
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 1

Domain Adaptive Graph Infomax via
Conditional Adversarial Networks

Jiaren Xiao, Quanyu Dai, Member, IEEE, Xiaochen Xie, Member, IEEE, Qi Dou, Member, IEEE,
Ka-Wai Kwok, Senior Member, IEEE, and James Lam, Fellow, IEEE

Abstract—The emerging graph neural networks (GNNs) have
demonstrated impressive performance on the node classification
problem in complex networks. However, existing GNNs are
mainly devised to classify nodes in a (partially) labeled graph. To
classify nodes in a newly-collected unlabeled graph, it is desirable
to transfer label information from an existing labeled graph.
To address this cross-graph node classification problem, we
propose a graph infomax method that is domain adaptive. Node
representations are computed through neighborhood aggregation.
Mutual information is maximized between node representations
and global summaries, encouraging node representations to
encode the global structural information. Conditional adversarial
networks are employed to reduce the domain discrepancy by
aligning the multimodal distributions of node representations.
Experimental results in real-world datasets validate the perfor-
mance of our method in comparison with the state-of-the-art
baselines.

Index Terms—Conditional Adversarial Networks, Cross-graph
Node Classification, Domain Adaptation, Graph Neural Net-
works, Mutual Information.

I. INTRODUCTION

NODE classification is a vital task in various real applica-
tions, such as the prediction of user characteristics in so-

cial networks [1], the classification of protein roles in protein-
protein interaction (PPI) networks [2], and the assignment of
research topics for publications in citation networks [3]. Since
real-world networks are usually sparse, nonlinear, and high-
dimensional, it is challenging to learn meaningful information
from these networks to facilitate node classification [4]. A
general way is to encode graph1 information, like graph
structure and node attributes, into low-dimensional node rep-
resentations (i.e., embedding vectors) [4], [5]. On top of node

This work was supported in part by the Innovation and Technology
Commission (ITC) (MRP/029/20X) and the HKSAR Government under the
InnoHK initiative, Hong Kong, via Centre for Garment Production Limited,
and in part by the Research Grants Council (RGC) of Hong Kong under Grant
17205721. (Corresponding authors: Ka-Wai Kwok and James Lam.)

Jiaren Xiao, Ka-Wai Kwok, and James Lam are with the Department of
Mechanical Engineering, The University of Hong Kong, Hong Kong, China
(e-mail: xiaojr@connect.hku.hk; kwokkw@hku.hk; james.lam@hku.hk).

Quanyu Dai is with the Department of Computing, The
Hong Kong Polytechnic University, Hong Kong, China (e-mail:
quanyu.dai@connect.polyu.hk).

Xiaochen Xie is with the Department of Mechanical Engineering,
The University of Hong Kong, Hong Kong, China, and also with
Centre for Garment Production Limited, Hong Kong, China (e-mail:
xcxie@connect.hku.hk).

Qi Dou is with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong, China (e-mail:
qidou@cuhk.edu.hk).

1Network and graph are interchangeably used to denote the graph-structured
data.

Source Graph Target Graph

Domain
Adaptation

Class 1

Class 2

Unlabeled

Attributes

Fig. 1. An example of cross-graph node classification. The research goal is
to facilitate node classification in an unlabeled target graph by transferring
knowledge from a labeled source graph.

representations, node classification can be easily performed
by employing classical machine learning techniques, e.g., a
logistic regression classifier.

Existing studies mainly focus on node classification in a
(partially) labeled graph [2], [3]. In real applications, it is
frequently encountered that the nodes are unlabeled in a newly
collected graph. A node classification model, which is learned
in an existing labeled graph, can sometimes be directly applied
to an unlabeled new graph. However, different graphs usually
have diverse data distributions of node connections, attributes,
and labels, which would degrade the performance of such
direct application.

Therefore, it is desirable if a learning model can effectively
transfer label information from a labeled graph to assist node
classification in an unlabeled graph. Otherwise, when a new
graph is collected, to obtain satisfactory node classification
performance, we have to label the nodes before rebuilding
a learning model. For example, in a newly-formed unlabeled
social network, to enable user prediction, it would be beneficial
to transfer knowledge from a mature social network which is
well annotated. In addition, to classify proteins in a newly-
collected PPI network, it would be favorable if the label
information in an existing biological network can be utilized.
Moreover, the abundant label information in well-established
citation databases would be helpful to enable the classification
of papers in a newly-constructed citation network.

In this work, we consider the cross-graph node classification
problem [6]–[9] illustrated in Figure 1. The research goal is
to facilitate node classification in an unlabeled target graph by
transferring label information from a labeled source graph.
There are no edge connections or common nodes existing
between the source and target graphs. With only a part of the
node attributes in common, the discrepancy is further enlarged
between the source and target graphs.

Since the source and target graphs can be treated as two

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 2

independent domains, cross-graph node classification has a
close relation with domain adaptation research. As a subtopic
of transfer learning [10], domain adaptation studies are mostly
conducted in the fields of computer vision [11]–[13] and
natural language processing [14], [15]. The input data (i.e.,
images and text) is usually assumed to be independent and
identically distributed (i.i.d.). The classical domain adaptation
approaches are not directly applicable to the graph-structured
data, since the nodes in a graph are highly correlated by edges,
thus violating the i.i.d. assumption [16].

There are a few recent studies addressing the challenging
problem of cross-graph node classification, such as CDNE [6],
ACDNE [7], AdaGCN [8], and UDA-GCN [9]. Although their
performance is more preferable than those designed for single-
graph learning, three open questions remain to be further
explored.

• From the global view of a graph, if distant nodes have
similar structural roles, they are likely to perform the
same function [17], which can be an important predictor
for the node labels. Existing methods [6]–[9] manage to
make the nodes have similar representations, if they are
close in a graph, such as the adjacent nodes or the nodes
within K steps. It is achieved by the Laplacian smoothing
of graph convolution [18] or the additional constraint
based on PPMI matrix [19]. Although these methods
reach a certain level of local or global consistency, they
still lack consideration about the global structural role of
a node.

• Existing studies align the source and target representa-
tions by minimizing domain classification error [7], [9] or
distribution discrepancy metrics such as the Wasserstein
distance [8]. Since the domain alignment is category ag-
nostic in these methods, the aligned node representations
are possibly not classification friendly. Moreover, due to
the nature of classification problem, the distribution of
node representations would be multimodal. These domain
adaptation techniques may fail to capture the multimodal
structure [20].

• AdaGCN [8] and UDA-GCN [9] employ the graph neural
networks (GNNs). They apply spectral graph theory [21]
to define filters for graph convolutions that process the
whole graph in one go. It may hinder their applications
in real-world large-scale graphs which can be directed,
signed, or heterogeneous [16].

To address the above three issues, we propose a novel
method, named as domain Adaptive Graph Infomax via con-
ditional adversarial networks (i.e., AdaGIn). Given a labeled
source graph and an unlabeled target graph, the objective of
our method is to classify nodes in the target graph, by jointly
utilizing the information in the source and target graphs. Our
method consists of three modules: a representation learner, a
node classifier, and a domain discriminator.

Representation learner employs the spatial GNN layers to
compute node representations for the source and target graphs.
The spatial GNN layers repeatedly aggregate the local neigh-
borhood information [22]. The generated node representation
summarizes a patch of graph centered around this node, thus

(a) AdaGIn (b) AdaGIn-DA

Fig. 2. Visualization of node representations in the target graph (Source
graph: Citationv1, Target graph: ACMv9). Each point represents one node.
Five colors distinguish various node classes. The sign “-” means domain
adaptation component (DA) has been removed from the AdaGIn model.

containing the local structural information. Inspired by DGI
[23], the node representation is then driven to preserve the
mutual information with the graph-level global representation.
Maximization of the local-global mutual information could
encourage node representations to capture the global structural
properties [23]. Taking node representations as inputs, node
classifier produces label predictions. Representation learner
and node classifier are trained to minimize the cross-entropy
loss of labeled nodes in the source graph, so that the learned
node representations can be label-discriminative.

To reduce the domain discrepancy between the source and
target graphs, our method applies the conditional domain
adversarial networks [20], which model the domain adaptation
process as a two-player game. Domain discriminator is trained
to distinguish whether an input sample comes from the source
or target graph. In contrast, representation learner is opti-
mized to “fool” domain discriminator by generating domain-
invariant node representations. To enhance the alignment of
multimodal distributions, domain discriminator is conditioned
on the discriminative information in the classifier predictions.
Figure 2 illustrates that, with the help of domain adaptation,
the generated node representations are more meaningful and
separable in the 2D space, benefiting the subsequent node
classification task.

The proposed method is evaluated using five real-world
networks, including three citation networks and two social
networks. The main contributions are summarized as follows.

• A novel spatial GNN model is proposed to tackle the
challenging problem of cross-graph node classification.
The overall performance is superior to the state-of-the-
art baselines in the benchmark transfer tasks.

• Mutual information maximization is enabled in cross-
graph learning, which encourages node representations
to encode the global structural information.

• Conditional adversarial networks are introduced to reduce
the domain discrepancy by matching the multimodal
distributions of node representations.

The rest of this paper is organized as follows. Section II
reviews the related literature. Section III presents the proposed
method. Section IV reports the experiments and results. Fi-
nally, Section V concludes this paper.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 3

II. RELATED WORK

In this section, we introduce the related work in three
aspects, including the research on domain adaptation, graph
representation learning, and cross-graph learning.

A. Domain Adaptation

As a subtopic of transfer learning, domain adaptation [10]
aims at transferring knowledge from a source domain with
abundant labels to a target domain that is short of labels.
The feature-based domain adaptation approaches, which attract
lots of research interests due to their effectiveness, can be
categorized into three kinds, including the discrepancy-based
[12], [24], the reconstruction-based [25], and the adversarial-
based [20], [26], [27].

The adversarial-based methods are considered in this work.
To learn domain-invariant features, DANN [26] builds an
adversarial training platform, in which representation learner
and domain discriminator play a minimax game. WDGRL
[27] introduces the Wasserstein distance [28] to measure the
domain divergence, in order to improve the gradient property
and the generalization bound. Inspired by the recent progress
in conditional generative adversarial networks (CGANs) [29],
CDAN [20] conditions the domain discriminator on the dis-
criminative information contained in the classifier predictions,
which helps match the multimodal distributions in the classi-
fication problem.

There are also some recent advances worth noticing. For
example, ATM [30] devises a novel loss, named as MDD,
to quantify the distribution gap. By optimizing this additional
loss, ATM alleviates the equilibrium challenge issue [31], thus
improving the performance of adversarial domain adaptation.
In addition, Li et al. [32] innovatively employed the adversarial
attacks to enable domain adaptation in the absence of source
data or target data.

The existing domain adaptation methods usually assume the
input samples to be independent and identically distributed
(i.i.d.), such as images and text. They are not directly applica-
ble to solving the learning problems on graph-structured data,
where highly-correlated nodes violate the i.i.d. assumption
[16].

A few recent studies construct graph adjacency matrix based
on the pairwise distance of image embeddings/features. Graph
matching is then employed to align the domains of image
samples. For example, by minimizing the spectral distance of
graph Laplacians, LGA [33] aims at forcing the manifold of
target domain has a similar connectivity structure as that of
the source domain. In addition, Das and Lee [34] applied the
first-, second-, and third-order hyper-graph matching to match
the images in different domains. These approaches are devised
for the alignment of image samples rather than the data that
can be naturally represented as a graph, such as the citation
and social networks.

B. Graph Representation Learning

Graph representation learning [35] aims at learning low-
dimensional node representations to facilitate downstream

tasks, such as node classification and link prediction. Node
representations are expected to preserve graph structure
only [36]–[39], or jointly capture structural properties and
side information like node attributes [40], [41]. One recent
advancement is known as graph neural networks (GNNs)
[16] which design neural networks that directly operate on
graphs [2], [3], [42], [43].

