, we aim to answer the following research ques-
ions (RQs) by extensive experiments.

• RQ1: How does AGAIN perform on the inductive node classi-
fication tasks compared with the state-of-the-art baselines?

• RQ2: What are the benefits of learning strategies, including
information aggregation, attention mechanism, and adver-
sarial training?

• RQ3: How is the performance of AGAIN model affected by
the relevant hyperparameters?

.1. Experimental setup

atasets. We conduct experiments on four real-world datasets as
escribed in Table 2. The three citation graphs [58] (i.e., Cora,
iteSeer and PubMed) have nodes and edges representing pub-
ications and citation links, respectively. These publications are
ategorized based on their corresponding research topics. For
xample, Cora consists of machine learning papers which belong
o one of the seven classes named as ‘‘case based’’, ‘‘genetic
lgorithms’’, ‘‘neural networks’’, ‘‘probabilistic methods’’, ‘‘rein-
orcement learning’’, ‘‘rule learning’’, and ‘‘theory’’. For Cora and
iteSeer, each paper is described by a feature vector with binary
alues indicating whether each word from a dictionary is present.
he publications in PubMed have features described by Term
requency–Inverse Document Frequency (TF–IDF) vectors drawn
rom a dictionary consisting of 500 unique words. Therefore, for
ach citation network, the feature dimension of a node, D, is
etermined by the corresponding dictionary size.
BlogCatalog [59] is an online community in which bloggers

ollow each other. It is modeled as a social network, with nodes
nd edges representing bloggers and their following relation-
hips, respectively. The feature vector of each blogger is obtained
ccording to the corresponding blog description. The bloggers are
ategorized into one of the six predefined categories based on
heir interests.

The goal of node classification in this work is to classify one
ublication into a certain research topic, or predict the interest
f a blogger. Note that we treat all networks here as undirected
raphs. In the performance study (Section 4.2), the labeled nodes
f each citation graph are the same as the designated ones in
he Planetoid paper [13] for a fair comparison. In the remaining
xperiments of Section 4, the labeled nodes are randomly selected
rom the training data. Specifically, we randomly choose the same
umber of labeled nodes for each class in the training nodes.
n [13], the number of labeled nodes per class (i.e., n) is fixed
s 20. However, in this work, labeled number, n, varies from 20
o 100 for a more thorough investigation. The remaining training
odes are unlabeled. Under inductive setting, the test nodes are
nobserved during training. Following the setting of [13], the

umber of test nodes in each graph is fixed as 1000.

7

Baselines. Three groups of baselines are introduced as follows.

• LR, DeepWalk [9], and DeepWalk+: They are unsupervised
baselines followed by the logistic regression classifier. LR is
directly trained on the node features. DeepWalk generates
embedding vector for each node using the graph struc-
ture only. In DeepWalk+, node embeddings generated by
DeepWalk are further concatenated with node features.

• ManiReg [28], SemiEmb [29], and Planetoid-I [13]: They
are graph semi-supervised learning methods. Graph Lapla-
cian regularization is employed in these methods to impose
penalty, if nearby nodes are predicted to have different
labels. They are inductive baselines which can naturally
handle unseen nodes.

• GAT [8] and GraphSAGE [5]: They are GNN models for in-
ductive learning on graphs. GAT devises an attention mech-
anism to assign learnable weights for the entire neighbor-
hood nodes. The GraphSAGE variants (including GS-GCN,
GS-mean, GS-LSTM and GS-pool) employ various aggrega-
tor functions to aggregate information from the sampled
neighborhood. Among them, GS-GCN is the inductive variant
of the GCN model [4]. GS-mean improves on GS-GCN by
concatenating the output of previous layer with a skip con-
nection. Such skip connection can also be found in GS-LSTM
and GS-pool.

Implementation details. For baselines using logistic regression
(i.e., LR, DeepWalk and DeepWalk+), we use the logistic SGDClas-
sifier in the scikit-learn Python package [60] with default settings.
For DeepWalk, we follow what is done in GraphSAGE [5]. While
fixing the embeddings of already trained nodes, before making
predictions, a new round of SGD optimization is performed to
update the embeddings of new test nodes. For Planetoid-I, we
use the public source code1 provided by the authors with default
settings, and sweep learning rate in the set {0.1, 0.01, 0.001}.

