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A B S T R A C T

Label scarcity in a graph is frequently encountered in real-world applications due to the high cost of data
labeling. To this end, semi-supervised domain adaptation (SSDA) on graphs aims to leverage the knowledge
of a labeled source graph to aid in node classification on a target graph with limited labels. SSDA tasks
need to overcome the domain gap between the source and target graphs. However, to date, this challenging
research problem has yet to be formally considered by the existing approaches designed for cross-graph node
classification. This paper proposes a novel method called SemiGCL to tackle the graph Semi-supervised domain
adaptation with Graph Contrastive Learning and minimax entropy training. SemiGCL generates informative
node representations by contrasting the representations learned from a graph’s local and global views.
Additionally, SemiGCL is adversarially optimized with the entropy loss of unlabeled target nodes to reduce
domain divergence. Experimental results on benchmark datasets demonstrate that SemiGCL outperforms the
state-of-the-art baselines on the SSDA tasks.
1. Introduction

Graphs represent the structured and relational data that are com-
monly found in the real world, such as social networks, citation net-
works, and protein-protein interaction (PPI) networks. Node classifica-
tion is a crucial graph mining problem with practical applications in
various fields like e-commerce and computational biology. Graph rep-
resentation learning encodes graph information into low-dimensional
node representation vectors, also known as node embeddings [1]. These
learned node representations can then be used with classical machine
learning methods, such as a logistic regression classifier, to classify the
unlabeled nodes. In recent years, graph neural networks (GNNs) have
emerged as promising approaches for node classification tasks [2]. Fur-
thermore, many recent GNN models apply graph contrastive learning to
produce meaningful node representations in a self-supervised manner
[3].

Existing studies primarily consider the node classification tasks on
a partially labeled graph [2,4]. In this single-graph scenario, a node
classification model is trained with the labeled nodes in a graph, and
evaluated on the unlabeled nodes within the same graph. However, in
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realistic situations, there is often a need to classify nodes in a newly
collected graph (target graph) with a scarcity of node labels [5,6]. Due
to the resource-intensive and time-consuming nature of data labeling
[7], it is desirable to transfer the knowledge of an available labeled
graph (source graph) to assist in node classification on the target graph.
For instance, on a newly-formed social network that lacks labels, it
would be advantageous to transfer the abundant label information from
a well-developed social network in order to classify users into interest
groups. Similarly, the label information of a well-established citation
database could be transferred to assign research topics to papers in
a newly constructed citation network. In this cross-graph scenario,
the source and target graphs can be treated as independent domains,
namely the source domain and the target domain. Since the source and
target graphs have distinct data distributions, there exists a domain
divergence (or distribution shift) between these domains, hindering
knowledge transfer across domains.

Domain adaptation aims to reduce the domain gap and improve
a model’s performance when deployed to the target domain [8,9].
The studies on domain adaptation mainly focus on computer vision
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Fig. 1. Semi-supervised domain adaptation on graphs. The source and target graphs are two independent domains with distinct data distributions. The source graph is fully labeled,
while the target graph has a limited number of labeled nodes per class.
(CV) and natural language processing (NLP), assuming that the data
within each domain, such as images and text, are independent and
identically distributed (i.i.d.). The majority of existing work considers
unsupervised domain adaptation (UDA), where the target domain data
are completely unlabeled [8]. In many practical applications, it is
feasible to acquire a small amount of labeled data from the target
domain. When utilized appropriately, these limited labeled target data
can aid in model training in conjunction with the source data. This re-
search problem is known as semi-supervised domain adaptation (SSDA)
[10,11].

This paper investigates the problem of cross-graph node classifica-
tion under the SSDA setting, as depicted in Fig. 1. The source graph
is fully labeled, while the target graph has a limited number of labeled
nodes per class. The majority of nodes (exceeding 99.5% in most cases)
are unlabeled in the target graph. The objective is to leverage informa-
tion from both the source and target graphs to classify the unlabeled
nodes in the target graph. Under the SSDA setting, it is crucial to
effectively utilize the available labels in target graph to improve the
model performance when predicting the unlabeled target nodes. One
intuitive way is to optimize the model using the cross-entropy loss that
takes both the labeled source and target nodes into account. However,
without additional considerations, the node classification model would
be biased towards the source graph with a much larger number of
labeled nodes [10]. In addition, unlike images, nodes within a graph
are connected by edges, thereby violating the i.i.d. assumption. It poses
an additional challenge to the SSDA tasks.

Although domain adaptation in CV and NLP has been extensively
studied, research on graph-structured data is still in its early stages. A
few recent models (e.g., ACDNE [12], UDA-GCN [6], ASN [13], and
MFRReg [14]) transfer knowledge from a labeled source graph to an
unlabeled target graph with the help of domain adaptation techniques.
Since the target graph is unlabeled, these models can be categorized
into the UDA methods.

CDNE [5] and AdaGCN [15] also explore the cross-graph node
classification problem with the target graph partially labeled. However,
they consider a target graph where a fraction of nodes (e.g., 5% of
the total nodes) are randomly selected to have accessible labels. In
contrast, our work follows the commonly used SSDA setting [10,11].
Under this setting, an equal number of labeled nodes (e.g., five nodes)
are available for each class in the target graph. This setting would be
more realistic and challenging. Given an originally unlabeled target
graph, we can label a limited number of nodes per class to assist in
the classification of each class node. To reduce the labeling effort, the
number of labeled nodes in the target graph is much lower than 5% of
the total nodes, thereby increasing the difficulty of domain adaptation
tasks.

In addition, AdaGCN simply merges the labeled source and tar-
get nodes to calculate the cross-entropy loss. The domain adaptation
technique adopted by AdaGCN is still an UDA one that reduces the
Wasserstein distance between the source and target representations.
CDNE, on the other hand, incorporates the target labels to calculate
the class-conditional maximum mean discrepancy (MMD) [16]. The
reduction of MMD contributes to aligning the source and target distri-
2

butions. However, the classical MMD metric has been empirically found
inferior to some recent domain adaptation techniques [17]. Recent
advances of domain adaptation in CV and NLP remain to be explored
on the graph-structured data. For instance, the recently proposed SSDA
approach, minimax entropy (MME) [11], adversarially optimizes an
image classification model on the entropy loss of unlabeled target data,
leading to improved model performance.

In this paper, we propose an end-to-end method called SemiGCL that
addresses the graph Semi-supervised domain adaptation with Graph
Contrastive Learning and minimax entropy training. On the one hand,
our method is empowered by graph contrastive learning to generate
informative node representations for cross-graph node classification.
Two graph neural network encoders jointly leverage graph structure in-
formation and node attributes to extract node representations from the
original graph (local view) and the diffusion-augmented graph (global
view), respectively. Graph contrastive learning is employed to maxi-
mize the mutual information between representations learned from the
local and global views, which encourages the GNN encoders to capture
a graph’s rich local and global structural information simultaneously.

On the other hand, as a design tailored to the SSDA setting, we
introduce minimax entropy training to reduce the domain divergence
between the source and target graphs. Our approach involves the
utilization of a cosine similarity-based node classifier [18]. The process
of domain adaptation is modeled as a minimax game played between
the GNN encoders and the node classifier. More precisely, the node
classifier is trained to maximize the entropy of unlabeled nodes in
the target graph. By doing so, the classifier’s weight vectors can be
moved to the target graph, alleviating the model bias towards the
source graph. In contrast, we update the GNN encoders to minimize
the same entropy, which drives the node representations of unlabeled
target nodes to get clustered around the classifier’s weight vectors,
resulting in discriminative node representations.

Our method is evaluated on eight benchmark transfer tasks using
five real-world information networks. The main contributions can be
summarized as follows.

• The first GNN-based model is proposed and devised specifically
to address the challenging semi-supervised domain adaptation
problem on graphs.

• The model is designed to incorporate graph contrastive learn-
ing and minimax entropy training, effectively reducing domain
divergence and generating discriminative node representations.

• Extensive validations are conducted on real-world information
networks, demonstrating that our model outperforms the state-
of-the-art approaches on the benchmark transfer tasks.

This paper is structured as follows. Section 2 provides a review
of the related work. Section 3 introduces the proposed method. Sec-
tion 4 reports the experimental results. Finally, Section 6 presents the
conclusion.

2. Related work

2.1. Domain adaptation

Existing work mainly focuses on the UDA problem that assumes the

data of target domain are purely unlabeled. The basic approach of UDA
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is to reduce the domain divergence through moment matching [16,
19,20] or adversarial learning [17,21–23]. Deep adaptation network
(DAN) [19] estimates the distribution divergence with maximum mean
discrepancy. The reduction of MMD helps match the source and target
distributions. DANN [21] introduces a domain classifier that is trained
with the feature extractor in an adversarial manner. Specifically, the
domain classifier is optimized to tell apart samples from the source and
target domains. The feature extractor is trained to produce samples that
can deceive the domain classifier, thus matching the feature distribu-
tions. Another adversarial adaptation method, WDGRL [17], utilizes the
Wasserstein distance as the adversarial loss.

Differing from the mainstream UDA research, a few recent studies
investigate the SSDA problem where a small number of data are labeled
in the target domain. Minimax entropy model [11] consists of a fea-
ture encoder (e.g., AlexNet and VGG16) and a cosine similarity-based
classifier [18] devised for the few-shot classification. With the entropy
of unlabeled target data calculated as adversarial loss, MME alleviates
domain discrepancy by enforcing a minimax game between the feature
extractor and the image classifier. ECACL [10] incorporates categorical
alignment and consistency alignment to improve the performance of
existing UDA methods under the SSDA setting.