GNNs are classified into two categories: spectral approaches
and spatial ones. The spectral GNNs devise spectral filters
to perform graph convolutions. The classical GCN model [3]
simplifies the spectral convolutions and processes the whole
graph at the same time. Modern GNNs usually update node
representations by iteratively aggregating neighborhood infor-
mation [22]. This stream of approaches relies on the spatial
relations of nodes to propagate information [16]. The compu-
tation of node representations can be conducted in a batch of
nodes rather than the whole graph. GraphSAGE [2] pioneers
in designing various aggregation functions to aggregate in-
formation from the sampled neighborhood. In graph attention
networks (GAT) [42], node representation is the weighted sum
of the representations of all neighboring nodes. Compared
with spectral approaches, spatial ones have advantages in the
scalability to large graphs and the generality to various graph
types [16].

To capture the statistical similarities among data, contrastive
learning [44] has been introduced to encode graph into infor-
mative representations. Inspired by the Deep InfoMax (DIM)
[45], some recent studies (e.g., DGI [23] and InfoGraph [46])
maximize the mutual information between the local represen-
tations of substructures (e.g., a patch of graph centered around
a node) and the global representations of a graph. By doing
so, the local and global representations can be mindful of each
other, leading to improved performance on node classification
or graph classification.

Existing studies mainly focus on learning in a single graph,
ignoring knowledge transfer across graphs. Although a model
learned in one graph can sometimes be adapted to perform
learning tasks in a new graph, to improve model performance,
more efforts are needed to overcome the discrepancy between
graphs. To this end, our work jointly explores contrastive
learning and domain adaptation to perform transfer learning
across graphs.

C. Cross-graph Learning
Some recent research on cross-graph learning assumes the

existence of inter-graph connections [47], [48] or common
nodes across graphs [49], [50]. Besides, with the target graph
partially labeled, the basic assumption of DASGA [51] is that
the source and target graphs have similar frequency contents in
the label function. DASGA then performs domain adaptation
on graphs by learning aligned graph Fourier bases.

Without the above assumptions, some other studies [6]–[9]
focus on transfer learning between two independent graphs.
The abundant label information in a source graph is expected
to be transferred to facilitate node classification in a target
graph lacking labels.

NetTr [52] projects the label propagation matrices of the
source and target graphs into a common latent space uti-

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 4

lizing the nonnegative matrix tri-factorization (NMTF) [53].
Although node attributes are also combined to train the node
classifier, the transferrable representations are learned solely
based on graph topology, in order to capture structural patterns
shared by the source and target graphs. CDNE [6] learns node
representations in an autoencoder architecture. The maximum
mean discrepancy (MMD) [54] is minimized between the
source and target representations to mitigate domain diver-
gence. ACDNE [7] preserves attribute affinity and topology
proximity separately using two feature extractors. Gradient
reversal layer [26] is employed in ACDNE to learn domain-
invariant node representations.

Recently, a few GNN-based methods are proposed to per-
form cross-graph node classification. AdaGCN [8] employs
GCN [3] to learn node representations. This method mini-
mizes the Wasserstein distance [28] between the source and
target representations to enable domain adaptation. UDA-
GCN [9] develops a dual graph convolutional network to
jointly preserve the local and global consistency of a graph.
Gradient reversal layer [26] is also used in UDA-GCN to
achieve domain adaptation. Unlike these spectral GNNs (i.e.,
AdaGCN and UDA-GCN), this work devises a spatial GNN
model to address this challenging problem. Two recent tech-
niques, mutual information maximization [23] and conditional
adversarial networks [20], are employed to capture global
graph information and multimodal embedding distribution,
respectively.

It is worth noting that a few recent GNN models transfer
knowledge following a pre-training and fine-tuning paradigm,
without utilizing the adversarial domain adaptation. As one
typical example, GCC [55] pre-trains a model for discovering
common structural patterns in the absence of node attributes
and node labels. Specifically, the pre-training is designed as
subgraph instance discrimination in and across multiple source
graphs. GCC leverages contrastive learning to distinguish sim-
ilar subgraph instances from dissimilar ones. The pre-trained
model is then fine-tuned on a partially-labeled target graph for
node classification task. Differing from GCC, in this work, we
consider a transfer learning problem involving two attributed
graphs: one fully labeled source graph and one unlabeled
target graph. Contrastive learning is employed to maximize the
mutual information between node representation and graph-
level representation within a single graph (i.e., source graph
or target graph). To reduce domain divergence, we make use
of conditional adversarial networks.

III. PROPOSED METHOD

In this section, we first introduce the research problem and
the main notations. Then we present the model architecture
and elaborate each module. Next, we provide a theoretical
analysis about the adversarial domain adaptation. Finally, we
describe the training algorithm followed by a time complexity
analysis.

A. Problem Definition and Notations

An information network can be represented as an attributed
graph G (V ,A,X,Y), in which V ∈ RN , A ∈ RN×N ,

TABLE I
MAIN NOTATIONS.

Notation Description

G An attributed graph
Gs, Gt Source graph and target graph
V Node set of G
A Adjacency matrix of G
xv , X Attribute vector of node v ∈ V and attribute matrix

of G
ev , E Embedding vector of node v ∈ V and representation

matrix of G
yv , Y Label vector of node v ∈ V and label matrix of G
ŷv , Ŷ Label prediction vector of node v ∈ V and label

prediction matrix of G
X Union attribute set

N Number of nodes in G
L, l Attribute dimension and embedding dimension
C Number of classes in Y
U Number of attributes in X

fg , fc, fd Representation learner, node classifier, and domain
discriminator

θg ,θc,θd Sets of parameters in fg , fc, and fd
AGG Aggregation function
s Neighborhood sample size
σ Nonlinear activation function
hv Representation vector of node v ∈ V
η0 Initial learning rate
ne Maximum training epoch
ni Maximum iteration per epoch
B A batch of nodes
λ1 Mutual information coefficient
λ2 Domain adaptation coefficient
Ra Common attribute rate
Rn Proportion of selected nodes

X ∈ RN×L, and Y ∈ RN×C are node set, adjacency
matrix, attribute matrix, and label matrix, respectively. N is the
number of nodes in V , that is, N = |V |. L is the dimension of
node attributes. C is the number of node labels. In A, X , and
Y , the i-th row contains binary values indicating the edge
connections, attributes, and labels of the i-th node v ∈ V ,
respectively. Specifically, Aij = 1 means there is an edge
connecting the i-th and j-th nodes; Xid = 1 means the i-
th node has the d-th attribute; and Yic = 1 means the i-th
node is associated with the c-th label. The undirected graph
is considered in this paper. The degree of the i-th node v is
the number of its connected edges, i.e.,

∑
j Aij . The average

degree is calculated by
∑

i

∑
j Aij/N , indicating the density

of a graph. The main notations of this paper are summarized
in Table I.

Graph embedding aims at mapping a node, v ∈ V , to a low-
dimensional node representation ev (i.e., embedding vector).
e>v is one row within representation matrix E ∈ RN×l,
where l is the embedding dimension. Since the label space
of nodes is Y = {1, . . . , C}, data distribution ev ∼ P (ev)
would be multimodal, with each mode corresponding to one
class. The multimodal structure can be indicated by the t-SNE
visualization shown in Figure 2. There are five clusters in total
(i.e., C = 5), with each cluster indicating one mode. On top
of node embeddings, a classifier, f : E 7−→ Y , can be learned
to conduct node classification.

In this work, we investigate the cross-graph node classifi-

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 5

G
N

N
 L

a
y
e

rs
G

N
N

 L
a

ye
rs

s
E

s
E

t
E

t
E

Node Classifier ˆ s
Y

ˆ t
YNode Classifier

Discriminator

readout

s
r

readout t
r

Supervised
Loss

Source Unsupervised Loss

parameter
sharing

Domain
Adaptation Loss

Target Unsupervised Loss

corruption

Source Graph

Target Graph

corruption

Fig. 3. Architecture of the proposed method. Various node attributes in a
graph are distinguished by their colors. Parameter sharing is enabled when
employing the GNN layers to process the source and target graphs. Please
refer to Section III for more details.

cation problem. Source graph, Gs (V s,As,Xs,Y s), is fully
labeled, that is, the labels of each node in Gs are known. Target
graph, Gt (V t,At,Xt,Y t), is completely unlabeled, that is,
label matrix Y t is unknown, remaining to be predicted. We
use two superscripts, s and t, to denote the source and target
graphs, respectively.

In the case that the attribute sets of source and target graphs
(i.e., X s and X t) are not exactly the same, we construct a
union attribute set X = X s∪X t. With U = |X | representing
the total number of attributes, the attribute matrices of source
and target graphs can be reformulated as Xs ∈ RNs×U and
Xt ∈ RNt×U , respectively. The union attribute set enables pa-
rameter sharing when processing the source and target graphs,
since the same learning model can be applied to generate
node representations for both graphs. The parameter sharing
attempts to learn domain-invariant node representations, and
to facilitate knowledge transfer across graphs [56]. Through
sharing parameters, the overall model architecture can also
be more compact, with the number of learnable parameters
being reduced. Based on the union attribute set, we can further
define a common attribute rate Ra =

∣∣X s ∩X t
∣∣ / ∣∣X s ∪X t

∣∣,
showing the percentage of common attributes shared by the
source and target graphs.

There are no shared common nodes or edge connections
existing between the source and target graphs. Therefore, the
source and target graphs can be treated as two independent
domains. In addition to the varying graph scale, these two do-
mains are also diverse in the distributions of node connections,
attributes, and labels. Note that, as the settings in many prior
arts [6]–[9], the source and target graphs are required to have
the same set of labels, that is, the categories of nodes in these
two graphs are the same.

The goal of this work is to mitigate the graph divergence,
so that label information in the source graph can be exploited
to learn a node classifier that is readily applicable to classify
nodes in the unlabeled target graph. To achieve this goal, node
representations generated in the learning process need to be
domain-invariant and label-discriminative.

B. Overview of Model Architecture

To achieve cross-graph node classification, there are two
major challenges. First, the available information (i.e., graph
structure, node attributes, and node labels) shall be well
exploited to learn node representations that are informative
enough for the subsequent node classification task. Second,
the domain gap between source and target graphs shall be
mitigated, so that the node representations can be shared
across domains. Consequently, the node classifier trained on
source representations can be readily applicable to predict
target nodes using the target representations.

To address the above challenges, we propose a method
named as domain Adaptive Graph Infomax via conditional ad-
versarial networks (i.e., AdaGIn). Figure 3 shows the proposed
model architecture. The three main modules of this model are
as follows.
• Representation Learner. The node representations are

learned by the GNN layers, which aggregate information
from the local neighborhood, thus capturing the graph
structure and node attributes simultaneously. To make a
node representation mindful of the global structure and
other nodes with similar structural roles, inspired by DGI
[23], the local-global mutual information is calculated and
maximized in the learning process.

• Node Classifier. On top of the learned node representa-
tions, the node classifier, which is a logistic regression,
makes predictions on the node labels.

• Domain Discriminator. The domain discriminator aims
at telling apart the input samples from the source and
target graphs. It competes with the representation learner
during adversarial training using the gradient reversal
layer, so that the representation learner can generate
domain-invariant node representations. The discrepancy
between source and target graphs would be reduced. As
a result, node classifier trained on the source representa-
tions can be more desirable for classifying target nodes
with the target representations.

C. Node Representation Learning

The graph neural networks (GNNs) are applied to encode
nodes into vector representations (i.e., embedding vectors).
In the modern GNNs, a common strategy is to iteratively
update the representation of a node by aggregating information
from its neighboring nodes [22]. Considering node v in a
sampled minibatch of nodes (i.e., B), the k-th step/layer of
the neighborhood aggregation is formulated as follows.

hk
S = AGGk(h

k−1
u | u ∈ Sv) =

1

|Sv|
∑

u∈Sv

hk−1
u (1)

hk
v = σ1

(
[W k

v h
k−1
v ;W k

Sh
k
S]
)

(2)

where AGGk is the aggregation function at step k, Sv

is a set of sampled nodes adjacent to node v, hk
S is the

representation vector of neighborhood at step k, hk
v is the

representation vector of node v at step k, W k
v and W k

S

are the weight matrices for linear transformations, and σ1
is the ReLU nonlinear activation (i.e., σ1 (x) = max(0, x)).