The PyTorch implementation2 of GAT model is originally trans-
ductive. We adapt this implementation to calculate the GAT
results under inductive scenario. The original GraphSAGE variants
only have unsupervised and fully-supervised versions. We adapt
the fully-supervised version to be semi-supervised, which only
has a few labeled nodes during training. Since the graph structure
has already been incorporated in the neighborhood sampling
process, similar to GCN [4], GraphSAGE variants are directly
trained on the supervised loss of labeled nodes, without having
to consider the Laplacian regularization.

Fig. 4 shows the layer structure of AGAIN. GNN encoder, fϕ(·),
is a two-layer graph attention model. The dimension of weighting
vector, a, is selected in the set {64, 128, 256, 512, 1024, 2048}.
The output dimension of each layer (i.e.,

⏐⏐hk
v

⏐⏐ in Algorithm 1) is
set as 256. Node classifier, lψ(·), is a fully-connected single-layer
neural network (i.e., FC layer) followed by a softmax activa-
tion. Its input and output dimensions are embedding dimension
(i.e., d = 256) and the number of classes in each dataset (i.e., C),
respectively. Discriminator, dw(·), is a four-layer neural network

1 https://github.com/kimiyoung/planetoid
2 https://github.com/Diego999/pyGAT

https://github.com/kimiyoung/planetoid
https://github.com/Diego999/pyGAT
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Table 3
Main hyperparameters for the AGAIN model.

Dataset n nmax nD Batchsize Learning rate Weight decay d p Dropout K s∗

ϕ,ψ w

BlogCatalog
20

200

5

256 0.001

0.0002 0.005

256

0

0.5 2 {25, 10}

60
100

Cora
20

1

0.0001

0.05 −4

60 0.001
100 0.0001

CiteSeer
20 0.00160
100 0.0001

PubMed
20

0.00160
100

∗ Neighborhood sample size, s, is denoted as a set {s1, . . . , sK } containing sample size sk in each search depth k.
Fig. 4. Layer structure of AGAIN. The input and output dimensions of each block
are shown in parentheses, where |B| is the batchsize, D is the feature dimension
of a graph, and C is the number of classes.

(i.e., MLP), with the dimensions of three hidden layers set as 1024,
1024 and 256 in sequence. The output of discriminator is of one
dimension, indicating the probability of an input sample to be
real. We use the leaky ReLU activation (i.e., σ (x) = max(0.2x, x))
in the first three layers, and employ a sigmoid activation in the
output layer. The default prior of AGAIN is a multivariate Gaussian
distribution N (000, 10pIII). The dimension of a prior sample is the
same as embedding dimension d. Power exponent, p, is swept in
the set {−4,−2, 0, 2, 4}.

AGAIN is implemented using PyTorch [61]. In Table 3, we
provide the main hyperparameters selected for each dataset, with
n denoting the number of labeled training nodes per class. We
train the model for 200 epochs (i.e., nmax = 200) using the Adam
optimizer. The batch size (i.e., |B|) is 256. In order to prevent over-
fitting, L2 regularization is enforced in the loss function with the
weight decay term selected in {5e − 5, 5e − 4, 5e − 3, 5e − 2}. All
weights are initialized by default. Note that we set the maximum
search depth as K = 2, in which neighborhood sample sizes
are s1 = 25 and s2 = 10, respectively. As mentioned in [5],
increasing K beyond 2 leads to marginal accuracy improvement,
while large increment can be seen in the corresponding runtime.
The influence of sample size (i.e., s) on classification accuracy is
discussed in Section 4.4.

For fair comparison, the above methods have the same em-
bedding dimension, i.e., d = 256. All results are averaged by ten
runs with different random seeds. We run the experiments using
8

a computer with one NVIDIA GeForce GTX 1080Ti GPU (11 GB of
RAM), an Intel(R) Core(TM) i7-8700K CPU (6 cores, 3.70 GHz), and
32 GB of RAM.

4.2. Performance study (RQ1)

In this section, experiments are first conducted on the induc-
tive benchmark task to verify the proposed method. Then the
t-SNE visualization of node representation is provided. Finally, the
proposed methods are further evaluated under the transductive
setting.