Domain adaptation has been widely studied in areas like CV and
NLP. However, most previous models are designed for vector-based
data (e.g., images and text) that follow the i.i.d. assumption. Our work
considers the domain adaptation problem for graph-structured data
where nodes have complicated edge connections, thereby violating the
i.i.d. assumption. Note that GRDA [24] studies the problem of domain
adaptation across multiple domains with adjacency described by a
domain graph. Each domain is a node in the domain graph. This prob-
lem is completely different from the one we considered, i.e., domain
adaptation on graphs, where each domain is a graph. Therefore, GRDA
is not applicable to our setting.

2.2. Representation learning on graphs

Graph representation learning generates low-dimensional represen-
tation vectors for graph nodes [1,4]. There are methods designed to
preserve structural properties only [25,26] or to jointly exploit graph
structure and side information such as node attributes [27–29]. Among
them, GNNs [2] have drawn a lot of research interest in recent years.

GraphSAGE [30] pioneers in generating node representations by
aggregating information from the sampled neighboring nodes. Un-
like GraphSAGE, which is evaluated in the supervised learning sce-
nario, many studies focus on graph semi-supervised learning to over-
come the label shortage in a partially labeled graph. The well-known
model, GCN [31], simplifies the spectral graph convolution as a first-
order approximation. Through jointly encoding local graph structure
and node attributes, GCN demonstrates impressive performance and
inspires many follow-up studies. GAT [32], for instance, introduces
an attention mechanism and assigns learnable weights to the neigh-
bors. Note that GCN and GAT utilize all neighbors of a node without
neighborhood sampling.

Self-supervised learning [3] is another way to tackle the lack of la-
bels. It enables the models to produce meaningful node embeddings by
conducting various pretext tasks without any node label information.
Under this learning paradigm, graph contrastive learning (GCL) maxi-
mizes the mutual information (MI) between two (augmented) instances
of the same object, such as one graph and a node. For example, DGI
[33] maximizes the MI between node representations and the global
summaries of a graph. The resulting node representations are expected
to encode the global structural information. MVGRL [34] contrasts the
node and graph embeddings learned from two structural views of a
graph.

The majority of graph representation learning models are not spe-
cially designed to address the domain discrepancy between graphs.
Although we can sometimes adapt these models for cross-graph node
classification, the domain divergence would still hinder their perfor-
3

mance. s
2.3. Cross-graph node classification

Recently, a few studies have been conducted to address the problem
of cross-graph node classification, specifically focusing on two inde-
pendent attributed graphs. The objective of this research is to assist
in node classification on a target graph that lacks sufficient node labels
by transferring knowledge from a source graph with abundant labels.

Similar to the UDA studies in CV and NLP, most existing meth-
ods are devised for a cross-graph scenario that assumes the target
graph is unlabeled. To capture the attributed affinity and topological
proximity, ACDNE [12] constructs two feature extractors that encode
node attributes and neighborhood attributes, respectively. UDA-GCN
[6] utilizes dual graph convolutional networks to exploit the local and
global consistency on a graph. Both ACDNE and UDA-GCN follow the
adversarial training paradigm in DANN [21] to match the embedding
distributions of source and target graphs. ASN [13] also adopts the
dual GCNs and improves the extraction of domain-shared features by
separating the domain-private features. Xiao et al. recently proposed
a GNN-based model (i.e., AdaGIn) that aligns the multimodal embed-
ding distributions by conditional adversarial networks [35]. To capture
the global graph information, AdaGIn maximizes mutual information
between the node and graph-level representations.

Very recently, a few studies design theory-grounded algorithms for
domain adaptation on graphs. For example, MFRReg [14] regularizes
the GNN spectral property (i.e., maximum frequency response) to im-
prove the GNN transferability. Additionally, inspired by the Weisfeiler-
Lehman graph isomorphism test, GRADE [36] proposes a graph subtree
discrepancy to measure the graph distribution shift. The reduction
of graph subtree discrepancy contributes to aligning the graph data
distributions.

Unlike these UDA methods, CDNE [5] and AdaGCN [15] consider
a target graph in which a percentage of nodes are randomly selected
to have accessible labels. CDNE generates node representations with
stacked autoencoders. The source and target distributions are aligned
by reducing the maximum mean discrepancy. AdaGCN extracts node
representations with GCN and minimizes the Wasserstein distance [17]
to reduce domain discrepancy. Our work focuses on the SSDA problem
on graphs. To our knowledge, this problem has never been formally
considered by the prior art. To address this problem, we devise a
novel GNN-based model empowered by graph contrastive learning and
minimax entropy training.

3. Proposed method

In this section, we first define the research problem. Then, the
model architecture is presented. After that, we elaborate on node repre-
sentation learning, node label prediction, and semi-supervised domain
adaptation. Finally, we summarize the overall objective and outline the
model training procedure.

3.1. Problem definition

An attributed graph, or an information network, is mathematically
described as  (𝑽 ,𝑨,𝑿, 𝒀 ), including node set 𝑽 ∈ R𝑁 , adjacency
matrix 𝑨 ∈ R𝑁×𝑁 , attribute matrix 𝑿 ∈ R𝑁×𝐿, and label matrix
𝒀 ∈ R𝑁×𝐶 . 𝑁 , 𝐿, and 𝐶 denote the number of nodes, the dimension of
a node attribute vector, and the number of node classes, respectively.
The 𝑖th rows of 𝑨, 𝑿, and 𝒀 are associated with the 𝑖th node 𝑣 ∈
𝑽 . Adjacency matrix 𝑨 and label matrix 𝒀 contain binary values.
Specifically, 𝐴𝑖𝑗 = 1 indicates the 𝑖th node has an edge connection with
the 𝑗th node; 𝑌𝑖𝑐 = 1 means the 𝑖th node belongs to the 𝑐th class. The
degree of node 𝑣 is the number of its edge connections, i.e., ∑

𝑗 𝐴𝑖𝑗 .
n this paper, we consider the undirected graph. The average degree
s computed by ∑

𝑖
∑

𝑗 𝐴𝑖𝑗∕𝑁 , revealing the graph density. Table 1

ummarizes the main notations in this paper.
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Table 1
Main notations.

Notation Description

 An attributed graph
𝑠, 𝑡 Source graph and target graph
𝑽 , 𝑨 Node set and adjacency matrix
𝑿, 𝒀 Attribute matrix and label matrix
𝑬, 𝒀̂ Representation matrix and label prediction matrix of 
 Union attribute set
𝒙𝑣, 𝒚𝑣 Attribute vector and label vector of node 𝑣 ∈ 𝑽
𝒆𝑣, 𝒚̂𝑣 Embedding vector and label prediction vector of node 𝑣 ∈ 𝑽
𝑛 Number of labeled nodes per class in 𝑡

𝑓𝐴, 𝑓𝑃 , 𝑓𝑐 Local-view GNN encoder, global-view GNN encoder, and
node classifier

𝜽𝑔 ,𝜽𝑐 Sets of parameters in the GNN encoders and in the node
classifier

𝛼 Teleport probability
𝜎 Nonlinear activation function
𝑠 Neighborhood sample size
𝑇 Temperature parameter
𝜂0 Initial learning rate
𝑩 A batch of nodes
𝜆1, 𝜆2, 𝜆3 Contrastive learning coefficient, domain adaptation

coefficient, and entropy coefficient

Graph representation learning encodes each node 𝑣 ∈ 𝑽 into a low-
imensional representation vector, that is, node embedding vector 𝒆𝑣.

In representation matrix 𝑬 ∈ R𝑁×𝑙, 𝒆⊤𝑣 is stored as one row. The em-
edding dimension is denoted as 𝑙. Using the learned node embeddings,
node classifier can be trained to perform node classification tasks.

In this paper, we study the problem of semi-supervised domain
daptation on graphs. The source domain refers to a labeled graph
𝑠 (𝑽 𝑠,𝑨𝑠,𝑿𝑠, 𝒀 𝑠), in which the label of each node is known. The target
omain is a partially labeled graph 𝑡

(

𝑽 𝑡,𝑨𝑡,𝑿𝑡, 𝒀 𝑡), where only a
ew nodes have known labels. In line with the common SSDA setting
10,11], we randomly choose an equal number of nodes from each class
o form the set of labeled nodes in the target graph. The objective of this
tudy is to improve the node classification performance on the target
raph by transferring knowledge from the source graph. To accomplish
his, it is essential to produce node representations that are both
ransferable and discriminative. This research problem is challenging
ecause of the distinction between the source and target graphs. Since
hese two graphs have no edge connections or shared common nodes,
hey represent independent domains. The discrepancy between the
omains arises from variations in graph scales and differences in the
istributions of node attributes, edge connections, and node labels.

Based on prior studies [5,6,15], it is necessary for the source and
arget graphs to have the same set of node classes. However, these
wo graphs possess different attribute sets, namely  𝑠 and  𝑡. A union
ttribute set is created and denoted as  =  𝑠 ∪  𝑡. The attribute
atrices can then be expressed as 𝑿𝑠 ∈ R𝑁𝑠×𝑈 and 𝑿𝑡 ∈ R𝑁 𝑡×𝑈 , where
= | | represents the total number of attributes across both graphs.

his union attribute set enables parameter sharing, allowing the same
odel to be applied to both graphs. Many modern domain adaptation

echniques rely on parameter sharing [11,17,21]. To quantify the extent
f attribute overlap, we define a common attribute rate as 𝑅𝑎 =
 𝑠 ∩  𝑡|

|

|

∕ | |, showing the percentage of node attributes present in
oth graphs.

.2. Overview of model architecture

As shown in Fig. 2, the proposed SemiGCL model is made up of
wo modules: the GNN encoders and the node classifier. In addition
o using the original graph as a regular structural view, we use graph
iffusion to obtain an augmented graph that serves as an additional
tructural view. Two GNN encoders are used to encode the original
raph and the augmented graph, respectively. Representation vectors
enerated by the GNN encoders are then concatenated to obtain the
4

Fig. 2. Architecture of the proposed model. Two GNN encoders extract node repre-
sentations from two structural views of a graph, i.e., the original graph (local view)
and the diffusion-augmented graph (global view). Node representations from the local
and global views are then contrasted and concatenated to obtain an informative
node embedding vector. The cosine similarity-based node classifier computes the label
prediction by taking the node embedding vector as input. The domain divergence
between the source and target graphs is reduced by adversarially optimizing the model
with the entropy loss. More details can be found in Section 3.

node embedding vector. A cosine similarity-based classifier is employed
as the node classifier, which takes the embedding vector as input and
outputs the label prediction.