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 6

The node representation is initialized with the node attribute
vector, i.e., h0

v = xv . Then, the node gradually aggregates
information from far neighborhood. After k steps, the node’s
representation captures the structural information within its
k-hop neighbors. Node representation in the final step (i.e.,
hK
v) is the embedding vector (i.e., ev), which is used for the

subsequent node classification.

ev = hK
v = fg (xv,xS) , v ∈ B. (3)

where fg is the representation learner (i.e., the spatial GNN
layers) and xS is the attribute matrix of the sampled neigh-
boring nodes.

To enhance the structural constraint applied during the
learning process of node representation, the local-global mu-
tual information is calculated and maximized within a graph.
Considering a minibatch of nodes (i.e., B), the representation
of each node is first computed using the GNN layers, i.e.,
E =

[
e1, . . . , e|B|

]
. Since the neighborhood information is

repeatedly aggregated in the learning process, the produced
representation of a node summarizes a patch of the graph
centered around this node. Therefore, the node representation
can be treated as a local representation of this patch in the
graph. A summary vector, r, is obtained by a readout function
(i.e., R) which simply averages the node representations
within this minibatch.

r = R (E) = σ2

 1

|B|

|B|∑
i=1

ei

 (4)

where σ2 is the logistic sigmoid nonlinearity (i.e., σ2 (x) =
1/ (1 + exp (−x))). This summary vector is a kind of global
information regarding the nodes within the minibatch and their
sampled neighbors. A local-global pair is denoted as (ei, r).

The local-global pairs are then treated as positive samples.
The local-global mutual information is maximized by clas-
sifying these positive samples and the negative counterparts.
The negative samples are obtained by pairing the summary
vector with the node representations of a corrupted graph.
To encourage the positive samples to encode the structural
similarities of different nodes, as in DGI [23], the graph is
corrupted by row-wisely shuffling attribute matrix X , while
adjacency matrix A is preserved. The corrupted attributes
and original adjacency matrix are fed into the GNN layers
to obtain the node representations for negative samples, i.e.,
Ẽ =

[
ẽ1, . . . , ẽ|B|

]
. Similarly, a negative sample can be

denoted as (ẽi, r).
To classify the local-global pairs (i.e., positive samples)

and the corresponding corrupted counterparts (i.e., negative
samples), a bilinear scoring function, D, is applied to assign
a score indicating the possibility of a sample to be positive:

si = D (ei, r) = σ2
(
e>i Wbr

)
, i ∈ {1, . . . , |B|} , (5)

s̃i = D (ẽi, r) = σ2
(
ẽ>i Wbr

)
, i ∈ {1, . . . , |B|} , (6)

where Wb is a learnable scoring matrix. Finally, the objective
for this binary classification is as follows.

LMI = −
1

2 |B|

|B|∑
i=1

{logD (ei, r) + log [1−D (ẽi, r)]} (7)

The mutual information between ei and r will be maximized
by minimizing this loss function.

Note that node representations of both the source and
target graphs (Es and Et) are generated in the same way,
so the above descriptions are provided without mentioning
the specific graph. The loss regarding mutual information
(i.e., the unsupervised loss) is calculated for the source and
target graphs independently, i.e., Ls

MI and Lt
MI. The total

unsupervised loss is the summation of source and target losses.

LUN = Ls
MI + Lt

MI (8)

Furthermore, the same GNN layers is utilized to generate
node representations for the source and target graphs, that
is, parameter sharing is enabled when processing these two
graphs.

D. Node Label Prediction

To make the node embeddings label-discriminative, the
supervised signals (i.e., the node labels) in the source graph
are incorporated in the learning process. Specifically, we
construct a node classifier which is a logistic regression. Node
embeddings learned by the representation learner are fed into
this classifier to obtain label predictions.

ŷv = fc (ev) = σ3 (Wcev + bc) , v ∈ B. (9)

where fc is the node classifier; Wc and bc are learnable
weight matrix and bias vector, respectively. ŷ>v is one row in
prediction score matrix, Ŷ . Nonlinear activation, σ3, is usually
a sigmoid activation for multilabel classification or a softmax
activation for multiclass classification.

Since only the label information of source graph is available
during training, the cross-entropy loss (i.e., the supervised
loss) is calculated using the source labels Y s and the cor-
responding predictions Ŷ s. For multilabel classification, the
cross-entropy loss is defined as follows.

LCE=−Ev∈Bs

C∑
k=1

[
Y s
vklog

(
Ŷ s
vk

)
+(1−Y s

vk) log
(
1−Ŷ s

vk

)]
(10)

where Bs is a batch of nodes sampled from source graph,
binary element Y s

vk in label matrix Y s indicates whether a
node v ∈ Bs belongs to class k, and Ŷ s

vk is the corresponding
element in prediction score matrix Ŷ s. For multiclass classi-
fication, the cross-entropy loss is

LCE=−Ev∈Bs

C∑
k=1

[
Y s
vklog

(
Ŷ s
vk

)]
. (11)

E. Adversarial Domain Adaptation

Conditional adversarial networks [20] are leveraged to mit-
igate the domain gap between the source and target graphs.
Domain discriminator, fd, is constructed as a multilayer per-
ceptron (i.e., MLP) followed by a sigmoid activation. It is
conditioned on the discriminative information contained in the
classifier prediction. We construct a joint variable, hv , which
is a multilinear map defined as the outer product of classifier
prediction (i.e., ŷv) and embedding vector (i.e., ev), that is,

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 7

hv = ŷv ⊗ ev . Domain prediction is obtained by feeding the
joint variable into domain discriminator.

d̂v = fd (hv) (12)

where d̂v is a score indicating the probability that a joint
variable comes from the source graph.

Multilinear conditioning is employed to capture the cross-
covariance between node representation and classifier pre-
diction. By conditioning, domain divergence in both node
representation and classifier prediction can be modeled simul-
taneously. Domain discriminator is then optimized to tell apart
whether a joint variable is from the source or target graph.
Domain adaptation loss, LDA, is calculated as follows.

LDA = −1

2

{
Ev∈Bs log [fd (h

s
v)] + Ev∈Bt log

[
1− fd

(
ht
v

)]}
(13)

in which Bs and Bt are batches from the source and target
graphs; hs

v and ht
v are the joint variables of nodes in these

two batches.
To reduce the domain discrepancy, representation learner

and domain discriminator are trained in an adversarial man-
ner. Specifically, domain discriminator is trained to minimize
domain adaptation loss, LDA, thus improving its capability
of distinguishing the source and target samples. In contrast,
representation learner is trained to maximize the same loss,
so that the produced node representations can be domain-
invariant. We apply a gradient reversal layer (GRL) [26]
to simultaneous update representation learner and domain
discriminator. When minimizing the domain adaptation loss,
GRL flips the gradient with respect to the model parameters
in representation learner.

F. Overall Loss and Model Training

The overall loss of AdaGIn is comprised of supervised loss,
LCE, unsupervised loss, LUN, and domain adaptation loss,
LDA.

min
θg,θc

[
LCE + λ1LUN + λ2 max

θd
(−LDA)

]
(14)

where balance coefficients, λ1 and λ2, are named as mutual
information coefficient and domain adaptation coefficient, re-
spectively; θg , θc, and θd are the sets of learnable parameters
in representation learner, node classifier, and domain discrim-
inator, respectively.

Algorithm 1 outlines the training and testing procedures of
AdaGIn. During the minibatch training, we first independently
sample a batch of nodes from the source graph and a batch
of nodes from the target graph. Then the same GNN layers
is employed to compute representations for nodes in these
two batches. Next we calculate the unsupervised loss, the
supervised loss, and the domain adaptation loss one by one.
Finally, the model parameters of AdaGIn are updated via
gradient descent based on the overall loss in Eq. 14. When the
model converges after a number of epochs, the generated node
representations would be label-discriminative and domain-
invariant. In the testing stage, the classifier trained on source
nodes can be applied to classify target nodes with the target
node representations.

Algorithm 1: Algorithm of AdaGIn
Input : Fully labeled source graph Gs (V s,As,Xs,Y s);

unlabeled target graph Gt
(
V t,At,Xt

)
; batch size

Nb; maximum training epoch ne; maximum
iteration per epoch ni; coefficients λ1 and λ2.

1 Initialize model parameters θg for representation learner, θc
for node classifier, and θd for domain discriminator.

2 for epoch < ne do
3 for iteration < ni do
4 Sample a batch of source nodes (i.e., Bs) and a

batch of target nodes (i.e., Bt);
5 Compute source representations Es and target

representations Et using Eq. 3;
6 Calculate unsupervised loss LUN using Eq. 8;
7 Calculate supervised loss LCE using Eq. 10 or

Eq. 11;
8 Calculate domain adaptation loss LDA using Eq. 13;
9 Backpropagate the overall loss in Eq. 14 and update

θg , θc and θd.
10 end
11 end

Testing: With the optimized model parameters θg and θc,
target representation Et is computed using Eq. 3.
Target label prediction Ŷ t is subsequently
calculated using Eq. 9.

The time complexity of AdaGIn depends on its three mod-
ules, including representation learner (Eq. 3), node classifier
(Eq. 9), and domain discriminator (Eq. 12). As the GNN
layers follow the neighborhood aggregation strategy, the time
complexity of representation learner is similar to the one of
GraphSAGE [2] which is O

(∏K
k=1 sk

)
for each node. sk

is the neighborhood sample size at search depth k. K is the
maximum search depth. The time complexity of node classifier
and domain discriminator is proportional to the number of
nodes to be processed. Therefore, the overall complexity of
AdaGIn is linear to the total number of nodes, that is, the
scale of a graph.

G. Theoretical Analysis on Conditional Adversarial Networks

As introduced in Section III-E, a joint variable, hv , is
constructed to be the outer product of classifier prediction (i.e.,
ŷv) and embedding vector (i.e., ev). The label information,
conveyed by classifier prediction ŷv , potentially reveals the
multimodal structure behind data distribution ev ∼ P (ev).
Therefore, joint variable, hv , is expected to capture the
multimodal structure. Following CDAN [20], we provide a
generalization error analysis about the conditional adversarial
networks. For simplicity, we ignore subscript, v, in the fol-
lowing discussions.

We consider the source and target domains over a fixed
node representation space, e, and a family of source
node classifiers, G, in hypothesis space, H [26]. Let
εS (G) = E(e,y)∼S [G (e) 6= y] be the risk of a hypothe-
sis G ∈ H regarding source domain distribution S. Dis-
agreement between hypotheses G1, G2 ∈ H is denoted
as εS (G1, G2) = E(e,y)∼S [G1 (e) 6= G2 (e)]. Let G∗ =

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 8

argminG [εS (G) + εT (G)] be the ideal hypothesis that ex-
plicitly embodies the notion of adaptability. Note that target
domain distribution, T , is different from source domain dis-
tribution, S, that is, S 6= T . The probabilistic bound [57] of
target risk εT (G) of hypothesis G can be given with source risk
εS(G) and domain discrepancy |εS (G,G∗)− εT (G,G∗)|.

εT (G) 6εS (G) + [εS (G∗) + εT (G∗)]

+ |εS (G,G∗)− εT (G,G∗)| .
(15)

The goal of adversarial domain adaptation is to reduce domain
discrepancy |εS (G,G∗)− εT (G,G∗)|.

Following the derivations of CDAN [20], domain dis-
crepancy, |εS (G,G∗)− εT (G,G∗)|, has the following upper
bound.

|εS (G,G∗)− εT (G,G∗)|
6 sup

fd∈Hdisc

∣∣E(e,ŷ)∼SG
[fd (e, ŷ) = 1] + E(e,ŷ)∼TG

[fd (e, ŷ) = 0]
∣∣

= sup
fd∈Hdisc

|Eh∼SG [fd (h) = 1] + Eh∼TG [fd (h) = 0]| .

(16)
in which Hdisc is the family of domain discriminator fd; ŷ =
G (e) is the label prediction vector; SG = (e, G (e))e∼S(e)

and TG = (e, G (e))e∼T (e) are the proxies of the joint distri-
butions S(e,y) and T (e,y), respectively [58]; h = (e, ŷ) is
the joint variable.