4.2.1. Inductive node classification
Following the dataset split of the Planetoid paper [13], in the

training nodes, there are only 20 labeled nodes for each class,
i.e., n = 20. 1000 nodes are selected as the test data. In Table 4,
for the citation datasets, the accuracies of ManiReg, SemiEmb, and
Planetoid-I are taken from [13]. Since the results of these methods
on BlogCatalog are not reported in [13], the corresponding cells
of ManiReg and SemiEmb are left empty. As stated in Section 4.1,
the performance of Planetoid-I in BlogCatalog is obtained by
executing the source code. In the subsequent discussions, AGAIN
is the full proposed model shown in Fig. 2. GAIN is our simplified
model without adversarial training. That is, GAIN only consists
of the GNN encoder and the node classifier. It can be seen in
Table 4 that, logistic regression classifier (LR) produces the largest
standard deviation values, possibly due to its simplicity. When
testing on the same graph, the standard deviation values of other
methods are generally close and of the same order. Therefore, the
following discussions are based on the mean accuracy.

In the first group of baselines (i.e., LR, DeepWalk, and Deep-
Walk+), LR obtains much higher accuracies than DeepWalk. This
indicates that, for attributed graphs, node features can be more
informative than graph structure in learning node embeddings.
Note that, although DeepWalk is far more competitive in trans-
ductive learning, it has poor performance on inductive tasks.
Furthermore, DeepWalk performs worst in CiteSeer, which is
probably attributed to the low average degree (see Table 2).
The importance of feature information is further validated by
the performance lift of DeepWalk+ compared to DeepWalk, after
concatenating node features with the learned embeddings. It
is found in CiteSeer and PubMed that, although utilizing both
structure and feature information, DeepWalk+ cannot surpass
LR. Hence, it is not always workable by simply concatenating
structural embeddings and node features. In other words, graph
structure and feature information need to be incorporated in a
systematic manner.

Compared with the first group of baselines, superior perfor-
mance is observed in the graph-based semi-supervised learn-
ing methods (i.e., ManiReg, SemiEmb, and Planetoid-I), which is
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Table 4
Mean classification accuracy on test data under inductive setting (in percent). For each dataset, the highest mean
accuracy is highlighted in bold and the top two are underlined. The standard deviations are given in parentheses.
Method BlogCatalog Cora CiteSeer PubMed

LR 66.4 (3.6) 51.6 (2.6) 51.0 (1.5) 71.4 (3.5)
DeepWalk [9] 25.4 (1.3) 29.4 (1.3) 22.9 (1.1) 48.2 (2.2)
DeepWalk+ 66.5 (2.5) 55.9 (0.9) 49.0 (0.6) 67.2 (0.8)

ManiReg [28] – 59.5 60.1 70.7
SemiEmb [29] – 59.0 59.6 71.1
Planetoid-I [13] 73.2 (2.0) 61.2 64.7 77.2

GAT [8] 63.7 (2.6) 80.6 (0.4) 67.7 (1.0) 77.8 (0.7)
GS-GCN [5] 59.2 (2.7) 77.6 (1.2) 67.4 (0.5) 76.0 (0.7)
GS-mean [5] 77.1 (2.3) 79.8 (0.5) 68.8 (0.5) 76.9 (0.6)
GS-LSTM [5] 74.5 (1.9) 78.4 (0.4) 67.2 (1.1) 76.0 (0.7)
GS-pool [5] 73.9 (2.0) 80.2 (0.7) 68.1 (0.7) 77.1 (0.5)

GAIN [ours] 79.3 (1.9) 80.0 (0.7) 69.2 (0.6) 77.1 (0.6)
AGAIN [ours] 80.1 (1.7) 79.9 (0.4) 70.0 (0.8) 77.5 (0.7)
Table 5
Silhouette score of the clusters in a 2D projected space.
Dataset Planetoid-I GS-pool GAIN AGAIN

Cora 0.034 0.298 0.280 0.325
BlogCatalog 0.231 0.230 0.284 0.341

yielded by jointly incorporating the information of features, struc-
ture, and labels in an attributed graph. Among them, Planetoid-I
is the most competitive one. Further improvements can be seen
in the GraphSAGE variants.