There are three losses involved in the model optimization. The
contrastive loss is calculated for each graph in a self-supervised way. By
minimizing the contrastive loss, the agreement is maximized between
the representations learned from the two structural views. The cross-
entropy loss is computed with the labeled nodes in the source and target
graphs. The minimization of cross-entropy loss contributes to extracting
discriminative node representations. The entropy loss is calculated on
the unlabeled target nodes. To mitigate domain divergence, the GNN
encoders and the node classifier are adversarially optimized with the
entropy loss.

3.3. Node representation learning

We consider two structural views of the same graph: one regular
view (local view) and one additional view (global view). The regular
structural view is the original graph represented by binary adjacency
matrix 𝑨. The adjacency matrix stores the edge connection, which is a
kind of local structural information around a node. Hence, the regular
view is also regarded as a local view. The additional structural view is
an augmented graph described by diffusion matrix 𝑷 . The augmented
graph is generated using graph diffusion [37].

𝑷̃ =
(

𝑫 + 𝑰𝑁
)−1∕2 (𝑨 + 𝑰𝑁

) (

𝑫 + 𝑰𝑁
)−1∕2 (1)

𝑷 = 𝛼
[

𝑰𝑁 − (1 − 𝛼) 𝑷̃
]−1 (2)

where 𝑫 is the diagonal degree matrix of adjacency matrix 𝑨, 𝑰𝑁 ∈
𝑁×𝑁 is an identity matrix, 𝑷̃ is the transition matrix, and 𝛼 ∈ (0, 1) is

he teleport probability. The edge weight in diffusion matrix represents
he influence between two nodes that may not be in the one-hop neigh-
orhood of the original graph. In other words, diffusion matrix can
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establish links to the distant nodes of original graph. The application
of diffusion matrix makes nodes in multi-hop neighborhoods directly
get involved in the node representation learning, capturing the global
information. Therefore, the augmented structural view can be treated as
a global view. Following GCN [31], the calculation of diffusion matrix
is regarded as a pre-processing step before loading the graph data to
conduct model training.

3.3.1. Representation learning on structural views
Node representations of the local and global views are calculated

following the neighborhood aggregation strategy of modern GNNs [38].
Through aggregating neighborhood information based on the adjacency
matrix and the diffusion matrix, the GNN encoders can naturally exploit
both graph structure and node attributes to generate node representa-
tions. The node representation of local view is computed as follows.

𝒉𝑘𝑆 = 1
|

|

𝑺𝑣
|

|

∑

𝑢∈𝑺𝑣

𝒉𝑘−1𝑢 , (3)

𝒉𝑘𝑣 = 𝜎1
(

𝑾 𝑘
𝐴[𝒉

𝑘−1
𝑣 ;𝒉𝑘𝑆 ]

)

, (4)

where the set 𝑺𝑣 represents a sample of nodes taken from the one-hop
neighborhood of node 𝑣, the vector 𝒉𝑘𝑆 is the neighborhood representa-
tion at step 𝑘 ∈ {1,… , 𝐾}, the vector 𝒉𝑘𝑣 is the representation of node
𝑣 at step 𝑘, 𝑾 𝑘

𝐴 is a weight matrix, and 𝜎1 is the ReLU activation,
that is, 𝜎1 (𝑥) = max(0, 𝑥). Initially, node representation 𝒉0𝑣 is set to
be node attribute vector 𝒙𝑣. A simple form of skip connection [30]
is implemented in Eq. (4), so that the previous representation of a
node (i.e., 𝒉𝑘−1𝑣 ) can be incorporated at current step 𝑘. The intuition
behind Eq. (3) and (4) is that at each step 𝑘, or search depth 𝑘,
node 𝑣 aggregates information from its local neighbors in 𝑺𝑣. The
neighbors also aggregate information following the same procedures.
As the process iterates from 𝑘 = 1 to 𝑘 = 𝐾, node 𝑣 gradually gains more
and more information from nodes that are in a larger search depth.

Before generating node representations, the required neighborhood
sets (up to search depth 𝐾) are sampled for each node in batch 𝑩.
Sample size, 𝑠𝑘, determines the number of neighbors sampled at search
depth 𝑘. By the end of 𝐾 steps, the representation of node 𝑣 captures
the information within its 𝐾-hop neighbors. The representation vector
at the final step, denoted as 𝒉𝐾𝑣 , serves as the node representation of
local view:

𝒆𝐴𝑣 = 𝒉𝐾𝑣 = 𝑓𝐴
(

𝒙𝑣,𝒙𝑆
)

, 𝑣 ∈ 𝑩. (5)

Here, 𝑓𝐴 refers to the GNN encoder of local view, and 𝒙𝑆 is the attribute
matrix of the sampled neighbors.

The node representation of global view is calculated as follows.

𝒉𝑘𝑃 = 𝜎1

(

𝑾 𝑘
𝑃

∑

𝑢∈𝑷 𝑣

𝑝𝑣𝑢𝒉𝑘−1𝑢

)

, 𝑘 ∈ {1,… , 𝐾} , (6)

where 𝑝𝑣𝑢 are diffusion matrix entries in the row corresponding to node
𝑣, 𝑷 𝑣 is a set of nodes associated with entries 𝑝𝑣𝑢, 𝑾 𝑘

𝑃 is the weight
matrix, and 𝒉𝑘𝑃 is the representation vector of node 𝑣 at step 𝑘. The
node representation encoded from global view is

𝒆𝑃𝑣 = 𝒉𝐾𝑃 = 𝑓𝑃
(

𝒙𝑃
)

, 𝑣 ∈ 𝑩, (7)

in which 𝑓𝑃 is the GNN encoder of global view and 𝒙𝑃 is the attribute
matrix of neighboring nodes in the augmented graph characterized by
diffusion matrix. As suggested by [37], diffusion matrix, 𝑷 , is sparsified
by selecting the highest 𝑠 entries per row, which can be interpreted
as sampling 𝑠 neighboring nodes based on the augmented graph. Note
that, since the computation of diffusion matrix already considers a node
itself by adding the identity matrix (see Eq. (1)), skip connection is
removed in the calculation of global-view representation.

Representations of the local and global views are concatenated to
obtain the embedding vector of a node:

𝒆 =
[

𝒆𝐴; 𝒆𝑃
]

. (8)
5

𝑣 𝑣 𝑣
Node representations are generated with Eqs. (3)–(8) for both the
source and target graphs. The same GNN encoders, 𝑓𝐴 and 𝑓𝑃 , are
utilized to compute node representations for each graph. That is, the
model parameters are shared when processing these two graphs. The
GNN encoders can naturally be trained with a batch of nodes per
iteration. Note that both parameter sharing and minibatch training are
required by minimax entropy training.

3.3.2. Contrastive learning between structural views
As shown in Fig. 3, graph contrastive learning is applied to maxi-

mize the agreement between representations learned from the local and
global views. The GNN encoders are encouraged to simultaneously en-
code a graph’s local and global information. Specifically, we maximize
mutual information between the local and global views by contrasting
the node representation of one view with a graph-level representation
of the other view.

When considering a batch of nodes, denoted as 𝑩, GNN encoder 𝑓𝐴
computes the local-view representations as 𝑬𝐴 =

[

𝒆𝐴1 ,… , 𝒆𝐴
|𝑩|

]

. Readout
function, , is applied to obtain a summary vector 𝒓𝐴 by averaging the
node representations in this batch:

𝒓𝐴 = 
(

𝑬𝐴
)

= 𝜎2

(

1
|𝑩|

|𝑩|

∑

𝑖=1
𝒆𝐴𝑖

)

. (9)

Here, 𝜎2 represents the logistic sigmoid activation function, that is,
2 (𝑥) = 1∕ (1 + exp (−𝑥)). Summary vector, 𝒓𝐴, serves as a graph-level

representation associated with the nodes in this batch and their neigh-
bors considered. Similarly, we can use GNN encoder 𝑓𝑃 to obtain the
global-view representations 𝑬𝑃 =

[

𝒆𝑃1 ,… , 𝒆𝑃
|𝑩|

]

and the corresponding
summary vector 𝒓𝑃 .

The pairs
(

𝒆𝐴𝑖 , 𝒓𝑃
)

and
(

𝒆𝑃𝑖 , 𝒓𝐴
)

are regarded as positive samples.
Mutual information between the local and global views is maximized
by classifying the positive samples and their negative counterparts.
Following [33], row-wise shuffling of attribute matrix 𝑿 is applied
to corrupt the graph. GNN encoders, 𝑓𝐴 and 𝑓𝑃 , take the original
adjacency and diffusion matrices, as well as the corrupted attributes,
as inputs to calculate the node representations for negative samples,
namely 𝑬̃𝐴 =

[

𝒆̃𝐴1 ,… , 𝒆̃𝐴
|𝑩|

]

and 𝑬̃𝑃 =
[

𝒆̃𝑃1 ,… , 𝒆̃𝑃
|𝑩|

]

. The negative

samples are denoted as
(

𝒆̃𝐴𝑖 , 𝒓𝑃
)

and
(

𝒆̃𝑃𝑖 , 𝒓𝐴
)

.
To classify the positive and negative samples, we utilize a bilinear

function  that assigns a score to each sample, indicating its likelihood
of being positive.