The above upper bound has a close relation with do-
main adaptation loss, LDA, defined in Eq. 13. Referring to
the minimax paradigm shown in Eq. 14, this supremum is
achieved in the process of training the optimal discriminator
fd (i.e., max

θd
(−LDA)), thus giving an upper bound of domain

discrepancy |εS (G,G∗)− εT (G,G∗)|. Simultaneously, node
representation, e, is generated by representation learner, fg , to
minimize domain discrepancy (i.e., min

θg
(−LDA)). Therefore,

conditional adversarial networks can theoretically bound and
reduce the domain discrepancy, thus aligning the multimodal
distributions.

Furthermore, by minimizing the cross-entropy loss (i.e.,
min
θg
LCE, see Eq. 14), node classifier, fc, is optimized to

reduce source risk, εS(G). With the help of adversarial domain
adaptation, domain discrepancy |εS (G,G∗)− εT (G,G∗)| is
bounded and minimized, encouraging the source risk to ap-
proximate the target risk more closely (see Eq. 15). Therefore,
when applying the node classifier trained on the source graph
to the target graph, target risk, εT (G), would also be reduced,
resulting in improved node classification performance in the
target graph.

IV. EXPERIMENTS

In this section, we first evaluate the proposed method on
the task of cross-graph node classification. An ablation study
is then conducted on the contributions of mutual information
maximization, multilinear conditioning, and domain adapta-
tion. Next, we investigate the performance under varying
common attribute rates. Finally, we analyze the influences
of the critical hyperparameters, including initial learning rate,
embedding dimension, and mutual information coefficient.

TABLE II
SUMMARY OF DATASETS.

Dataset #Nodes #Edges
Average
Degree

#Attributes
#Union

Attributes
#Labels

ACMv9 9,360 15,602 3.33 5,571
6,775 5Citationv1 8,935 15,113 3.38 5,379

DBLPv7 5,484 8,130 2.96 4,412

Blog1 2,300 33,471 29.11 8,125
8,189 6

Blog2 2,896 53,836 37.18 8,162

∗ “#Nodes” means the number of nodes. The rest can be deduced by analogy.

A. Experimental Setup

1) Datasets: As shown in Table II, following [6]–[8], ex-
periments are conducted on five real-world networks. The three
citation networks (i.e., ACMv9, Citationv1, and DBLPv7) are
provided by ArnetMiner [59]. They are extracted from ACM,
Microsoft Academic Graph, and DBLP, respectively. Papers
in these three networks are published in different periods, i.e.,
after year 2010, before year 2008, and between years 2004
and 2008, respectively. Each citation network is modeled as an
undirected graph. Specifically, a node represents one paper. An
edge indicates a citation link between two papers, ignoring the
direction. The attributes of a node are represented by a bag-of-
words vector, indicating keywords extracted from the title of
the corresponding paper. The number of union attributes (i.e.,
6775) is the total number of attributes in these three graphs.
According to the research topics, each node is categorized
into some of the five classes, including “Database”, “Artificial
Intelligence”, “Computer Vision”, “Information Security”, and
“Networking”.

Since papers in three citation networks are extracted from
different databases and published in different time periods,
the corresponding data distributions of these networks would
also be diverse. Although label categories are the same, the
statistics of graph scale, node attributes, and edge connections
vary across graphs, indicating the intrinsic discrepancy be-
tween graphs. These graphs have no common nodes or edge
connections, which further enlarges the divergence. Therefore,
it would be challenging to transfer knowledge from one graph
to facilitate node classification in another graph.

The two social networks (i.e., Blog1 and Blog2) are disjoint
subnetworks from the BlogCatalog dataset [60]. A node repre-
sents one blogger. An undirected edge indicates the friendship
between two bloggers. Node attribute vector is obtained using
the keywords in the blogger’s self-description. Each node
belongs to one class that is designated by the blogger’s
interest group. Compared with the citation networks, the social
networks have higher average degrees, indicating each node
has a larger number of neighbors. Nodes in the social networks
also have richer attributes. Since the two social networks are
extracted from the same network, they have close attribute
distributions.

The proposed method is evaluated by conducting multilabel
node classification in six transfer tasks, including D→A,
A→D, C→A, A→C, D→C, and C→D. A, C, and D denote
ACMv9, Citationv1, and DBLPv7, respectively. The arrow,

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 9

TABLE III
COMMON ATTRIBUTE RATE IN EACH TRANSFER TASK.

Transfer Task
D→A
A→D

C→A
A→C

D→C
C→D

B1→B2
B2→B1

#Common Attributes 3,621 4,285 3,783 8,098
#Union Attributes 6,362 6,665 6,008 8,189
Common Attribute Rate 56.92% 64.29% 62.97% 98.89%

“→”, indicates the direction of knowledge transfer, that is,
from a fully labeled source graph to a completely unlabeled
target graph. The evaluation is further conducted by perform-
ing multiclass classification in transfer tasks B1→B2 and
B2→B1. The two social networks, Blog1 and Blog2, are
denoted by B1 and B2, respectively. The common attribute
rate in each transfer task can be found in Table III, where the
number of union attributes is the total number of attributes in
the designated source and target graphs.

2) Baselines: The baselines are of three kinds, including
graph neural networks for learning on a single graph, typical
domain adaptation methods, and transfer learning methods
specifically designed for graph data.

• GCN [3], GAT [42], and GraphSAGE [2]: They are well-
known graph neural networks for single-graph node clas-
sification. GCN devises a simplified spectral filter to per-
form convolution on graphs. GraphSAGE samples fixed-
size neighbors first, then generates node representations
by aggregating neighborhood information. Instead of
neighborhood sampling, GAT assigns learnable weights
to all neighboring nodes in the aggregation process. These
three GNN models are trained on the labeled source
graph, and then directedly evaluated on the unlabeled
target graph.

• DANN [26], CDAN [20], and WDGRL [27]: These
adversarial domain adaption approaches are originally
designed for transfer learning on images or text. To
process graph data, their representation learning modules
are constructed as multilayer perceptrons (MLPs), which
only take node attributes as input, ignoring the graph
structure.

• GCC [55], NetTr [52], CDNE [6], ACDNE [7],
AdaGCN [8], and UDA-GCN [9]: They are designed
for cross-graph learning. The GCC model is pre-trained
to discover common structural patterns across multiple
source graphs, and then fine-tuned on the target graph.
NetTr discovers structural representations that are trans-
ferrable across graphs. CDNE achieves domain adapta-
tion by incorporating the MMD loss [54] across graphs in
an autoencoder architecture. ACDNE utilizes two feature
extractors to separately preserve attribute affinity and
topology proximity. UDA-GCN develops a dual graph
convolutional network. Both ACDNE and UDA-GCN
employs the gradient reversal layer [26] to perform do-
main adaptation. AdaGCN improves the transferrability
of GCN [3] by minimizing the Wasserstein distance [28]
between the source and target representations.

3) Implementation Details: The proposed method, AdaGIn,
is implemented using PyTorch. Table IV presents the hy-
perparameters selected for each transfer task. Representation
learner, fg , consists of the GNN layers in which the layer
sizes are selected in {128, 256, 512, 1024, 2048}. For example,
in transfer task D→A, the dimensions of three GNN layers
are 1024, 512, and 128 in sequence, which are denoted
as “1024/512/128”. The dropout rate of each GNN layer
is 0.5. Node classifier, fc, is a logistic regression. Domain
discriminator, fd, is a multilayer perceptron (MLP) containing
three hidden layers, with the layer dimensions set as 512, 64,
and 16. Its output is of one dimension followed by a sigmoid
activation.

We train the AdaGIn model over shuffled minibatches
using the Adam optimizer [61], with a batch size of 32.
Initial learning rate, η0, is chosen from {0.005, 0.010, 0.015}.
To prevent overfitting, L2 regularization is imposed on all
learnable weights, with the weight decay term set as 5×10−5.
Following DANN [26], learning rate, ηp, is decayed by
ηp = η0 (1 + 10p)

−0.75, where training progress p increases
from 0 to 1. In the overall loss function (i.e., Eq. 14),
mutual information coefficient, λ1, is set as 0.1 for the
citation graphs and 1.0 for the social graphs. Starting from 0,
domain adaptation coefficient, λ2, is progressively increased
by λ2 = 2 (1 + exp (−10p))−1 − 1. The maximum value of
λ2 is set as 0.2 for the citation graphs.

GCN and AdaGCN are implemented with PyTorch fol-
lowing the AdaGCN paper [8]. We train both mod-
els for 200 epochs with learning rates selected in
{0.005, 0.010, 0.015, 0.020}. The GCN model embedded in
AdaGCN has three layers with the layer sizes chosen from
{128, 256, 512, 1024, 2048}. Domain adaptation coefficient is
searched in {0.001, 0.01, 0.1}. Gradient penalty coefficient
is chosen from {1, 10, 100}. The training step of domain
discriminator is either 10 or 20. The domain discriminator
of AdaGCN is removed when calculating the results of GCN.

The setup of GAT follows the original paper [42], while
two attention heads are applied in the first layer due to the
memory constraint. We adapt GraphSAGE to transductive
setting, and employ its max-pooling variant (i.e., GS-pool) due
to its preferable performance and computational efficiency [2].
The architectures of DANN and CDAN are similar to AdaGIn,
except that their representation learners are MLPs. WDGRL
also employs a MLP to generate node representations, with
the settings similar to AdaGCN.

With only one source graph in our case, it is unfeasible
to pre-train a GCC model, since its pre-training requires
multiple source graphs as input. Therefore, we use the pre-
trained model2 provided by the authors to generate node
representations for the source and target graphs. Then we train
a logistic regression classifier using the labeled source graph.
The trained classifier is subsequently applied to classify nodes
in the unlabeled target graph.

The results of NetTr are directly taken from the ACDNE
paper [7]. In order to calculate standard deviations and perform

2https://github.com/THUDM/GCC

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/THUDM/GCC

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 10

TABLE IV
HYPERPARAMETER SELECTION FOR ADAGIN.

Source Target Epoch η0 Weight Decay Dropout Batch Size fg s∗ fd

D A

50

0.010

5× 10−5 0.5 32

1024/512/128

{10, 10, 10}

512/64/16

A D
C A 0.015 512/128/128
A C 0.010 1024/256/128
D C 0.005 1024/512/128
C D

0.010
2048/128

{10, 10}
B1 B2

100 {10, 2}
B2 B1 0.015
∗ A set {s1, . . . , sK} contains the neighborhood sample size sk at each search depth k ∈ {1, . . . ,K}.

t-test, we execute the official source codes 3 4 to evaluate
CDNE and ACDNE. We find the results of CDNE and
ACDNE are slightly better than, or very close to, the reported
ones in the ACDNE paper. UDA-GCN is also tested using its
source codes5 with almost every key hyperparameter tuned.
There are two or three GNN layers with the layer sizes selected
in {128, 256, 512, 1024, 2048}. The learning rate is swept in
{0.0001, 0.001, 0.01}. The weight decay coefficient is chosen
from {0.00005, 0.0005, 0.005, 0.05, 0.5}.

Following ACDNE, the embedding dimension (i.e., l) is set
as 128 for every method except for GCC. The embedding
dimension of GCC is fixed as 64 by the provided pre-trained
model. For each method, we report the mean values and the
standard deviations of F1 scores after five runs with different
random seeds. Note that the standard deviations of NetTr are
not reported in the ACDNE paper. All the experiments are
conducted on a computer with one NVIDIA GeForce GTX
1080Ti GPU (11 GB of RAM), an Intel(R) Core(TM) i7-
8700K CPU (6 cores, 3.70 GHz), and 32 GB of RAM.

B. Cross-graph Node Classification

Experiments are conducted under the unsupervised domain
adaptation setting, in which the source graph is fully labeled,
and the target graph is completely unlabeled. The F1 scores
(i.e., Micro-F1 score and Macro-F1 score) are reported to
quantify the node classification performance in the target
graph. We introduce the experimental results in the citation
and social graphs separately.