On Cora and PubMed, we observe several inductive GNN mod-
ls yield close performance, including GAT, GS-mean, GS-pool,
AIN, and AGAIN. On CiteSeer and BlogCatalog, AGAIN has clear
erformance gains over other GNN models. Specifically, with the
elp of attention mechanism and skip connection, GAIN outper-
orms GraphSAGE variants and GAT. Then, AGAIN further im-
roves on GAIN by adversarial training which increases the gen-
ralization ability. Compared with those of Cora and PubMed,
ode feature vectors have larger dimensions in BlogCatalog and
iteSeer (see Table 2). Thus, the above observations reveal the
trength of our methods in performing inductive learning on
eature-rich graphs. In particular, AGAIN outperforms GAT by 6.4%
n BlogCatalog and 2.3% on CiteSeer. On BlogCatalog, GAT sur-
asses the inductive variant of GCN (i.e., GS-GCN), but underper-
orms other GraphSAGE variants which employ skip connection
nd advanced aggregator. Note that, through concatenating the
utput of previous layer, GS-mean outperforms GS-GCN in all
ases, showing the benefit of skip connection.

.2.2. Visualization of embedding vectors
Fig. 5 visualizes the embedding vectors of the test nodes in

ora and BlogCatalog using t-SNE [62]. We select Planetoid-I and
S-pool as representative baselines, and neglect methods in the
irst group due to their low accuracies. As shown in Table 5,
e further calculate the corresponding Silhouette score [63] for
he clusters in a 2D projected space. Embedding vectors gener-
ted by AGAIN have the most preferable visualization. Specifi-
ally, the clusters are separated more clearly, yielding the highest
ilhouette score.

.2.3. Transductive node classification
Though this work aims at inductive learning, to make the

valuation more comprehensive, we further conduct experiments
nder the transductive settings. In Table 6, the results are
resented and compared with the classical transductive GNN
odel, i.e., GCN [4]. We reuse the GCN results reported in [4] for
9

Table 6
Mean classification accuracy on test data under transductive setting (in percent).
For each dataset, the highest mean accuracy is highlighted in bold and the top
two are underlined. The standard deviations are given in parentheses.
Method BlogCatalog Cora CiteSeer PubMed

GCN [4] 65.0 (2.3) 81.5 70.3 79.0
GS-GCN [5] 59.5 (2.0) 78.4 (1.1) 67.2 (0.7) 76.5 (0.9)
GS-mean [5] 76.2 (2.8) 80.0 (0.6) 69.2 (0.7) 76.6 (0.5)
GS-LSTM [5] 73.7 (2.0) 79.4 (0.7) 67.4 (1.4) 75.6 (0.5)
GS-pool [5] 73.3 (2.1) 80.3 (0.5) 68.6 (0.4) 77.4 (0.7)

GAIN [ours] 79.2 (2.4) 80.4 (0.4) 69.6 (0.7) 76.6 (0.7)
AGAIN [ours] 79.8 (2.2) 80.3 (0.6) 70.5 (0.8) 77.6 (0.6)

Cora, CiteSeer, and PubMed. The GCN performance in BlogCat-
alog is evaluated by adapting and executing the source codes3
provided by the authors. Since the test set information is orig-
inally assumed to be unavailable when designing the inductive
approaches, such information may not be well exploited by the
inductive approaches, consequently leading to their underperfor-
mance in some cases.

It is found that, in Cora, CiteSeer and PubMed, the transductive
accuracies in Table 6 are generally higher than the corresponding
inductive ones in Table 4. The reason is that, unlike inductive
learning, the information of test data is accessible in transductive
learning during training. However, in BlogCatalog, the transduc-
tive accuracies are mostly lower than those in inductive cases.
It might be attributed to the high average degree of BlogCatalog
(i.e., 66.1, see Table 2). The sample sizes are 25 and 10 in
the immediate neighbors and the 2-hop neighbors (see Table 3
and Fig. 3), respectively. Therefore, under the inductive setting,
there will already be rich neighborhood information to exploit.
In transductive setting, although test set information is available
when sampling neighboring nodes, more abundant neighborhood
information can sometimes introduce certain noise, which would
lead to underperformance.

Although AGAIN is designed for inductive learning, compared
with the classical GCN model [4], its results are still matched in
CiteSeer and even higher in BlogCatalog. GCN surpasses its in-
ductive variant GS-GCN in BlogCatalog. However, with advanced
aggregator and skip connection employed, the remaining GNN
models manage to yield large performance gains over GCN. Note
that, in all cases, one of the proposed methods (i.e., GAIN or
AGAIN) is able to outperform the GraphSAGE variants.