𝒔𝑖 = 
(

𝒆𝑖, 𝒓
)

= 𝜎2
(

𝒆⊤𝑖 𝑾 𝑏𝒓
)

, 𝑖 ∈ {1,… , |𝑩|} , (10)

where 𝑾 𝑏 is a learnable matrix and
(

𝒆𝑖, 𝒓
)

is an example of input
sample containing a representation vector 𝒆𝑖 and a summary vector
𝒓. Finally, a contrastive loss is defined using the Jensen–Shannon
divergence [3]:

CL = − 1
4 |𝑩|

|𝑩|

∑

𝑖=1
{log

(

𝒆𝐴𝑖 , 𝒓𝑃
)

+ log
(

𝒆𝑃𝑖 , 𝒓𝐴
)

+ log
[

1 −
(

𝒆̃𝐴𝑖 , 𝒓𝑃
)]

+ log
[

1 −
(

𝒆̃𝑃𝑖 , 𝒓𝐴
)]

}.

(11)

By optimizing the contrastive loss, the two instances within the positive
sample are pulled closer, whereas their counterparts in the negative
sample are pushed away. Note that the contrastive loss is independently
computed for each of the source and target graphs, namely 𝑠

CL and
𝑡
CL. Therefore, the overall contrastive loss is reformulated as the sum

of the loss on each graph:

CL = 𝑠
CL + 𝑡

CL. (12)

3.4. Node label prediction

The cosine similarity-based classifier is found to be effective in the
few-shot classification where a few labeled data from the new classes
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Fig. 3. Contrastive learning between the local view (original graph) and the global view (diffusion-augmented graph).
re given to train a classification model [18]. The few-shot classifica-
ion shares certain similarities with the SSDA problem, where a few
abeled nodes in the new domain (target domain) are provided. Fol-
owing [11], we devise node classifier 𝑓𝑐 to be cosine similarity-based:

̂ 𝑣 = 𝑓𝑐
(

𝒆𝑣
)

= 𝜎3

(

1
𝑇

𝑾 ⊤
𝑐 𝒆𝑣

‖

‖

𝒆𝑣‖‖2

)

, 𝑣 ∈ 𝑩, (13)

where 𝑾 𝑐 is the learnable weight matrix; 𝑇 is a temperature parameter
or scaling; nonlinear activation 𝜎3 is a softmax function for multiclass
lassification; class probability vector 𝒚̂⊤𝑣 is one row in label prediction
atrix 𝒀̂ . Weight matrix, 𝑾 𝑐 =

[

𝒘1,𝒘2,… ,𝒘𝐶
]

, consists of a series of
weight vectors (i.e., 𝒘𝑗 , 𝑗 ∈ {1,… , 𝐶}). In order to classify the nodes
correctly, the direction of weight vector 𝒘𝑗 has to be representative to
the normalized node representations of class 𝑗. Therefore, each weight
vector can be treated as an estimated prototype for the corresponding
class [11].

Cross-entropy loss, CE, is computed using the labeled nodes in both
the source and target graphs:

CE = −E𝑣∈𝑩𝑠

𝐶
∑

𝑗=1

(

𝑌 𝑠
𝑣𝑗 log 𝑌

𝑠
𝑣𝑗

)

− E𝑣∈𝑻 𝑙

𝐶
∑

𝑗=1

(

𝑌 𝑡
𝑣𝑗 log 𝑌

𝑡
𝑣𝑗

)

. (14)

Here, 𝑩𝑠 represents a batch of source graph nodes, 𝑻 𝑙 denotes the set
of labeled nodes in the target graph, binary element 𝑌𝑣𝑗 in label matrix
𝒀 indicates if a node 𝑣 belongs to class 𝑗, and 𝑌𝑣𝑗 is the corresponding
entry in label prediction matrix 𝒀̂ . The source and target graphs are
distinguished by two superscripts, namely 𝑠 and 𝑡. By minimizing
the cross-entropy loss, the GNN encoders are expected to generate
discriminative node representations.

3.5. Semi-supervised domain adaptation

If the model is optimized using the cross-entropy loss calculated
by the labeled source and target nodes, the trained model is likely
to be biased towards the source graph, since the source labels are
dominant. The node representations of unlabeled target nodes would
not be discriminative enough. To address this issue, we apply minimax
entropy training [11] as a domain adaptation technique.

Minimax entropy optimizes the model on the entropy of unla-
beled nodes in the target graph. With the model optimized on the
cross-entropy loss (Eq. (14)), the estimated prototypes (i.e., 𝒘 , 𝑗 ∈
6

𝑗

{1,… , 𝐶}) will be closer to the embedding distribution of source graph.
Then the ‘‘position’’ of each prototype 𝒘𝑗 is moved to the target graph
by training the node classifier to increase the entropy of unlabeled
target nodes:

EN = −E𝑣∈𝑩𝑡

𝐶
∑

𝑗=1

(

𝑌 𝑡
𝑣𝑗 log 𝑌

𝑡
𝑣𝑗

)

, (15)

where 𝑩𝑡 is a batch of nodes sampled from the set of unlabeled
nodes in target graph, i.e., 𝑻 𝑢. Increasing the entropy leads to a more
uniform prediction score for each class, which means each prototype
𝒘𝑗 shall be similar to all unlabeled target node representations. In
contrast, the GNN encoders are optimized to decrease the entropy.
The embedding vectors of unlabeled target nodes are expected to be
clustered around one of the prototypes by reducing the entropy, which
results in discriminative node representations.

To summarize, the domain adaptation process is modeled as a
minimax game between the GNN encoders and the node classifier.
Specifically, the node classifier is trained to maximize the entropy,
whereas the GNN encoders are optimized to minimize it. We insert a
gradient reversal layer [21] between the GNN encoders and the node
classifier, so that these two model modules can be updated in one
backpropagation.

3.6. Overall objective and model training

The proposed SemiGCL model is trained with cross-entropy loss
CE, contrastive loss CL, and entropy loss EN. The overall learning
objective functions are:

𝜽̂𝑔 = argmin
𝜽𝑔

(

CE + 𝜆1CL + 𝜆2EN
)

, (16)

𝜽̂𝑐 = argmin
𝜽𝑐

(

CE − 𝜆3EN
)

, (17)

where balance coefficients, 𝜆1, 𝜆2 and 𝜆3, are contrastive learning
coefficient, domain adaptation coefficient and entropy coefficient, re-
spectively; 𝜽𝑔 and 𝜽𝑐 are the sets of learnable parameters in the GNN
encoders and in the node classifier, respectively.

Algorithm 1 provides an outline of the main procedures for training
and testing. During the training stage, the nodes are initially sampled
independently from the source graph and the unlabeled set of the target
graph (Line 4). Subsequently, the GNN encoders are utilized to generate
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Algorithm 1: SemiGCL
Input : Fully labeled source graph 𝑠 (𝑽 𝑠,𝑨𝑠,𝑿𝑠, 𝒀 𝑠); partially

labeled target graph 𝑡
(

𝑽 𝑡,𝑨𝑡,𝑿𝑡, 𝒀 𝑡); batch size;
coefficients 𝜆1, 𝜆2, and 𝜆3.

1 Initialize model parameters 𝜽𝑔 for the GNN encoders and 𝜽𝑐 for
the node classifier.

2 while not max epoch do
3 while not max iteration do
4 Sample a batch of labeled nodes (i.e., 𝑩𝑠) from 𝑠 and a

batch of unlabeled nodes (i.e., 𝑩𝑡) from 𝑡;
5 Generate node representations in Eq. (8);
6 Calculate contrastive loss CL in Eq. (12);
7 Calculate cross-entropy loss CE in Eq. (14);
8 Calculate entropy loss EN in Eq. (15);
9 Backpropagate and update 𝜽𝑔 and 𝜽𝑐 using the overall

losses in Eq. (16) and Eq. (17).
10 end
11 end

Testing: With model parameters 𝜽𝑔 and 𝜽𝑐 optimized, node
representations of unlabeled target nodes are
computed using Eq. (8). The corresponding label
predictions are subsequently calculated using Eq. (13).

representations for both the source and target nodes (Line 5). Following
this, the contrastive loss, the cross-entropy loss, and the entropy loss are
computed (Lines 6–8). Finally, the trainable parameters in SemiGCL
are updated using the overall losses defined in Eqs. (16) and (17)
(Line 9). With the completion of multiple epochs, the model reaches
convergence. The node representations produced by the GNN encoders
would become transferable and discriminative. During the testing stage,
we apply the trained node classifier to categorize the unlabeled target
nodes using their corresponding node representations.

The time complexity of SemiGCL is derived by investigating its
two modules: the GNN encoders (Eqs. (5) and (7)) and the node
classifier (Eq. (13)). Since the GNN encoders employ neighborhood
aggregation, each GNN encoder has time complexity similar to the
one of GraphSAGE [30], i.e., 

(

∏𝐾
𝑘=1 𝑠𝑘

)

per node. 𝑠𝑘 represents the
sample size of neighboring nodes at search depth 𝑘. 𝐾 is the maximum
search depth. The time complexity of node classifier is linear to the
number of processed nodes. Consequently, the overall time complexity
of SemiGCL is linear with respect to the number of nodes.

3.7. Theoretical analysis on minimax entropy

Following MME [11], we theoretically analyze the mechanism of
minimax entropy training for reducing domain divergence. As shown in
[39], domain divergence can be measured with a domain discriminator.
Let 𝑓𝑑 ∈  be a domain discriminator from hypothesis space , the
-divergence between source domain distribution 𝑝 and target domain
distribution 𝑞 is

𝐷 (𝑝, 𝑞) ≜ 2 sup
𝑓𝑑∈

|

|

|

|

Pr
𝒆∼𝑝

[

𝑓𝑑 (𝒆) = 1
]

− Pr
𝒆∼𝑞

[

𝑓𝑑 (𝒆) = 1
]|

|

|

|

(18)

where 𝒆 denotes the node representation in Eq. (8). This theory re-
veals that domain divergence can be measured by training a domain
discriminator 𝑓𝑑 that distinguishes distributions 𝑝 and 𝑞.