1) Node Classification in Citation Graphs: As shown in
Table V and Table VI, the first group of baselines are GNNs
including GCN [3], GAT [42], and GraphSAGE [2]. The
GNN models are trained in the source graph and then directly
evaluated in the target graph. Domain adaptation techniques
are not utilized in these cases. Since the information of target
graph is unavailable during training, referring to DANN [26],
these baselines are called as the source-only models.

GCN performs best in this group. The strengths of GNN
models are twofold. One is that the GNN models explore and
capture structural information, like edge connections, to learn
meaningful node representations. Such structural relations are

3https://github.com/shenxiaocam/CDNE
4https://github.com/shenxiaocam/ACDNE
5https://github.com/mandy976/UDAGCN

commonly seen among graphs. Thus, the GNN model trained
in the source graph has the potential to encode important struc-
tural properties in the target graph. The other is that the three
citation graphs share some common attributes (see Table III).
The GNN models considered here can jointly encode node
attributes and graph structure to compute node representations.
The common attributes help shrink the domain divergence
between graphs, thus improving the model performance when
testing in the target graph. Further investigation on common
attribute rate are presented in Section IV-D.

In the second group of baselines (i.e., DANN [26],
CDAN [20], and WDGRL [27]), the models only take node
attributes as input, ignoring the structural relations between
nodes. It is similar to the way when processing the image
data which is assumed to be independent and identically
distributed (i.i.d.). Even though domain adaptation techniques
are employed in these methods, their performance is generally
inferior to other groups, including the source-only models.
Therefore, when solely utilizing the node attributes of citation
graphs, the generated node representations are not that label-
discriminative. Furthermore, in such cases, domain discrep-
ancy would be too large to be effectively reduced by these
domain adaptation techniques. Since the nodes in a graph are
correlated by edge connections violating the i.i.d. assumption,
to improve classification performance, it is crucial to devise
methods that incorporate structural information.

In the third group of baselines (i.e., GCC [55], NetTr [52],
CDNE [6], ACDNE [7], AdaGCN [8], and UDA-GCN [9]),
clear underperformance is observed in GCC. As introduced in
Section IV-A3, although node representations can be generated
using the pre-trained GCC model, a node classifier cannot be
directly trained using the unlabeled target graph. Instead, we
have to train the classifier with the labeled source graph first,
and then test it in the target graph. It degrades the performance
of GCC model. More importantly, GCC cannot exploit node
attributes which are crucial for representation learning in the
attributed graphs. Specifically, the affinity of node attributes
could be a predictor for node labels [7]. The neighborhood
attribute information also contributes to learning meaningful
node representations [2]. Similarly, NetTr learns transferrable
latent representations solely based on graph topology, conse-
quently leading to underperformance.

In Table V and Table VI, AdaGIn ranks first in all six trans-
fer tasks, yielding the highest averaged F1 scores. ACDNE is

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/shenxiaocam/CDNE
https://github.com/shenxiaocam/ACDNE
https://github.com/mandy976/UDAGCN

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 11

TABLE V
MICRO-F1 SCORE (%) OF NODE CLASSIFICATION IN TARGET CITATION GRAPH.

Method D→A A→D C→A A→C D→C C→D Average

GCN [3] 70.80 (0.67) 72.85 (0.58) 74.84 (0.65) 77.28 (1.26) 75.39 (0.54) 75.45 (0.44) 74.44
GAT [42] 65.64 (0.66) 71.34 (0.46) 70.06 (0.43) 75.80 (0.38) 72.44 (0.36) 73.79 (0.51) 71.51
GraphSAGE [2] 61.10 (1.40) 63.94 (2.66) 68.30 (1.26) 67.34 (1.83) 66.66 (1.83) 69.81 (0.88) 66.19

DANN [26] 51.70 (0.57) 53.84 (0.76) 53.23 (1.07) 53.42 (0.76) 52.42 (0.98) 56.58 (0.81) 53.53
CDAN [20] 51.43 (0.42) 53.78 (0.92) 53.18 (1.27) 53.70 (0.98) 52.64 (0.84) 56.73 (0.72) 53.58
WDGRL [27] 47.75 (1.19) 50.46 (0.71) 51.52 (1.41) 49.70 (1.77) 50.03 (2.01) 51.78 (1.03) 50.21

GCC [55] 27.25 (0.31) 21.85 (0.23) 27.93 (0.13) 23.09 (0.25) 40.43 (0.25) 37.97 (0.11) 29.75
NetTr [52] 56.23 56.30 57.75 58.81 59.11 59.88 58.01
CDNE [6] 77.01 (0.32) 71.99 (0.29) 77.42 (0.63) 79.00 (0.32) 79.51 (0.45) 74.10 (0.24) 76.51
ACDNE [7] 76.30 (0.53) 76.92 (0.44) 79.58 (0.30) 83.31 (0.10) 82.14 (0.23) 77.24 (0.90) 79.25
AdaGCN [8] 73.78 (1.23) 75.15 (0.30) 76.37 (0.79) 81.67 (0.43) 79.61 (0.91) 76.67 (0.24) 77.21
UDA-GCN [9] 65.93 (2.03) 73.33 (1.02) 70.76 (2.36) 75.50 (1.68) 70.94 (2.12) 74.86 (1.34) 71.89

AdaGIn [ours] 78.07 (0.55) 77.73 (0.32) 79.69 (0.46) 83.49 (0.17) 83.16 (0.49) 77.83 (0.09) 80.00
* A: ACMv9, C: Citationv1, D: DBLPv7. In each column, the highest F1 score is highlighted in bold and the top two are

underlined. The standard deviations are given in parentheses.

TABLE VI
MACRO-F1 SCORE (%) OF NODE CLASSIFICATION IN TARGET CITATION GRAPH.

Method D→A A→D C→A A→C D→C C→D Average

GCN [3] 69.85 (0.54) 70.35 (0.69) 74.07 (0.66) 75.09 (1.32) 73.22 (0.48) 73.20 (0.54) 72.63
GAT [42] 56.00 (1.75) 64.72 (0.61) 62.91 (0.39) 69.38 (0.62) 64.09 (2.11) 68.12 (0.61) 64.20
GraphSAGE [2] 57.84 (2.06) 59.67 (2.63) 65.99 (1.79) 62.62 (0.80) 60.30 (1.80) 66.88 (1.16) 62.22

DANN [26] 47.61 (0.57) 49.80 (0.60) 50.37 (1.17) 51.39 (0.90) 49.65 (0.94) 52.67 (0.17) 50.25
CDAN [20] 47.00 (0.61) 49.75 (0.34) 49.39 (1.71) 50.83 (0.82) 49.55 (1.03) 52.89 (0.39) 49.90
WDGRL [27] 42.91 (1.49) 45.73 (1.48) 47.75 (2.05) 46.54 (0.99) 46.00 (1.72) 46.67 (0.62) 45.93

GCC [55] 19.17 (0.24) 15.19 (0.23) 21.77 (0.13) 16.69 (0.14) 30.86 (0.21) 28.83 (0.22) 22.09
NetTr [52] 50.99 49.80 53.44 55.46 55.53 55.18 53.40
CDNE [6] 76.37 (0.46) 69.72 (0.23) 77.11 (0.66) 77.08 (0.33) 77.96 (0.41) 71.86 (0.25) 75.02
ACDNE [7] 76.23 (0.55) 75.14 (1.02) 78.97 (0.53) 81.64 (0.06) 80.10 (0.56) 75.88 (0.97) 77.99
AdaGCN [8] 73.62 (1.30) 72.80 (0.51) 75.97 (0.72) 80.13 (0.48) 77.47 (0.88) 74.83 (0.54) 75.80
UDA-GCN [9] 56.64 (5.39) 70.44 (1.81) 69.30 (2.21) 72.95 (1.92) 61.64 (2.72) 70.46 (3.20) 66.91

AdaGIn [ours] 77.76 (0.53) 75.57 (0.44) 79.21 (0.50) 82.02 (0.27) 81.67 (0.43) 76.16 (0.32) 78.73
* A: ACMv9, C: Citationv1, D: DBLPv7. In each column, the highest F1 score is highlighted in bold and the top two are

underlined. The standard deviations are given in parentheses.

the best performing baseline. In Table V, the relative perfor-
mance gains of AdaGIn over ACDNE are 2.32%, 1.05%, and
1.24% in transfer tasks D→A, A→D, and D→C, respectively.
In the t-test, the corresponding p-values are 1.57 × 10−3,
4.85×10−2, and 3.81×10−2, respectively. As the p-values are
smaller than 0.05, the improvements of AdaGIn over ACDNE
are statistically significant in these transfer tasks. In summary,
AdaGIn surpasses the prior arts by incorporating the local-
global mutual information and conditional adversarial domain
adaptation.

2) Node Classification in Social Graphs: As reported in
Table VII, the methods discussed above are further tested in
the social graphs. The domain discrepancy between Blog1
and Blog2 is reduced by their close attribute distributions
(see Section IV-A1). Therefore, the F1 scores of AdaGIn

are much higher than those in the citation graphs. AdaGIn
outperforms ACDNE in transfer tasks B1→B2 and B2→B1.
The corresponding p-values (i.e., 4.95×10−3 and 3.57×10−2)
are smaller than 0.05, indicating that the improvements are
statistically significant. Note that AdaGIn has an improvement
over CDAN by incorporating the structural information in the
domain adaptation process.

As shown in Table II, compared with the citation graphs, the
social graphs have richer node attributes and higher average
degrees, which means the nodes have more attributes and
neighbors. Therefore, when evaluated in the social graphs, we
observe distinct relative performance among the methods.

The spectral GNN methods, AdaGCN and UDA-GCN, have
clear underperformance in comparison with AdaGIn. The
spectral GNNs exploit the whole neighborhood of a node,

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 12

TABLE VII
F1 SCORE (%) OF NODE CLASSIFICATION IN TARGET SOCIAL GRAPH.

Source Target GCN [3] GAT [42] GraphSAGE [2] DANN [26] CDAN [20] WDGRL [27] GCC [55] NetTr [52] CDNE [6] ACDNE [7] AdaGCN [8] UDA-GCN [9] AdaGIn [ours]

Micro-F1
(%)

B1 B2 68.60 (0.82) 72.85 (0.50) 91.26 (0.05) 91.66 (0.28) 91.66 (0.48) 87.49 (0.65) 27.55 (0.80) 82.18 87.67 (0.68) 95.39 (0.10) 70.12 (0.20) 74.41 (0.80) 96.15 (0.32)
B2 B1 69.14 (1.29) 73.23 (0.79) 91.50 (0.08) 91.51 (0.43) 91.53 (0.38) 87.52 (2.41) 26.99 (0.51) 82.17 84.09 (0.44) 94.92 (0.17) 70.01 (0.25) 74.82 (0.76) 95.25 (0.10)
Average 68.87 73.04 91.38 91.59 91.60 87.51 27.27 82.18 85.88 95.16 70.07 74.62 95.70

Macro-F1
(%)

B1 B2 68.18 (0.98) 72.16 (0.73) 91.15 (0.05) 91.55 (0.29) 91.57 (0.48) 87.37 (0.65) 26.15 (0.68) 81.83 87.55 (0.67) 95.32 (0.10) 69.63 (0.26) 74.21 (0.90) 96.11 (0.33)
B2 B1 68.14 (1.54) 72.04 (0.76) 91.29 (0.08) 91.30 (0.43) 91.31 (0.39) 87.32 (2.37) 26.36 (0.53) 81.91 83.95 (0.43) 94.81 (0.18) 69.09 (0.28) 74.10 (0.94) 95.16 (0.10)
Average 68.16 72.10 91.22 91.43 91.44 87.35 26.26 81.87 85.75 95.07 69.36 74.16 95.64

* B1: Blog1, B2: Blog2. In each row, the highest F1 score is highlighted in bold and the top two are underlined. The standard deviations are given in parentheses.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

(a) Citation graphs (b) Social graphs

Fig. 4. Percentage of each class nodes in the neighborhood. The central node
is the largest degree node of a graph. Class index of the central node is 4, 3,
3, 3, and 6 in ACMv9, Citationv1, DBLPv7, Blog1, and Blog2, respectively.

which might introduce certain noise and degrade the model
performance. Instead, AdaGIn reduces noise by sampling
some of the neighboring nodes. Similarly, among the source-
only models, GraphSAGE largely outperforms GCN and GAT
with the help of neighborhood sampling. Although GAT is a
spatial GNN model, it also exploits the entire neighborhood
without sampling [42]. In addition, even though DANN and
CDAN ignore the neighborhood information, they still have
impressive performance, which reveals that node attributes in
the social graphs are informative for learning meaningful node
representations.