4.3. Ablation study (RQ2)

In this section, we investigate the influences of information
aggregation, attention mechanism, and adversarial training on

3 https://github.com/tkipf/pygcn

https://github.com/tkipf/pygcn
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Fig. 5. Visualization of the embedding vectors of Cora and BlogCatalog in the 2D space using t-SNE (best viewed in color). For Cora, each point corresponds to one
paper. Seven colors distinguish different paper classes. For BlogCatalog, each point represents one blogger. Six colors denote different interests.
Table 7
Summary of mean classification accuracy (in percent). The number of labeled nodes per class, n, varies from 20 to 100. Bold font denotes the top model. The standard
eviations are given in parentheses.
Dataset BlogCatalog Cora CiteSeer PubMed

n 20 60 100 20 60 100 20 60 100 20 60 100

MLP 73.1 (1.6) 84.1 (0.9) 87.6 (0.5) 59.3 (1.2) 67.9 (1.2) 71.5 (1.3) 56.0 (1.2) 66.6 (1.8) 69.5 (2.0) 73.4 (0.5) 73.9 (1.9) 76.3 (1.6)
GS-mean 77.1 (2.3) 86.1 (1.7) 89.2 (0.8) 79.8 (0.5) 80.9 (0.8) 83.2 (0.4) 68.8 (0.5) 73.0 (1.1) 74.2 (1.0) 76.9 (0.6) 78.3 (1.7) 81.4 (1.0)

GAIN 79.3 (1.9) 89.1 (1.4) 91.4 (0.7) 80.0 (0.7) 81.1 (1.2) 83.4 (1.0) 69.2 (0.6) 73.6 (1.3) 74.6 (0.9) 77.1 (0.6) 78.9 (1.6) 81.2 (1.1)
AGAIN 80.1 (1.7) 89.2 (1.0) 91.5 (0.8) 79.9 (0.4) 82.2 (1.4) 83.1 (1.0) 70.0 (0.8) 73.1 (1.0) 74.9 (0.5) 77.5 (0.7) 79.2 (1.8) 81.8 (1.4)
learning node embeddings step by step. We construct a two-
layer MLP, which only uses node features as input, without hav-
ing to consider graph structure, and outputs predictions. The
first layer of MLP is similar to GNN encoder fϕ(·) in Fig. 2. The
second layer can be treated as node classifier lψ(·). Therefore,
he hidden dimension of MLP is set as embedding dimension
. Referring to the neighborhood representation obtained using
q. (2), GS-mean takes the average of the representations of
eighbors with equal weights. GAIN further assigns different
earnable weights (i.e., attention coefficients) to these neighbor-
ng nodes. Then AGAIN combines adversarial training with GAIN,
onstraining the learned embeddings to match a prior distribu-
ion. Note that the subsequent experiments are all conducted
nder inductive setting.
In Table 7, the methods based on information aggregation

i.e., GS-mean, GAIN, and AGAIN) are superior to MLP which solely
xploits node features. Compared with GS-mean, GAIN obtains
igher accuracies in most cases. Large margins can be seen on
logCatalog, where GAIN achieves on average 2.93% relative gain
n accuracy over GS-mean. However, the margins are small on
itation graphs which are relatively sparse. This indicates that the
ttention mechanism can be more powerful on a dense graph
ontaining rich features. In terms of the mean accuracy, AGAIN
utperforms GAIN in 9 out of 12 cases, showing AGAIN has
slightly improved generalization ability when evaluated on

nseen test nodes.
To further investigate the effects of attention mechanism and

dversarial training on improving the robustness of embeddings,
e corrupt the node features in test phase after the models are
rained. Referring to GIB [51], we randomly choose a percentage
f nodes (denoted as η), and add independent Gaussian noise
10
(λ · r · ϵ) to each dimension of their feature vectors, with in-
creasing amplitude. Random number, ϵ, is from standard normal
distribution N (0, 1). Feature noise ratio, λ, is selected in the set
{0, 0.5, 1.0, 1.5}. When λ equals 0, it is the case without noise. To
incorporate the graph property during noise injection, reference
amplitude, r , is obtained by taking the average of the maximum
value in each node’s feature vector. As stated in Section 2, the
noise here is similar to the evasion attacks.