Although there is no domain discriminator in the model (see Fig. 2),
SemiGCL minimizes the divergence between the source and target
graphs through minimax training on the entropy of unlabeled target
nodes. Without any additional model modules, the domain discrimina-
7

tor can be regarded as a classifier that assigns a binary domain label
for a node representation according to its entropy:

𝑓𝑑 (𝒆) =

{

1, if 𝐻(𝑓𝑐 (𝒆)) ≥ 𝛾,
0, otherwise,

(19)

where 𝑓𝑐 is the node classifier, 𝐻 is the entropy, and 𝛾 is a threshold.
As shown in Eq. (13), node classifier, 𝑓𝑐 , outputs the probability of class
prediction. The -divergence in Eq. (18) can be rewritten as

𝐷 (𝑝, 𝑞) ≜ 2 sup
𝑓𝑑∈

|

|

|

|

Pr
𝒆∼𝑝

[

𝑓𝑑 (𝒆) = 1
]

− Pr
𝒆∼𝑞

[

𝑓𝑑 (𝒆) = 1
]|

|

|

|

= 2 sup
𝑓𝑐∈

|

|

|

|

Pr
𝒆∼𝑝

[

𝐻(𝑓𝑐 (𝒆)) ≥ 𝛾
]

− Pr
𝒆∼𝑞

[

𝐻(𝑓𝑐 (𝒆)) ≥ 𝛾
]|

|

|

|

≤ 2 sup
𝑓𝑐∈

Pr
𝒆∼𝑞

[

𝐻(𝑓𝑐 (𝒆)) ≥ 𝛾
]

,

(20)

where  is the hypothesis space of node classifier 𝑓𝑐 . In the final in-
equality, it is assumed that Pr𝒆∼𝑝

[

𝐻(𝑓𝑐 (𝒆)) ≥ 𝛾
]

≤ Pr𝒆∼𝑞
[

𝐻(𝑓𝑐 (𝒆)) ≥ 𝛾
]

.
The reason is that the entropy of a source node is driven to be a small
value by minimizing the cross-entropy loss in Eq. (14).

The inequality in Eq. (20) shows that domain divergence can be
bounded by the proportion of target nodes with entropy surpassing
threshold 𝛾. The upper bound can be obtained by finding a node classi-
fier 𝑓𝑐 ∈  that attains maximum entropy for the node representations
of target graph. Our goal is to find node representations that achieve
the lowest domain divergence. Thus, the minimax objective is

min
𝒆∼𝑞

max
𝑓𝑐∈

Pr
𝒆∼𝑞

[

𝐻(𝑓𝑐 (𝒆)) ≥ 𝛾
]

. (21)

It is required to find the GNN encoders that achieve the minimum with
respect to node representations 𝒆 ∼ 𝑞. The above minimax objective
corresponds to the objective functions Eqs. (16) and (17). In summary,
the minimax entropy training adopted by SemiGCL can theoretically
bound and reduce the domain divergence between the source and
target graphs by maximizing entropy and minimizing entropy, respec-
tively. Thus minimax entropy training can align the data distributions
of these two graphs, promoting knowledge transfer from the source
graph to the target graph.

4. Experiments

In this section, our goal is to address the following research ques-
tions (RQs) by conducting extensive experiments.

• RQ1: How does SemiGCL compare with the state-of-the-art base-
lines in terms of performance on the SSDA tasks?

• RQ2: What are the advantages of integrating graph contrastive
learning and minimax entropy training in the SemiGCL model?

• RQ3: How does the model performance vary depending on the
number of labeled nodes per class in the target graph?

• RQ4: How do the hyperparameters affect the performance of the
SemiGCL model?

4.1. Experimental setup

4.1.1. Datasets
Following CDNE [5], ACDNE [12], and AdaGCN [15], we conduct

experiments on five real-world information networks, including three
citation networks (i.e., ACMv9, Citationv1, and DBLPv7) and two social
networks (i.e., Blog1 and Blog2). Table 2 presents the dataset statistics.
Three citation networks are acquired from ArnetMiner [40]. These
citation networks are represented as undirected graphs where each
node corresponds to a paper. An edge between nodes signifies a citation
relationship between two papers. The paper title is used to extract the
node attribute vector. The union attribute set of these three citation
graphs consists of 6775 node attributes. Each node is assigned to one
of the five classes based on the paper’s research topic: ‘‘Database’’,
‘‘Artificial Intelligence’’, ‘‘Computer Vision’’, ‘‘Information Security’’,
and ‘‘Networking’’.
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Table 2
Summary of datasets.

Dataset #Nodes #Edges Average degree #Attributes #Union attributes #Classes

ACMv9 8661 13,590 3.13 5571
6775 5Citationv1 8724 14,798 3.39 5379

DBLPv7 5463 8098 2.96 4412

Blog1 2300 33,471 29.11 4121 4185 6Blog2 2896 53,836 37.18 4158

‘‘#Nodes’’ means the number of nodes.
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Table 3
Common attribute rate on each transfer task.

Transfer task C→A A→C D→A A→D D→C C→D B2→B1 B1→B2

#Common attributes 4285 3621 3783 4094
#Union attributes 6665 6362 6008 4185
Common attribute rate 64.29% 56.92% 62.97% 97.83%

Blog1 and Blog2 are extracted from the BlogCatalog dataset [41].
n these social networks, the bloggers and their friendships are rep-
esented by nodes and undirected edges, respectively. The attribute
ector of each node is derived from the blogger’s self-description. Based
n the blogger’s interest group, each node is assigned to one of the
ix classes. Unlike the citation networks, Blog1 and Blog2 have larger
verage degrees, indicating that the nodes in these social networks have
ore neighbors.

We assess all methods on eight transfer tasks: C→A, D→A, A→C,
D→C, A→D, C→D, B2→B1, and B1→B2. ACMv9, Citationv1, DBLPv7,
Blog1, and Blog2 are represented by A, C, D, B1, and B2, respectively.
The arrow symbol, ‘‘→’’, shows the transfer of knowledge from a source
raph to a target graph. Table 3 presents the common attribute rate
f each transfer task, which indicates the discrepancy between the
ttribute distributions of the source and target graphs. Since the two
ocial networks originate from the BlogCatalog dataset, their attribute
istributions are relatively close.

.1.2. Baselines
Following [5,6,12,15], the baseline approaches are of three cat-

gories: (I) classical GNN models for representation learning on a
ingle graph, (II) typical domain adaptation approaches, and (III) state-
f-the-art models designed for cross-graph node classification. The
mplementation details of our method and the baselines are provided
n Appendix.

(I) GCN [31], GAT [32], GraphSAGE [30], DGI [33], and MVGRL
[34]: They are popular GNN models for single-graph representa-
tion learning. GCN designs a simplified filter to conduct spectral
graph convolution. GAT specifies learnable weights to the neigh-
boring nodes when aggregating their information. Rather than
utilizing the complete neighborhood, GraphSAGE produces the
representation of a node by aggregating information from a
sampled set of neighbors. DGI and MVGRL are GNN models that
devise contrastive losses to maximize the mutual information
between a graph’s local and global representations. These GNN
models are adapted and evaluated under the cross-graph sce-
nario to show whether the classical single-graph GNN models
are sufficient for cross-graph node classification tasks.

(II) DANN [21], WDGRL [17], and MME [11]: They are typical do-
main adaptation approaches with the assumption that the input
data are independent and identically distributed, such as images
and text. These approaches are evaluated to show whether they
can be directly applied to conduct domain adaptation on graphs
where the nodes are connected by edges, violating the i.i.d. as-
sumption. To process graph data, they are implemented to only
take node attributes as input, ignoring the edge connections.
8
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(III) CDNE [5], ACDNE [12], AdaGCN [15], UDA-GCN [6], ASN [13],
AdaGIn [35], MFRReg [14], and GRADE [36]: They are state-
of-the-art models proposed for cross-graph node classification.
These methods are hereafter referred to as cross-graph models.
CDNE extracts node representations with stacked autoencoders
and incorporates the MMD loss [16] to align graph distributions.
ACDNE captures topology proximity and attribute affinity with
two independent feature extractors. UDA-GCN utilizes the dual
graph convolutional network. The gradient reversal layer [21]
is implemented in ACDNE and UDA-GCN to reduce domain
discrepancy. AdaGCN adopts GCN [31] as the feature extractor
and alleviates domain divergence by reducing the Wasserstein
distance [17]. ASN separates the features shared across do-
mains from the domain-private features. AdaGIn is a GNN-based
model that matches the multimodal embedding distributions
with conditional adversarial networks. MFRReg improves the
transferability of UDA-GCN with spectral regularization. GRADE
reduces the graph subtree discrepancy to align the graph data
distributions.

.2. Performance study (RQ1)

In this section, the proposed method and the baselines are evaluated
n the cross-graph node classification tasks. Under this cross-graph
cenario, all models perform node classification tasks by leveraging
nformation from both a fully labeled source graph and a partially
abeled target graph. We randomly select five nodes per class (i.e., 𝑛 =
) to form the labeled set of target graph. Classification accuracy is
eported to quantify the performance of a model in classifying the un-
abeled nodes of target graph. As a supplementary evaluation, we also
onduct semi-supervised node classification on the partially labeled
arget graph. In such a single-graph scenario, the models are trained
nd evaluated with the target graph only.