The benefit of neighborhood sampling in the social graphs
can be supported by analyzing the labels of neighboring nodes.
It can be seen in Figure 4 that, in the citation graphs, most
neighboring nodes belong to the class of the central node.
However, in the social graphs, only around 50%, or even less,
neighboring nodes are of the same class as the central node.
For clarity, we use the same set of class index for the citation
and social graphs, although these two kinds of graphs have
different definitions for each class. Note that, there are five
classes in the citation graphs and six classes in the social
graphs, respectively.

GCN and GAT compute the representation of a node as
the weighted average of its previous representation and its
neighbors’. Such smoothing operation makes the connected
nodes have close representations, which leads to similar label
predictions in the subsequent classification task [18]. The
homophily assumption behind this smoothing operation is that
the nodes with edge connections are likely to be of the same
class [3]. Figure 4 shows that there are more neighboring nodes
violating this assumption in the social graphs. GCN and GAT

(a) From C to A (b) From D to A

Fig. 5. Loss over training epochs.

utilize the complete neighbor set, which would lead to their un-
derperformance in the social graphs. AdaGCN and UDA-GCN
follow the way of GCN to compute node representations, thus
also encountering performance degradation. Instead, AdaGIn
and GraphSAGE sample nodes from the neighborhood. The
sampled neighbor set has fewer nodes that belong to classes
different from the one of the central node. The classification
performance is consequently improved.

3) Loss Curve during Training: Figure 5 shows the curve of
each loss with respect to the training epoch. Two representative
transfer tasks, C→A and D→A, are presented as examples.
According to Eq. 14, the overall loss for training the GNN
layers can be computed by L = LCE+λ1LUN−λ2LDA. There
is a steady decrease in the overall loss with a reduced decrease
rate, indicating the model training gradually converges. Similar
trends can be seen in supervised loss LCE and unsupervised
loss LUN. In contrast, with the overall loss minimized during
training, domain adaptation loss, LDA, increases first and
converges around five epochs. Note that the GNN layers are
trained to raise the domain adaptation loss, thus generating
domain-invariant node representations.

C. Ablation Study

In this section, we investigate three key components in the
AdaGIn model, including mutual information maximization
(MI), multilinear conditioning (CD), and domain adaptation
(DA). The investigation is conducted by removing some of the
components to construct a variant of AdaGIn (see the left side
of Table VIII or Table IX). The contribution of one component
can be indicated by the changes in F1 scores caused by its
removal. The following AdaGIn variants are constructed for
comparison.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 13

TABLE VIII
MICRO-F1 SCORE (%) OF ADAGIN VARIANTS.

MI CD DA Model Variant D→A A→D C→A A→C D→C C→D B1→B2 B2→B1 Average

X X X AdaGIn 78.07 (0.55) 77.73 (0.32) 79.69 (0.46) 83.49 (0.17) 83.16 (0.49) 77.83 (0.09) 96.15 (0.32) 95.25 (0.10) 83.92

X X AdaGIn-MI 72.91 (0.44) 75.48 (0.60) 76.24 (0.56) 80.99 (0.34) 78.83 (0.65) 76.10 (0.29) 93.29 (0.56) 92.82 (0.15) 80.83
X X AdaGIn-CD 77.10 (0.48) 76.81 (0.09) 78.97 (0.39) 83.18 (0.24) 82.25 (0.16) 77.38 (0.26) 95.92 (0.06) 94.83 (0.36) 83.31
X AdaGIn-DA 76.16 (0.19) 75.46 (0.11) 78.71 (0.21) 82.68 (0.16) 81.95 (0.10) 76.71 (0.45) 93.05 (0.29) 92.66 (0.14) 82.17

X AdaGIn-MI-CD 72.58 (0.36) 74.92 (0.59) 76.01 (0.16) 80.58 (0.40) 78.92 (0.41) 76.56 (0.39) 93.98 (0.31) 93.08 (0.18) 80.83
AdaGIn-MI-DA 68.44 (0.76) 70.93 (0.54) 73.31 (0.11) 76.64 (0.56) 73.45 (1.33) 73.01 (0.37) 91.91 (0.15) 91.99 (0.11) 77.46

∗MI: mutual information maximization, CD: multilinear conditioning, DA: domain adaptation. The signs “X” and “-” indicate the existence and removal of one component,
respectively. The highest Micro-F1 score in each column is highlighted in bold. The standard deviations are given in parentheses.

TABLE IX
MACRO-F1 SCORE (%) OF ADAGIN VARIANTS.

MI CD DA Model Variant D→A A→D C→A A→C D→C C→D B1→B2 B2→B1 Average

X X X AdaGIn 77.76 (0.53) 75.57 (0.44) 79.21 (0.50) 82.02 (0.27) 81.67 (0.43) 76.16 (0.32) 96.11 (0.33) 95.16 (0.10) 82.96

X X AdaGIn-MI 72.22 (0.67) 73.47 (1.21) 75.64 (0.45) 79.45 (0.43) 76.45 (0.65) 74.49 (0.57) 93.23 (0.58) 92.64 (0.16) 79.70
X X AdaGIn-CD 76.92 (0.53) 74.85 (0.28) 78.40 (0.27) 81.89 (0.35) 80.74 (0.25) 75.98 (0.30) 95.87 (0.07) 94.71 (0.36) 82.42
X AdaGIn-DA 75.39 (0.29) 73.03 (0.39) 78.07 (0.34) 80.84 (0.16) 80.14 (0.18) 74.90 (0.52) 92.98 (0.28) 92.51 (0.15) 80.98

X AdaGIn-MI-CD 71.97 (0.22) 73.19 (1.01) 75.51 (0.09) 79.07 (0.60) 77.45 (0.41) 75.34 (0.67) 93.91 (0.31) 92.89 (0.18) 79.92
AdaGIn-MI-DA 66.84 (0.91) 68.15 (0.47) 71.78 (0.35) 74.22 (0.41) 71.20 (1.05) 70.91 (0.54) 91.82 (0.14) 91.81 (0.08) 75.84

∗MI: mutual information maximization, CD: multilinear conditioning, DA: domain adaptation. The signs “X” and “-” indicate the existence and removal of one component,
respectively. The highest Macro-F1 score in each column is highlighted in bold. The standard deviations are given in parentheses.

• AdaGIn-MI: A variant of AdaGIn without mutual in-
formation maximization (MI). The unsupervised loss is
removed from the overall loss function (i.e., Eq. 14).

• AdaGIn-CD: A variant of AdaGIn without multilinear
conditioning (CD). The domain discriminator is not con-
ditioned on the label predictions. It directly takes the em-
bedding vectors as input and outputs domain predictions.

• AdaGIn-DA: A variant of AdaGIn without domain adap-
tation (DA). We remove the domain discriminator in the
model architecture and the domain adaptation loss in the
overall loss function (i.e., Eq. 14).

• AdaGIn-MI-CD: A variant of AdaGIn without mutual
information maximization (MI) and multilinear condi-
tioning (CD).

• AdaGIn-MI-DA: A variant of AdaGIn without mutual
information maximization (MI) and domain adaptation
(DA).

Note that when the domain discriminator is removed, the
multilinear conditioning disappears simultaneously. Therefore,
AdaGIn-MI-DA is a variant without all the three key compo-
nents.

1) Performance of Model Variants: As shown in Table VIII
and Table IX, the averaged Micro-F1 score of AdaGIn drops
by 3.09% (absolute difference) when the MI component is
removed (i.e., AdaGIn-MI), which empirically validates the
importance of preserving the local-global mutual information.
Similarly, in the averaged Micro-F1 score, a 1.75% drop
(absolute difference) is caused by the removal of DA com-
ponent from the AdaGIn model (see AdaGIn-DA). Mutual
information maximization is applied in both the source and

target graphs. Therefore, although the DA component has been
removed, AdaGIn-DA is still optimized with the unsupervised
loss calculated in the target graph. Compared with AdaGIn,
this helps keep the performance from dropping greatly. To
validate this point, we further remove the MI component
to obtain a source-only model, i.e., AdaGIn-MI-DA. The
information of target graph is entirely unknown when training
the source-only model. In comparison with AdaGIn-MI, there
is a decrease by 3.37% (absolute difference) in the averaged
Micro-F1 score due to the lack of DA component.

The domain adaptation component of AdaGIn conditions
domain discriminator on the label predictions. The efficacy
of multilinear conditioning is empirically validated by the
performance drop due to its removal (see AdaGIn-CD). How-
ever, when MI is removed, the improvement of AdaGIn-MI
over AdaGIn-MI-CD cannot be consistently observed in all
transfer tasks. Mutual information maximization contributes
to learning more informative node representations and more
accurate label predictions, which is likely to enhance the
capability of multilinear conditioning.

In Table VIII and Table IX, we observe the MI component
produces larger performance gains when the target graph is of
large scale (i.e., ACMv9 and Citationv1). For example, con-
sidering the absolute difference between AdaGIn and AdaGIn-
MI, when the mutual information is maximized, the Micro-
F1 score increases by 5.16% in D→A and 4.33% in D→C
which are much higher than 1.73% in C→D. As introduced in
Section III-C, neighborhood information is repeatedly aggre-
gated to generate the representation of a node. Therefore, node
representation can be treated as the local patch representation

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 14
F

ro
m

 C
 t
o
 A

F
ro

m
 D

 t
o
 A

AdaGIn AdaGIn-MI AdaGIn-CD AdaGIn-MI-CD AdaGIn-DA AdaGIn-MI-DA

Fig. 6. Node representations visualized in the 2D space using t-SNE (best viewed in color). Each point represents one node. The points in orange and brown
are from the source graph, and the points in pink and blue are from the target graph. The orange and pink points belong to “Computer Vision”, whereas the
brown and blue points belong to “Information Security”.

in a graph. To avoid memory overflow, we have to restrict
the neighborhood search depth and the sample size in each
depth, which results in a limited patch size. Consequently,
if a graph consists of a large number of nodes, it would be
more difficult for the node representation to capture the global
structural information. Under such circumstances, the model
performance is more likely to benefit from the maximization
of local-global mutual information.

2) Visualization of Node Representations: As a qualitative
evaluation, Figure 6 visualizes the node representations in the
2D space using t-SNE [62]. For clarity, two transfer tasks
are taken as examples (i.e., C→A and D→A), in which
ACMv9 serves as the target graph. We only show the nodes
from two classes, i.e., “Computer Vision” and “Information
Security”. Node representations generated by AdaGIn have
the most preferable visualization. Specifically, the same class
nodes are projected together, regardless of whether they are
from the source or target graph. Furthermore, the clusters
of the two classes are separated more clearly. By comparing
the visualizations of AdaGIn and its variants, we have the
following observations.
• Mutual information maximization (MI) improves the la-

bel predictions, consequently making the clusters of the
two classes more separable in most cases.

• Domain adaptation (DA), which includes a conditional
discriminator, improves the multimodal alignment in the
2D space. Specifically, the clusters of the two classes have
a clearer separation. Meanwhile, a larger overlap can be
seen in the clusters of the same class.

• Multilinear conditioning (CD) contributes to distinguish-
ing the clusters of different classes and aligning the
clusters of the same class together.

3) Effect of Global Information: We further analyze the
effect of global information encoded from various domains.
Specifically, we use “SMI” and “TMI” to denote the mutual

TABLE X
MODEL PERFORMANCE (MICRO-F1, %) WITH GLOBAL INFORMATION

ENCODED FROM VARIOUS DOMAINS.

Model Variant Citation Graphs Social Graphs

AdaGIn 80.00 95.70

AdaGIn-MI 76.76 93.06
AdaGIn-TMI 77.08 94.53
AdaGIn-SMI 79.08 94.72

∗ TMI: the MI component applied in the target graph,
SMI: the MI component applied in the source graph.
The highest Micro-F1 score in each column is
highlighted in bold.

information maximization applied in the source graph and in
the target graph, respectively. Then two AdaGIn variants are
constructed for comparison.