In real applications, it would be a frequently encountered
situation that a small fraction of nodes are noisy. Therefore, the
percentage of nodes with noise, η, is first fixed as 10%. The
experimental results are reported in Table 8. GAIN outperforms
GS-mean in most cases, which indicates the potential of attention
mechanism on improving robustness. Moreover, the accuracy of
AGAIN is higher than that of GAIN, except those on CiteSeer. This
reveals that adversarial training contributes to generating robust
embeddings in some degree. For comprehensive evaluation, we
also present the results of Planetoid-I and GS-pool, which are
found to be mostly inferior to those of our methods. There is one
exception on BlogCatalog, where Planetoid-I performs best when
the noise amplitude is high (i.e., λ = 1.5). The likely reason is that
the methods relying on information aggregation are influenced by
the relational effect of graph structure [16]. Referring to Fig. 3,
the noise added on one node might misguide the predictions
of other nodes with structural relations, worsening the model
performance, especially when the high-intensity noise is injected
into a dense graph.

Further investigations are conducted by varying the percent-
age of nodes with noise (i.e., η). For the sake of clarity, per-
formance gap, ∆, is obtained through subtracting the accuracy
of GAIN from that of GS-mean or AGAIN. As shown in Fig. 6,
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Table 8
Mean classification accuracy in percent for the trained models with increasing additive feature noise (n = 60, η = 10%). Bold font denotes the top model.
Dataset BlogCatalog Cora CiteSeer PubMed

λ 0 0.5 1.0 1.5 0 0.5 1.0 1.5 0 0.5 1.0 1.5 0 0.5 1.0 1.5

Planetoid-I 83.0 77.6 76.9 76.7 69.2 66.1 65.0 64.7 69.3 66.7 65.4 65.0 74.7 71.6 71.0 70.6
GS-pool 84.8 74.2 63.0 54.6 80.8 76.3 67.5 61.2 72.5 68.4 62.3 58.4 78.0 72.7 69.5 67.6
GS-mean 86.1 80.4 77.7 74.9 80.9 77.6 72.4 68.9 73.0 70.5 67.3 64.7 78.3 74.4 71.5 69.7

GAIN 89.1 82.0 75.3 68.4 81.1 77.9 72.9 69.7 73.6 72.0 68.6 65.9 78.9 74.8 71.8 69.7
AGAIN 89.2 82.2 78.2 72.5 82.2 78.8 74.7 71.1 73.1 71.1 67.7 65.3 79.2 75.4 72.7 71.4
Fig. 6. Performance gap (i.e., ∆) on Cora and BlogCatalog (n = 60). η is the percentage of nodes in a graph corrupted with additive feature noise. λ is the feature
noise ratio.
the performance of attention mechanism and adversarial training
varies with node percentage and graph property. In general, as
the percentage of nodes with noise increases, the attention mech-
anism brings an improvement first but loses effects gradually.
With adversarial training employed, AGAIN outperforms GAIN by
clear margins in most cases, revealing adversarial training is able
to improve model robustness. However, the performance gain
yielded by adversarial training shrinks or even becomes negative
when more nodes are corrupted with noise.

4.4. Hyperparameter sensitivity study (RQ3)

In this section, we analyze the classification accuracy of AGAIN
with regard to four relevant hyperparameters, i.e., embedding
dimension d, neighborhood sample size s, discriminator learning
rate pr , and weight decay coefficient pc . When one hyperparam-
eter is investigated, the remaining hyperparameters are set as
the default values introduced in Section 4.1. Fig. 7 displays the
classification accuracies on the four graphs.

Embedding dimension, d, is the dimension of node representa-
tion vector learned by the AGAIN model. The prediction accuracy

increases with the embedding dimension first and then becomes

11
stable. Similar trends can be seen on Cora and PubMed, when in-
creasing the number of sampled neighbors (i.e., s). However, there
are little variations on CiteSeer due to its low average degree
(see Table 2). In contrast, when the test is applied on BlogCatalog
which has relatively high density, the accuracy increases steadily
with the sample size. Note that, when investigating the sample
size, we select the same number of neighbors in each search
depth, i.e., s1 = s2 = s (see Table 3). In the case that the learning
rate of discriminator (i.e., 1e-2) is much larger than that of the
GNN encoder (i.e., 1e-3), a clear performance drop is observed on
each graph. When evaluated on Cora and PubMed, the model is
more sensitive to the discriminator learning rate. On BlogCatalog,
the best accuracy is obtained with a weight decay coefficient
of 5e-3. On the three citation graphs (i.e., Cora, CiteSeer, and
PubMed), the classification accuracy reaches its peak value when
pc = 5e-2.

5. Conclusion

An adversarially regularized GNN model, AGAIN, has been

proposed to address the inductive node classification problem
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rior distribution. Experimental results on inductive node classi-
ication tasks show that our method achieves matched or even
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