.2.1. Cross-graph node classification on citation graphs
The first category of baselines includes the classical GNN mod-

ls proposed for single-graph representation learning, i.e., GCN, GAT,
raphSAGE, DGI, and MVGRL. As introduced in Appendix, these GNN
odels are adapted to conduct cross-graph node classification. In Ta-

le 4, with the help of contrastive learning, MVGRL and DGI outper-
orm other GNN models in this category. However, due to the lack
f capability to address the domain gap, the accuracies of these GNN
odels are lower than the cross-graph models in the third category of

aselines.
In the second category of baselines (i.e., DANN, WDGRL, and MME),

omain adaptation techniques are applied to reduce the domain dis-
repancy. However, the performance of these approaches is still inferior
ompared with the models in other categories. This reveals that the
ode representations generated in citation graphs lack discriminative
ower when only node attributes are utilized. Moreover, as the at-
ribute distributions are distinct (refer to Table 3), incorporating the
raph structure is necessary. Otherwise, the domain gap would re-
ain significantly large and cannot be reduced effectively using these
omain adaptation techniques.

In Table 4, SemiGCL ranks first on all six transfer tasks. For example,

emiGCL outperforms the best-performing baseline (i.e., MFRReg) by
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Table 4
Accuracy (%) of node classification on target citation graph.

Method C→A D→A A→C D→C A→D C→D Average

GCN [31] 72.93 (0.24) 68.73 (0.78) 77.57 (0.20) 74.55 (0.48) 72.79 (0.47) 74.60 (0.36) 73.53
GAT [32] 71.32 (1.73) 67.60 (1.99) 77.99 (0.15) 75.43 (0.63) 73.55 (0.65) 74.95 (0.24) 73.47
GraphSAGE [30] 65.55 (1.09) 59.28 (1.76) 69.22 (1.66) 64.50 (1.48) 64.73 (1.60) 68.91 (0.46) 65.37
DGI [33] 73.05 (0.49) 70.95 (0.44) 78.08 (0.57) 76.07 (0.34) 72.26 (0.38) 73.66 (0.56) 74.01
MVGRL [34] 73.15 (0.45) 70.01 (0.36) 77.77 (0.54) 76.49 (0.42) 74.07 (0.25) 76.54 (0.42) 74.67

DANN [21] 52.87 (0.31) 49.72 (0.68) 55.77 (0.50) 54.71 (0.60) 56.95 (1.26) 56.80 (0.49) 54.47
WDGRL [17] 52.33 (0.16) 49.38 (0.42) 55.46 (0.31) 53.52 (0.57) 56.35 (1.51) 56.71 (0.57) 53.96
MME [11] 52.12 (0.52) 49.03 (0.47) 55.30 (0.26) 52.94 (0.60) 56.26 (0.22) 57.68 (0.25) 53.89

CDNE [5] 76.55 (0.35) 73.23 (0.53) 80.00 (0.25) 78.75 (0.66) 74.76 (0.26) 74.42 (0.19) 76.29
ACDNE [12] 77.97 (0.21) 74.44 (0.33) 83.70 (0.12) 81.93 (0.40) 77.68 (0.13) 78.01 (0.30) 78.96
AdaGCN [15] 76.45 (0.50) 74.29 (0.40) 82.16 (0.45) 80.49 (0.30) 76.75 (0.34) 77.17 (0.31) 77.89
UDA-GCN [6] 77.48 (0.54) 75.00 (0.55) 82.06 (0.15) 80.43 (0.45) 77.45 (0.24) 78.55 (0.42) 78.50
ASN [13] 77.86 (0.74) 75.19 (0.99) 81.05 (0.82) 80.06 (0.92) 75.61 (0.68) 75.58 (1.37) 77.56
AdaGIn [35] 77.08 (0.36) 75.86 (0.72) 83.17 (0.21) 82.92 (0.29) 76.82 (0.45) 77.03 (0.35) 78.81
MFRReg [14] 78.03 (0.45) 76.32 (0.75) 82.78 (0.15) 81.73 (0.29) 77.93 (0.29) 78.78 (0.35) 79.26
GRADE [36] 74.01 (0.52) 70.00 (0.37) 79.04 (0.31) 76.20 (0.60) 74.23 (0.42) 76.30 (0.38) 74.96

SemiGCL [ours] 79.03 (0.38) 77.76 (0.56) 83.89 (0.20) 83.85 (0.38) 78.00 (0.60) 79.36 (0.49) 80.32

A: ACMv9, C: Citationv1, D: DBLPv7. In each column, the highest classification accuracy is in boldface, and the second-best accuracy is
underlined. The values in parentheses are standard deviations.
Table 5
Accuracy (%) of node classification on target social graph (Categories I and II).

Method GCN GAT GraphSAGE DGI MVGRL DANN WDGRL MME

B2→B1 74.61 (1.29) 66.33 (0.80) 87.68 (0.24) 70.42 (0.30) 78.03 (0.73) 86.81 (0.25) 86.31 (0.28) 87.67 (0.16)
B1→B2 74.24 (0.63) 67.33 (1.41) 86.62 (0.47) 71.65 (0.37) 79.88 (0.61) 86.13 (0.33) 85.64 (0.33) 86.76 (0.55)

Average 74.43 66.83 87.15 71.04 78.96 86.47 85.98 87.22

B1: Blog1, B2: Blog2. The values in parentheses are standard deviations.
2.12% on task D→C and 1.44% on task D→A. On average, the perfor-
mance gain of SemiGCL over MFRReg is 1.06% on the citation graphs.
It demonstrates the superiority of SemiGCL under the SSDA setting by
incorporating graph contrastive learning and minimax entropy training
in a principled way. Although CDNE and AdaGCN also investigate the
adaptation scenario where the target graph is partially labeled, their
performance on the SSDA tasks is even inferior to some cross-graph
models designed for the UDA setting, including ACDNE, UDA-GCN,
AdaGIn, and MFRReg. As introduced in Appendix, the UDA cross-graph
models are extended to the SSDA setting by optimizing the models with
the cross-entropy loss of labeled source and target nodes. However, the
learned models would be biased towards the source graph, since the
labeled source nodes are of a much greater amount. SemiGCL adopts
the minimax entropy training to address this issue and reduce the do-
main divergence. In addition, the GNN encoders naturally exploit both
graph structure and node attributes to generate node representations.
Graph contrastive learning maximizes the mutual information between
representations encoded from the local and global views of a graph. By
doing so, the GNN encoders are encouraged to capture the local and
global information of a graph, thereby producing more discriminative
node representations to promote node classification.

4.2.2. Cross-graph node classification on social graphs
In Table 6, SemiGCL performs best on transfer tasks B2→B1 and

B1→B2. Compared with the best-performing baseline (i.e., ACDNE),
the performance gain yielded by SemiGCL is 1.08% on average. The
accuracies of SemiGCL on the social graphs are higher than its re-
sults on the citation graphs. Blog1 and Blog2 have closer attribute
distributions, which is supported by the largest common attribute rate
shown in Table 3. Therefore, the domain divergence between Blog1 and
Blog2 is not as large as the one between two citation graphs, reducing
the difficulty of transfer tasks. Note that, in this case, the classical
domain adaptation methods (i.e., DANN, WDGRL, and MME) also yield
impressive performance.

GNN models commonly adopt smoothing operations to produce
similar representations for the nodes with edge connections, possibly
9

leading to the same class prediction for the connected nodes on the
subsequent classification task [42]. The smoothing operations rely on
the homophily assumption that the nodes connected by an edge tend
to be of the same class [31,43]. In Fig. 4, we select nodes of Class 3,
referred to as central nodes for clarity, to analyze the class information
of neighboring nodes. In the citation graphs, the majority of neighbors
belong to the same class as the central node. However, in the social
graphs, less than 50% of the neighboring nodes share the same class
with the central node. It means more neighboring nodes violate the
homophily assumption in the social graphs. Hence, the neighborhood
information around a node is noisier in the social graphs.

It can be seen from Tables 5 and 6 that the noise within neigh-
borhood results in the clear underperformance of some GNN mod-
els, including GCN, GAT, DGI, MVGRL, AdaGCN, UDA-GCN, ASN,
MFRReg, and GRADE. The reason is that these GNN models consider
the complete neighborhood of a node to compute node representa-
tion. In contrast, other GNN models (i.e., GraphSAGE, AdaGIn, and
SemiGCL) improve performance by sampling a few neighbors to gen-
erate node representations, since neighborhood sampling introduces
fewer neighbors that are not of the same class as the central node.

4.2.3. Loss evolution during model training
Fig. 5 demonstrates the evolution of loss values as the GNN encoders

are trained over multiple epochs. Two transfer tasks, C→A and B2→B1,
serve as examples. Referring to Eq. (16), the GNN encoders are opti-
mized using an overall loss function  = CE + 𝜆1CL + 𝜆2EN. The
overall loss consistently decreases with a slower descent rate, revealing
that the model gradually converges during training. Similar decreasing
trends can be observed in cross-entropy loss CE, contrastive loss CL,
and entropy loss EN.

4.2.4. Single-graph node classification
Since the target graph has five labeled nodes per class (i.e., 𝑛 =

5), we can train the node classification models by solely utilizing
the available information in target graph. Such a scenario is referred
to as the single-graph node classification, as the source graph is not
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Table 6
Accuracy (%) of node classification on target social graph (Category III).

Method CDNE ACDNE AdaGCN UDA-GCN ASN AdaGIn MFRReg GRADE SemiGCL

B2→B1 81.79 (0.77) 91.79 (0.68) 75.95 (0.75) 69.28 (1.81) 68.75 (2.38) 91.67 (0.12) 70.43 (1.83) 74.67 (0.51) 92.94 (0.21)
B1→B2 84.96 (0.72) 91.93 (0.11) 75.12 (0.47) 70.28 (1.15) 68.90 (1.33) 90.98 (0.19) 70.80 (0.88) 74.61 (0.46) 92.94 (0.23)

Average 83.38 91.86 75.54 69.78 68.83 91.33 70.62 74.64 92.94

B1: Blog1, B2: Blog2. In each row, the highest classification accuracy is in boldface, and the second-best accuracy is underlined. The values in parentheses are standard deviations.
Fig. 4. Node class distribution in the neighborhood of a node that belongs to Class 3. On every graph, the reported percentage of each class is obtained by averaging the statistics
of all nodes that are of Class 3.
Fig. 5. Loss over training epoch.
involved in the model training. The trained models are evaluated on
the unlabeled nodes of target graph. Although this work focuses on
the cross-graph node classification problem under the SSDA setting,
we report classification accuracies under the single-graph scenario in
Table 7 as a supplementary evaluation. Note that some baselines in
Table 4 are not applicable in the single-graph scenario, including
the domain adaptation approaches (Category II) and the cross-graph
models (Category III). To conduct node classification in the single-
graph scenario, we adapt SemiGCL by optimizing the model without
entropy loss EN (see Eqs. (16) and (17)).