• AdaGIn-TMI: A variant of AdaGIn without mutual in-
formation maximized in the target graph. In other words,
MI is merely applied in the source graph to encode the
global structural information.

• AdaGIn-SMI: A variant of AdaGIn without applying
mutual information maximization in the source graph.
From another perspective, MI is solely applied in the
target graph to encode the global structural information.

As shown in Table X, when the MI component is removed
from one of the graphs, there is a clear performance drop (see
AdaGIn-TMI and AdaGIn-SMI). It indicates that the model
performance benefits from the MI component regardless of
which graph it is applied. Furthermore, the decrease of Micro-
F1 score observed in AdaGIn-TMI is larger than the one in
AdaGIn-SMI. Since the model is evaluated in the target graph,
it would be more beneficial to directly maximize the mutual
information in the target graph. With the MI component

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 15

AdaGInAdaGIn AdaGIn-MIAdaGIn-MI AdaGIn-MI-DAAdaGIn-MI-DAAdaGIn AdaGIn-MI AdaGIn-MI-DA

(a) From C to A (b) From D to A(a) From C to A (b) From D to A

AdaGIn AdaGIn-MI AdaGIn-MI-DA

(a) From C to A (b) From D to A

Fig. 7. Micro-F1 score under varying common attribute rate.

removed from both the source graph and the target graph,
the Micro-F1 score has the largest drop (see AdaGIn-MI).
Therefore, it is desirable to jointly apply the MI component
in the source and target graphs. The above observations are
found to be consistent in the citation graphs and the social
graphs.

D. Distribution Discrepancy Analysis

In this section, we investigate the influence of common
attribute rate (i.e., Ra) on the model performance. As in-
troduced in Section III-A, common attribute rate, Ra, is
the percentage of common attributes shared by the source
and target graphs. We conduct the investigation by removing
some of the common attributes. Lower common attribute rate
indicates larger distribution discrepancy between the source
and target graphs.

In the two representative transfer tasks (i.e., C→A and
D→A), the original common attribute rates are 64.29% and
56.92%, respectively (see Table III). In Figure 7, by comparing
with the source-only model, AdaGIn-MI-DA, we showcase the
performance gain of AdaGIn. A positive performance gain in-
dicates the improvement obtained by mutual information max-
imization (MI) and domain adaptation (DA). To investigate
these two learning strategies individually, we further present
the variant AdaGIn-MI. Note that multilinear conditioning is
applied when performing domain adaptation.

In Figure 7, the Micro-F1 score of each model decreases
with the common attribute rate. The reason is that domain gap
is enlarged between the source and target graphs by reducing
common attributes. Furthermore, the total number of node
attributes also decreases in each graph due to the removal
of common attributes. As described in Section III-C, node
representation learning relies on node attributes, the reduction
of which increases the difficulty of learning informative node
representations, consequently degrading the node classification
performance. AdaGIn outperforms the source-only model,
AdaGIn-MI-DA, in all cases except Ra = 0 in transfer
task D→A. We explain the reasons by discussing mutual
information maximization and domain adaptation individually.

Mutual information maximization improves the classifica-
tion performance in a wide range of common attribute rates.
However, without any common attributes (i.e., Ra = 0), we
observe marginal improvement in D→A and no improvement
in C→A. Local-global mutual information is calculated and

(a) Source graph downsampling (b) Target graph downsampling

C AC AC A D AD AD A B1 B2B1 B2B1 B2 B2 B1B2 B1B2 B1C A D A B1 B2 B2 B1

Fig. 8. Analysis of the model performance with the source or target graph
downsampled.

maximized using node attributes (see Section III-C). If all
common attributes are removed, the remaining node attributes
would not be that informative. For example, in transfer task
C→A, when Ra = 0, there are merely 20.34% and 23.08%
node attributes left in Citationv1 and ACMv9, respectively
(see Table II and Table III). Under such conditions, mutual
information maximization would be weakened, which even
results in underperformance.

Domain adaptation also contributes to performance im-
provement in some cases. However, the performance gain,
yielded by applying domain adaptation, sometimes shrinks
or even becomes negative (see transfer task D→A), as the
common attribute rate gets smaller. As stated in [10], domain
adaptation techniques might be unsuccessful when the source
and target domains share few similarities. In the worst case,
such techniques may have negative impacts on the learning
tasks in the target domain, which is referred to as negative
transfer.

E. Sample Complexity Analysis

In this section, we analyze how the model performance is
influenced by the number of nodes in the source or target
graph. We follow [63] to conduct the experiments under
domain adaptation scenario. In Figure 8(a), the source graph
is downsampled by selecting the same percentage of nodes
from each class. Percentage, Rn, represents the proportion of
nodes selected from the graph. When Rn = 100%, there are
no nodes being removed from a graph. We report the Micro-
F1 score in a target graph that is unchanged. Similarly, in
Figure 8(b), we fix the source graph and report the F1 scores
in a downsampled target graph where only a percentage of
nodes per class is preserved. Note that, differing from the i.i.d.
images in computer vision studies, when a node is removed
from a graph, its connected edges disappear simultaneously.

We summarize the findings in the transfer tasks of citation
graphs (i.e., C→A and D→A) first. It can be seen in Figure 8,
the Micro-F1 score increases gradually with the percentage of
nodes selected. As shown in Figure 4, in the citation graphs,
most neighboring nodes are with the same class as the central
node, which is in line with the homophily assumption shared
by many GNN models. An increased number of neighboring
nodes in the same class could support the GNN layers to learn
more informative node representations. In the multimodal
distribution of node representations, each mode corresponds

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 16

(a) Initial learning rate (b) Embedding dimension

(c) Mutual information coefficient

C AC AC A

D AD AD A

B1 B2B1 B2B1 B2

B2 B1B2 B1B2 B1

C A

D A

B1 B2

B2 B1

(a) Initial learning rate (b) Embedding dimension

(c) Mutual information coefficient

C A

D A

B1 B2

B2 B1

Fig. 9. Impact of hyperparameters.

to one class of nodes (see Section III-A). If there are more
nodes of the same class to characterize the features of a mode,
the distribution alignment would possibly be improved.

In Figure 8, the downsampling of target graph leads to
a steeper performance drop. Since the model performance
in target graph is reported, when a part of target nodes is
removed, the downsampled target graph becomes less infor-
mative, resulting in a large drop in performance. In the case
that the source nodes are removed partially, the complete and
informative target graph prevents the Micro-F1 score from
dropping greatly.

Similar observations are also found in the transfer tasks
of social graphs (i.e., B1→B2 and B2→B1). However, the
Micro-F1 score only slightly increases when Rn is greater than
40%. Since the social graphs have higher average degrees (see
Table II), when Rn reaches 40%, the nodes would already have
abundant neighborhood information to assist representation
learning. Moreover, as the homophily assumption is not strictly
held in the social graphs (see Figure 4), the increase of
neighboring nodes might introduce certain noise. In addition,
the rich node attributes in social graphs are informative for
representation learning. Therefore, with only a few nodes left
in the target graph (i.e., Rn = 10%), the performance drops in
social graphs are much smaller than those in citation graphs.

F. Hyperparameter Sensitivity Analysis

In this section, we investigate the performance of AdaGIn
with regard to three hyperparameters, i.e., initial learning rate
η0, embedding dimension d, and mutual information coeffi-
cient λ1. The goal is to shed light on the hyperparameter con-
figuration. When investigating one hyperparameter, the others
are fixed to their default values introduced in Section IV-A3.
Figure 9 displays the Micro-F1 scores of transfer tasks in
the citation and social graphs. In general, the performance
of AdaGIn is more sensitive to these hyperparameters when
evaluated in the citation graphs. In B1→B2 and B2→B1, the

Micro-F1 scores become stable when the initial learning rate
is larger than 0.005. In C→A and D→A, the Micro-F1 score
first increases with the initial learning rate, and then decreases
after reaching a maximum value. Similar trends can be seen in
the other two hyperparameters under all transfer tasks. With
embedding dimension set as 128, the highest Micro-F1 score is
observed in each transfer task. The optimal mutual information
coefficients are 0.1 and 1.0 for transfer tasks in the citation
and social graphs, respectively.

V. CONCLUSION

A novel GNN model has been proposed to address the
cross-graph node classification problem. This method enables
mutual information maximization in the cross-graph learning,
which encourages node representations to capture the global
structural information. Conditional adversarial networks are
employed to align the multimodal distributions of node repre-
sentations. Experimental results demonstrate that the proposed
method is superior to the state-of-the-art approaches in the
benchmark transfer tasks. As a spatial GNN model, the pro-
posed method is promising for many high-impact applications
in the real-world large-scale networks, such as protein-protein
interaction networks and recommender systems.

REFERENCES

[1] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classification in
social networks,” in Social Network Data Analytics, C. C. Aggarwal,
Ed. Boston, MA: Springer US, 2011, pp. 115–148.

[2] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, ser. NIPS’17.
Red Hook, NY, USA: Curran Associates Inc., Dec. 2017, pp. 1025–
1035.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proceedings of International Conference on
Learning Representations, Toulon, France, 2017.

[4] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,”
IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 5,
pp. 833–852, May 2019.

[5] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowledge-Based Systems, vol. 151, pp.
78–94, Jul. 2018.

[6] X. Shen, Q. Dai, S. Mao, F.-L. Chung, and K.-S. Choi, “Network to-
gether: Node classification via cross-network deep network embedding,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 32,
no. 5, pp. 1935–1948, May 2021.

[7] X. Shen, Q. Dai, F.-l. Chung, W. Lu, and K.-S. Choi, “Adversarial deep
network embedding for cross-network node classification,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 03, pp.
2991–2999, Apr. 2020, number: 03.

[8] Q. Dai, X.-M. Wu, J. Xiao, X. Shen, and D. Wang, “Graph transfer
learning via adversarial domain adaptation with graph convolution,”
IEEE Transactions on Knowledge and Data Engineering, pp. 1–1, 2022.

[9] M. Wu, S. Pan, C. Zhou, X. Chang, and X. Zhu, “Unsupervised domain
adaptive graph convolutional networks,” in Proceedings of The Web
Conference 2020, ser. WWW ’20. New York, NY, USA: Association
for Computing Machinery, Apr. 2020, pp. 1457–1467.

[10] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–
1359, Oct. 2010.

[11] M. Long, G. Ding, J. Wang, J. Sun, Y. Guo, and P. S. Yu, “Transfer
sparse coding for robust image representation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2013,
pp. 407–414.

[12] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable
features with deep adaptation networks,” in Proceedings of the 32nd
International Conference on Machine Learning, ser. ICML’15. Lille,
France: JMLR.org, Jul. 2015, pp. 97–105.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 17

[13] H. Yang, H. He, W. Zhang, and X. Cao, “FedSteg: A federated transfer
learning framework for secure image steganalysis,” IEEE Transactions
on Network Science and Engineering, vol. 8, no. 2, pp. 1084–1094, Apr.
2021.

[14] W. Dai, G.-R. Xue, Q. Yang, and Y. Yu, “Co-clustering based classifi-
cation for out-of-domain documents,” in Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’07. New York, NY, USA: Association for Computing
Machinery, Aug. 2007, pp. 210–219.

[15] J. Jiang and C. Zhai, “Instance weighting for domain adaptation in
NLP,” in Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics, 2007.

[16] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24,
Jan. 2021.

[17] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, “Learning structural
node embeddings via diffusion wavelets,” in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’18. New York, NY, USA: Association for
Computing Machinery, Jul. 2018, pp. 1320–1329.

[18] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, New Orleans, USA, 2018, pp.
3538–3545.

[19] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix
factorization,” in Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2, ser. NIPS’14.
Cambridge, MA, USA: MIT Press, Dec. 2014, pp. 2177–2185.

[20] M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Conditional adversarial
domain adaptation,” in Proceedings of the 32nd International Confer-
ence on Neural Information Processing Systems, ser. NIPS’18. Red
Hook, NY, USA: Curran Associates Inc., Dec. 2018, pp. 1647–1657.