In Table 7, SemiGCL outperforms the classical GNN models by large
margins. On average, the improvements of SemiGCL over MVGRL are
2.19% on the citation graphs and 6.23% on the social graphs. There-
fore, SemiGCL demonstrates its strength in generating discriminative
node representations for a graph. SemiGCL has an average accuracy of
74.36% on the citation graphs and 72.58% on the social graphs, which
are much lower than its results on the cross-graph node classification,
i.e., 80.32% (Table 4) and 92.94% (Table 6), respectively. As an ex-
ample, we analyze the results with ACMv9 chosen as the target graph.
10
SemiGCL has an accuracy of 79.03% on transfer task C→A, exceeding
its result on the single-graph scenario (i.e., 70.91%) by 8.12%. These
observations motivate us to transfer knowledge from a labeled source
graph, so that the classification performance on target graph can be
improved. Note that, MVGRL and DGI also incorporate contrastive
learning, resulting in higher accuracies than those of GCN, GAT, and
GraphSAGE.

4.3. Ablation study (RQ2)

In this section, we study four key components in the SemiGCL
model, including contrastive learning (CL), global view (GV), local view
(LV), and domain adaptation (DA). Each component is removed from
the SemiGCL model individually to investigate its contribution. We
construct the following model variants.

• SemiGCL-CL: A variant of SemiGCL without contrastive learning
(CL). The contrastive loss is removed from the overall objective
function (i.e., Eq. (16)).
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Table 7
Accuracy (%) of single-graph node classification.

Method GCN [31] GAT [32] GraphSAGE [30] DGI [33] MVGRL [34] SemiGCL
[ours]

A 48.17 48.91 43.24 70.42 68.34 70.91
C 58.94 59.07 49.24 71.95 75.99 79.66
D 53.57 54.37 49.28 67.50 72.18 72.50
Average 53.56 54.12 47.25 69.96 72.17 74.36

B1 61.53 55.37 60.55 62.53 67.81 72.14
B2 61.28 57.31 62.69 61.61 64.88 73.02
Average 61.41 56.34 61.62 62.07 66.35 72.58

A: ACMv9, C: Citationv1, D: DBLPv7, B1: Blog1, B2: Blog2. In each row, the highest
classification accuracy is in boldface, and the second-best accuracy is underlined.

Table 8
Accuracy (%) of SemiGCL variants on the target graph.

Model
variant

SemiGCL SemiGCL-CL SemiGCL-GV SemiGCL-LV SemiGCL-DA

C→A 79.03 74.81 67.26 74.45 78.29
D→A 77.76 70.04 63.54 71.04 75.42
A→C 83.89 80.43 74.05 79.02 82.82
D→C 83.85 78.96 72.10 77.02 82.41
A→D 78.00 74.05 68.68 72.34 76.73
C→D 79.36 76.25 70.16 75.58 78.53
Average 80.32 75.76 69.30 74.91 79.03

B2→B1 92.94 92.56 89.76 88.38 91.74
B1→B2 92.94 92.10 89.12 89.14 91.72
Average 92.94 92.33 89.44 88.76 91.73

CL: contrastive learning, GV: global view, LV: local view, DA: domain adaptation. The
sign ‘‘–’’ indicates the removal of one component. The highest accuracy in each row is
in boldface.

• SemiGCL-GV: A variant of SemiGCL without learning node repre-
sentations from the global view (GV). The node embedding vector
in Eq. (8) is the representation of local view.

• SemiGCL-LV: A variant of SemiGCL without learning node repre-
sentations from the local view (LV). The embedding vector of a
node (see Eq. (8)) is the representation of global view.

• SemiGCL-DA: A variant of SemiGCL without domain adaptation
(DA). We remove the entropy loss from the objective functions
Eqs. (16) and (17).

ote that, in SemiGCL-GV and SemiGCL-LV, as the embedding vector
s only extracted from one structural view (i.e., local view or global
iew), the contrastive loss (Eq. (12)) cannot be calculated to optimize
he model. In this section, the labeled set of target graph is identical
o that of Section 4.2. Each class in the target graph has five labeled
odes, i.e., 𝑛 = 5.

.3.1. Performance of model variants
Table 8 shows that the removal of every component leads to per-

ormance drops on all transfer tasks. It reveals that each component
ontributes to improving the performance of SemiGCL. In particular,
ith domain adaptation applied, the averaged classification accuracy

ncreases by 1.29% on citation graphs and 1.21% on social graphs.
herefore, the model performance can be consistently improved by
inimax entropy training.

On average, contrasting the local and global views increases the
lassification accuracy by 4.56% on the citation graphs and 0.61% on
he social graphs. In comparison with the citation graphs, the social
raphs have fewer nodes and larger average degrees (see Table 2). In
small-scale and dense social graph, the nodes would be ‘‘closer’’. In

ther words, it takes a short random walk to reach another node from
ne node. Therefore, if diffusion is applied to a social graph, the es-
ablished edges in the augmented graph are likely to be between nodes
hat appear together within short random walks in the original graph.
he information of these nodes could be accessed in the neighborhood
11

ggregation process based on the adjacency matrix (i.e., local view).
In such case, the local-view and global-view representations would
already have a certain degree of agreement, which makes contrastive
learning not that powerful on the social graphs.

In the citation graphs, it is observed that the removal of global-
view representation leads to an 11.02% decrease in average accuracy,
which is much more significant than the corresponding decrease in the
social graphs (i.e., 3.50%). Compared with the social graphs, a citation
graph is sparser and in a larger scale (see Table 2). It is more difficult
to capture the global information of a citation graph with the local-
view neighborhood aggregation. In this case, the global information
extracted from the global view is essential for representation learning.

4.3.2. Visualization of node representations
In Fig. 6, we plot the t-SNE [44] visualization of node represen-

tations produced by the SemiGCL variants. Two transfer tasks, C→A
and D→A, are taken as examples, with ACMv9 being the target graph.
Node representations produced by SemiGCL exhibit the most favorable
clustering structure, with a clearer separation between the clusters of
different classes. Additionally, node representations from the source
and target graphs are mostly close if they belong to the same class.
The t-SNE visualization supports that SemiGCL can achieve both the
discriminability of node representations and domain alignment. With
the contrastive learning removed (see SemiGCL-CL), the nodes of dif-
ferent classes are more likely to be mixed. It reveals that contrastive
learning can improve the discriminability of node representations.
Similar observations are found in the case without domain adaptation
(see SemiGCL-DA).

4.4. Effect of target labeled number (RQ3)

In this section, we investigate the model performance when the
number of labeled nodes per class (i.e., 𝑛) varies from 0 to 10 in
the target graph, that is, 𝑛 ∈ {0, 5, 10}. In the case that 𝑛 = 0, the
target graph is completely unlabeled, which corresponds to the UDA
setting. When there are five labeled nodes per class (i.e., 𝑛 = 5), the
labeled set of target graph is the same as the one in Section 4.2. As
introduced in Section 2, CDNE and AdaGCN are cross-graph models
that investigate the adaptation scenario with a partially labeled target
graph. In addition to CDNE and AdaGCN, we also make comparisons
with three competitive UDA cross-graph models, i.e., ACDNE, AdaGIn,
and MFRReg.

Fig. 7 shows the average accuracy of each model on the six transfer
tasks of citation graphs, i.e., C→A, D→A, A→C, D→C, A→D, and C→D.
The SemiGCL variant without domain adaptation (i.e., SemiGCL-DA)
is also included. SemiGCL is the top-performing model on the SSDA
tasks, i.e., 𝑛 = 5 and 𝑛 = 10. A significant performance lift is
observed in SemiGCL from 𝑛 = 0 to 𝑛 = 5. Therefore, SemiGCL can
effectively exploit a few labeled nodes in the target graph to improve
the model performance. In contrast, the accuracies of UDA approaches
(i.e., ACDNE, AdaGIn, and MFRReg) remain stable with the increase of
labeled target nodes. Moreover, the accuracies of CDNE and AdaGCN
slightly increase from 𝑛 = 0 to 𝑛 = 5. It indicates these five cross-
graph models lack the capability to utilize the target labels well. Note
that, under the UDA setting (𝑛 = 0), SemiGCL has no an improvement
over SemiGCL-DA, since the domain adaptation component of SemiGCL
(i.e., minimax entropy training) is devised for the SSDA tasks.

4.5. Hyperparameter sensitivity analysis (RQ4)

In this section, we analyze the influences of four key hyperpa-
rameters on the model performance, including embedding dimension
𝑙, contrastive learning coefficient 𝜆1, teleport probability 𝛼, and tem-
perature parameter 𝑇 . The aim is to gain insights into how these
hyperparameters should be configured. When investigating a specific

hyperparameter, the remaining hyperparameters are set to their default
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Fig. 6. Node representation visualization with t-SNE. Circles and crosses represent the source and target graph nodes, respectively. Five colors distinguish different paper classes.
Fig. 7. Average accuracy of the six transfer tasks on the citation graphs. Three numbers of labeled target nodes per class (0, 5 and 10) are tested for comparison among six
models.
values provided in Appendix. Note that, in this section, the labeled set
of target graph is identical to the one in Section 4.2.

Fig. 8 presents the classification accuracies of transfer tasks on
the citation and social graphs. Embedding dimension, 𝑙, refers to the
dimension of a node representation vector learned by the SemiGCL
model. The model achieves the highest accuracy with an embedding
dimension of 128 on the citation graph tasks (i.e., C→A and D→A).
12
On the social graph tasks (i.e., B2→B1 and B1→B2), embedding di-
mensions 𝑙 ∈ {128, 256, 512} can all lead to fairly good performance.
Contrastive learning coefficient, 𝜆1, is the weight of contrastive loss
when optimizing the GNN encoders. As discussed in Section 4.3.1,
contrastive learning has a more significant impact on the citation
graphs. Therefore, the model performance is more sensitive to the
contrastive learning coefficient on transfer tasks C→A and D→A. When
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Fig. 8. Classification accuracy varied with each of the four different hyperparameters.
𝜆1 = 0.1, the best accuracy is observed on all four transfer tasks.
Teleport probability, 𝛼, plays an important role in constructing the
diffusion matrix. It is observed that the optimal value is around 𝛼 =
0.1. Temperature parameter, 𝑇 , scales the output of node classifier.
When 𝑇 = 5.0, the classification accuracy reaches its peak value on
transfer tasks B2→B1 and B1→B2. On the citation graph tasks, a larger
temperature parameter (i.e., 𝑇 = 20.0) is more desirable.

5. Discussion

SSDA on graphs presents three significant challenges: domain di-
vergence between the source and target graphs, model bias towards
the source graph, and non-i.i.d. graph-structured data. Our method,
SemiGCL, showcases superior performance on graph SSDA tasks
through the principled integration of minimax entropy training and
graph contrastive learning. Minimax entropy training plays a crucial
role in mitigating domain divergence and alleviating model bias with
the entropy loss of unlabeled target nodes. Meanwhile, graph con-
trastive learning captures both local and global structural information
within a graph.

The experiments are conducted on the citation and social graphs,
where SemiGCL’s performance hinges on the effective functioning of
minimax entropy training and graph contrastive learning. On both
types of graphs, minimax entropy training consistently improves
SemiGCL’s performance. Compared with the social graphs, a citation
graph is sparser and in a larger scale, increasing the difficulty in captur-
13

ing global information through local-view neighborhood aggregation
alone. Consequently, contrastive learning between the local and global
views yields a larger improvement on the citation graphs. On a small-
scale and dense social graph, contrastive learning is not that powerful.
Additionally, as minimax entropy training is specifically designed for
the SSDA tasks, it does not exhibit an improvement under the UDA set-
ting. Hyperparameters are also critical for the performance of SemiGCL,
such as embedding dimension, contrastive learning coefficient, teleport
probability, and temperature parameter.

6. Conclusion

A novel GNN-based model named SemiGCL has been proposed
to tackle the semi-supervised domain adaptation problem on graphs.
SemiGCL constructs two GNN encoders to extract node representa-
tions from two structural views of a graph, i.e., the original graph
(local view) and the diffusion-augmented graph (global view). Graph
contrastive learning is employed to maximize the mutual information
between representations learned from the two structural views. By
doing so, the GNN encoders are encouraged to encode rich local
and global information in a graph. To mitigate domain discrepancy,
the cosine similarity-based node classifier and the GNN encoders are
trained in an adversarial manner using the entropy loss of unlabeled
target nodes. Experimental results on real-world information networks
demonstrate that our method surpasses the state-of-the-art baselines on
the benchmark SSDA tasks.

This study considers only a single labeled source graph. Another

practical scenario is to have a few labeled source graphs with diverse
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Table A.1
Main hyperparameters for the SemiGCL model.

Transfer task 𝜂0 Epoch Batch size Weight decay Layer dimension 𝒔a 𝛼 𝑇

C→A

0.010 30 128

5 × 10−5 1024/64

{20, 20} 0.10
20.0

D→A
A→C
D→C

A→D 0.005 100 256 {10, 10} 0.05C→D

B2→B1 0.010 50 64 {30, 30} 0.10 15.0B1→B2

a A set 𝒔 =
{

𝑠1 ,… , 𝑠𝐾
}

consists of the neighborhood sample size 𝑠𝑘 at every search depth 𝑘 ∈ {1,… , 𝐾}.
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data distributions. One potential avenue for future research is the
development of methods that select the optimal source graph from the
available options. Utilizing the optimal source graph, a single-source
domain adaption model [45] could achieve the best performance on a
particular target graph short of labels. Another promising direction for
future work is to develop multi-source domain adaptation approaches
[46] that facilitate the transfer of knowledge from multiple labeled
source graphs to the target graph.
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Appendix. Implementation details

The proposed SemiGCL1 is implemented in PyTorch. In Table A.1,
we report the main hyperparameters selected for each transfer task.
GNN encoders, 𝑓𝐴 and 𝑓𝑃 , have two-layer structures. The layer di-
mensions are 1024 and 64 in sequence (i.e., ‘‘1024/64’’ in Table A.1).
Cosine similarity-based classifier, 𝑓𝑐 , is a logistic regression with 𝐿2
ormalization applied to its input. The output of node classifier is scaled
y a temperature parameter 𝑇 and activated by a softmax function. The

1 The source codes of SemiGCL are publicly available at https://github.
om/JiarenX/SemiGCL.
14
SemiGCL model is trained over shuffled minibatches using the Adam
optimizer. We select initial learning rate 𝜂0 from {0.005, 0.010, 0.015}.

hen training progress 𝑝 linearly increases from 0 to 1, we follow
21] to decay learning rate as 𝜂𝑝 = 𝜂0 (1 + 10𝑝)−0.75. 𝐿2 regularization
s imposed on the trainable parameters to prevent overfitting with

weight decay term of 5 × 10−5. In the overall objective function
Eq. (16)), contrastive learning coefficient, 𝜆1, is chosen as 0.1. Domain
daptation coefficient, 𝜆2, starts from 0 and progressively increases,
.e., 𝜆2 = 2 (1 + exp (−10𝑝))−1 − 1. We set the maximum value of 𝜆2 as
.1. In Eq. (17), entropy coefficient, 𝜆3, is 1.0 for the citation graphs
nd 2.0 for the social graphs.

The baselines are implemented following the original papers and
valuated with a protocol the same as that of SemiGCL. We adapt
aselines in the first category (i.e., GCN, GAT, GraphSAGE, DGI, and
VGRL) to make them conduct cross-graph node classification (Sec-

ions 4.2.1 and 4.2.2). The cross-entropy loss is calculated with the
abeled nodes in the source and target graphs. For DGI and MVGRL,
he contrastive loss is computed independently for each graph, that is,
ource graph or target graph. The contrastive losses on both graphs are
hen added to optimize the model. After training, GNN models in the
irst category are evaluated on the unlabeled nodes of target graph.
n single-graph node classification (Section 4.2.4), these GNN models
re trained and evaluated only with the partially labeled target graph
nder the semi-supervised learning scenario. DANN, WDGRL, and MME
re initially designed to process images with CNNs, such as AlexNet and
esNet34. To encode graph data, their feature extractors are replaced
y multilayer perceptrons (MLPs) which take node attributes as input.
o adapt DANN and WDGRL for the SSDA tasks, we calculate the
ross-entropy loss with the labeled nodes in source and target graphs.

The cross-graph models are adapted for the SSDA setting. AdaGCN
15] is implemented with PyTorch based on the original paper. Al-
hough CDNE and AdaGCN also consider the scenario that the target
raph is partially labeled, they assume a percentage of target nodes
s randomly selected to have labels. We modify the CDNE codes2 and
he AdaGCN codes to assign the same number of labeled nodes for
ach class in the target graph. The UDA methods (i.e., ACDNE,3 UDA-
CN,4 ASN,5 AdaGIn,6 MFRReg,7 and GRADE8) are modified for the

SSDA setting by incorporating the cross-entropy loss of labeled nodes
in the target graph. The hyperparameters of these cross-graph models
are initialized with the recommended ones in their papers or official
implementations. We have tuned some of their key hyperparameters to
improve the performance of these models. For example, the GNN-based
models (i.e., AdaGCN, UDA-GCN, ASN, AdaGIn, MFRReg, and GRADE)
are tested up to three GNN layers. The dimension of each GNN layer is
selected in the set {128, 256, 512, 1024, 2048}.

2 https://github.com/shenxiaocam/CDNE
3 https://github.com/shenxiaocam/ACDNE
4 https://github.com/mandy976/UDAGCN
5 https://github.com/yuntaodu/ASN
6 https://github.com/JiarenX/AdaGIn
7 https://github.com/Shen-Lab/GDA-SpecReg
8
 https://github.com/jwu4sml/GRADE

https://github.com/JiarenX/SemiGCL
https://github.com/JiarenX/SemiGCL
https://github.com/shenxiaocam/CDNE
https://github.com/shenxiaocam/ACDNE
https://github.com/mandy976/UDAGCN
https://github.com/yuntaodu/ASN
https://github.com/JiarenX/AdaGIn
https://github.com/Shen-Lab/GDA-SpecReg
https://github.com/jwu4sml/GRADE
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In all models, except for DGI and MVGRL, embedding dimension 𝑙
s set as 128 following ACDNE. Unlike other GNN models that conduct
ode classification tasks in an end-to-end manner, DGI and MVGRL
enerate node embeddings first and then train a logistic regression
lassifier for node classification. We find an embedding dimension of
12 improves the performance of DGI and MVGRL. For each method,
e report the mean value of classification accuracies over five runs with
ifferent random seeds. Note that, in multiclass classification, according
o the scikit-learn document,9 the Micro-Precision, Micro-Recall, and
icro-F1 scores are all identical to the classification accuracy.
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