[21] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge and Data Engineering, pp. 1–1, 2020.

[22] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in Proceedings of International Conference on
Learning Representations, 2019.

[23] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and
R. D. Hjelm, “Deep graph infomax,” in Proceedings of International
Conference on Learning Representations, 2019.

[24] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep
domain confusion: Maximizing for domain invariance,” arXiv:1412.3474
[cs], Dec. 2014.

[25] F. Zhuang, X. Cheng, P. Luo, S. J. Pan, and Q. He, “Supervised
representation learning: Transfer learning with deep autoencoders,” in
Proceedings of the 24th International Conference on Artificial Intelli-
gence, ser. IJCAI’15. Buenos Aires, Argentina: AAAI Press, Jul. 2015,
pp. 4119–4125.

[26] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of
neural networks,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 2096–2030, Jan. 2016.

[27] J. Shen, Y. Qu, W. Zhang, and Y. Yu, “Wasserstein distance guided
representation learning for domain adaptation,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32, no. 1, Apr. 2018, number:
1.

[28] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ser. ICML’17. Sydney, NSW, Australia:
JMLR.org, Aug. 2017, pp. 214–223.

[29] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv:1411.1784 [cs, stat], Nov. 2014.

[30] J. Li, E. Chen, Z. Ding, L. Zhu, K. Lu, and H. T. Shen, “Maximum
density divergence for domain adaptation,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 43, no. 11, pp. 3918–3930,
2021.

[31] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang, “Generalization and
equilibrium in generative adversarial nets (GANs),” in Proceedings of
the 34th International Conference on Machine Learning - Volume 70,
ser. ICML’17. Sydney, NSW, Australia: JMLR.org, Aug. 2017, pp.
224–232.

[32] J. Li, Z. Du, L. Zhu, Z. Ding, K. Lu, and H. T. Shen, “Divergence-
agnostic unsupervised domain adaptation by adversarial attacks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

[33] Y. Zhang, S. Miao, and R. Liao, “Structural domain adaptation with
latent graph alignment,” in Proceedings of the 25th IEEE International
Conference on Image Processing, 2018, pp. 3753–3757.

[34] D. Das and C. George Lee, “Unsupervised domain adaptation using
regularized hyper-graph matching,” in Proceedings of the 25th IEEE
International Conference on Image Processing, 2018, pp. 3758–3762.

[35] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv:1709.05584 [cs], Apr. 2018.

[36] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Aug. 2014, pp. 701–710.

[37] S. Liu, B. Wang, L. T. Yang, and P. Yu, “HNF: Hybrid neural filtering
based on centrality-aware random walk for personalized recommenda-
tion,” IEEE Transactions on Network Science and Engineering, pp. 1–1,
2021.

[38] S. Cao, W. Lu, and Q. Xu, “GraRep: Learning graph representations
with global structural information,” in Proceedings of the 24th ACM
International Conference on Information and Knowledge Management,
Oct. 2015, pp. 891–900.

[39] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 1225–1234.

[40] Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu, J. Zhang, M. Ester, and
C. Wang, “ANRL: Attributed network representation learning via deep
neural networks,” in Proceedings of the 27th International Joint Con-
ference on Artificial Intelligence, ser. IJCAI’18. Stockholm, Sweden:
AAAI Press, Jul. 2018, pp. 3155–3161.

[41] J. Xiao, Q. Dai, X. Xie, J. Lam, and K.-W. Kwok, “Adversarially
regularized graph attention networks for inductive learning on partially
labeled graphs,” arXiv:2106.03393 [cs], Jun. 2021.

[42] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in Proceedings of International
Conference on Learning Representations, 2018.

[43] Z. Zhang, Y. Li, H. Dong, H. Gao, Y. Jin, and W. Wang, “Spectral-based
directed graph network for malware detection,” IEEE Transactions on
Network Science and Engineering, vol. 8, no. 2, pp. 957–970, Apr. 2021.

[44] Y. Zhu, Y. Xu, Q. Liu, and S. Wu, “An empirical study of graph
contrastive learning,” arXiv:2109.01116 [cs], Oct. 2021.

[45] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman,
A. Trischler, and Y. Bengio, “Learning deep representations by mutual
information estimation and maximization,” in Proceedings of Interna-
tional Conference on Learning Representations, 2019.

[46] F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “InfoGraph: Unsuper-
vised and semi-supervised graph-level representation learning via mutual
information maximization,” in Proceedings of International Conference
on Learning Representations, 2020.

[47] J. Ni, S. Chang, X. Liu, W. Cheng, H. Chen, D. Xu, and X. Zhang, “Co-
regularized deep multi-network embedding,” in Proceedings of the 2018
World Wide Web Conference, ser. WWW ’18. Republic and Canton
of Geneva, CHE: International World Wide Web Conferences Steering
Committee, Apr. 2018, pp. 469–478.

[48] L. Xu, X. Wei, J. Cao, and P. S. Yu, “Embedding of Embedding (EOE):
Joint embedding for coupled heterogeneous networks,” in Proceedings
of the Tenth ACM International Conference on Web Search and Data
Mining, ser. WSDM ’17. New York, NY, USA: Association for
Computing Machinery, Feb. 2017, pp. 741–749.

[49] M. Heimann, H. Shen, T. Safavi, and D. Koutra, “REGAL: Representa-
tion learning-based graph alignment,” in Proceedings of the 27th ACM
International Conference on Information and Knowledge Management,
ser. CIKM ’18. New York, NY, USA: Association for Computing
Machinery, Oct. 2018, pp. 117–126.

[50] L. Liu, W. K. Cheung, X. Li, and L. Liao, “Aligning users across social
networks using network embedding,” in Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, ser. IJCAI’16.
New York, New York, USA: AAAI Press, Jul. 2016, pp. 1774–1780.

[51] M. Pilancı and E. Vural, “Domain adaptation on graphs by learning
aligned graph bases,” IEEE Transactions on Knowledge and Data
Engineering, vol. 34, no. 2, pp. 587–600, 2022.

[52] M. Fang, J. Yin, and X. Zhu, “Transfer learning across networks for
collective classification,” in Proceedings of the 13th IEEE International
Conference on Data Mining, Dec. 2013, pp. 161–170, iSSN: 2374-8486.

[53] C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal nonnegative ma-
trix tri-factorizations for clustering,” in Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’06. New York, NY, USA: Association for Computing
Machinery, Aug. 2006, pp. 126–135.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, SUBMISSION 2022 18

[54] B. Schölkopf, J. Platt, and T. Hofmann, “A kernel method for the
two-sample-problem,” in Advances in Neural Information Processing
Systems 19: Proceedings of the 2006 Conference. MIT Press, 2007,
pp. 513–520.

[55] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang,
and J. Tang, “GCC: Graph contrastive coding for graph neural network
pre-training,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. New York,
NY, USA: Association for Computing Machinery, Aug. 2020, pp. 1150–
1160.

[56] A. Rozantsev, M. Salzmann, and P. Fua, “Beyond sharing weights for
deep domain adaptation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 41, no. 4, pp. 801–814, Apr. 2019.

[57] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan, “A theory of learning from different domains,” Machine
Learning, vol. 79, no. 1, pp. 151–175, May 2010.

[58] N. Courty, R. Flamary, A. Habrard, and A. Rakotomamonjy, “Joint dis-
tribution optimal transportation for domain adaptation,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, Red Hook, NY, USA, Dec. 2017.

[59] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “ArnetMiner:
Extraction and mining of academic social networks,” in Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’08. New York, NY, USA:
Association for Computing Machinery, Aug. 2008, pp. 990–998.

[60] J. Li, X. Hu, J. Tang, and H. Liu, “Unsupervised streaming feature
selection in social media,” in Proceedings of the 24th ACM International
Conference on Information and Knowledge Management, ser. CIKM ’15.
New York, NY, USA: Association for Computing Machinery, Oct. 2015,
pp. 1041–1050.

[61] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of International Conference on Learning Representa-
tions, Jan. 2015.

[62] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[63] J. Liu, M. Jing, J. Li, K. Lu, and H. T. Shen, “Open set domain adap-
tation via joint alignment and category separation,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–14, 2021.

Jiaren Xiao received the B.Eng. degree in me-
chanical engineering from Xi’an Jiaotong University,
Xi’an, China, in 2015, and the M.Eng. degree in
mechanical engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2018. He is now a
Ph.D. candidate at the Department of Mechanical
Engineering, The University of Hong Kong, Hong
Kong. His research interests include representation
learning, transfer learning, and adversarial learning
for graph-structured data.

Quanyu Dai (Member, IEEE) is currently a re-
searcher at Huawei Noah’s Ark Lab. He received
the Ph.D. degree at The Hong Kong Polytechnic
University. His research interests include graph-
based algorithms and recommender systems. He has
publications appeared in the top-tier journals and
conferences, such as TKDE, TNNLS, IJCAI, AAAI,
WWW and KDD.

Xiaochen Xie (Member, IEEE) received the B.E.
degree in automation and the M.E. degree in control
science and engineering from Harbin Institute of
Technology, Harbin, China, in 2012 and 2014, re-
spectively, and the Ph.D. degree in control engineer-
ing from The University of Hong Kong, Hong Kong,
in 2018. Her research interests include robust control
and filtering, periodic systems, switched systems,
intelligent systems and process monitoring.

Qi Dou (Member, IEEE) Dr. Dou is an Assistant
Professor at the Department of Computer Science
and Engineering, Chinese University of Hong Kong
(CUHK). She received B. Eng in Biomedical En-
gineering at Beihang University in 2014, PhD in
Computer Science at CUHK in 2018, and worked as
postdoctoral researcher in Department of Computing
at Imperial College London during 2018 to 2020.
She has focused research interest at the interdis-
ciplinary field of artificial intelligence for medical
scenarios, with expertise in medical image analysis

and robotic surgery perception.

Ka-Wai Kwok (Senior Member, IEEE) received
the B.Eng. and M.Phil. degrees in automation and
computer-aided engineering from the Chinese Uni-
versity of Hong Kong, Hong Kong, in 2003 and
2005, respectively, and the Ph.D. degree in Comput-
ing from the Hamlyn Center for Robotic Surgery,
Department of Computing, Imperial College Lon-
don, London, U.K., in 2012.

He is currently an Associate Professor with the
Department of Mechanical Engineering, University
of Hong Kong (HKU), Hong Kong. Prior to joining

HKU in 2014, he worked as a Postdoctoral Fellow with Imperial College
London in 2012 for surgical robotics research. In 2013, he was awarded
the Croucher Foundation Fellowship, which supported his research jointly
supervised by advisors from the University of Georgia, Athens, GA, USA,
and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,
USA.

His research focuses on surgical robotics, intra-operative image processing,
and their uses of intelligent and control systems. To date, Dr. Kwok has co-
authored 123 publications with >50 clinical fellows and >90 engineering
scientists, and 6 out of 14 invention patents licensed/transferred to industrial
partners in support for their commercialization. His multidisciplinary work
has been recognized by >10 international publication awards, mostly under
IEEE, particularly in the largest flagship conferences of robotics: e.g. ICRA
Best Conference Paper Award in 2018, and IROS Toshio Fukuda Young
Professional Award in 2020. He also serves as an Associate Editor for Journal
of Systems and Control Engineering (JSCE), IEEE Robotics and Automation
Magazine (RAM), and Annals of Biomedical Engineering (ABME). He is
the principal investigator of research group for Interventional Robotic and
Imaging Systems (IRIS), HKU.

James Lam (Fellow, IEEE) received a BSc (1st
Hons.) degree in Mechanical Engineering from the
University of Manchester, and was awarded the Ash-
bury Scholarship, the A.H. Gibson Prize, and the H.
Wright Baker Prize for his academic performance.
He obtained the MPhil and PhD degrees from the
University of Cambridge. He is a Croucher Scholar,
Croucher Fellow, and Distinguished Visiting Fellow
of the Royal Academy of Engineering, and Cheung
Kong Chair Professor. Prior to joining the University
of Hong Kong in 1993 where he is now Chair

Professor of Control Engineering, he was a faculty member at the City
University of Hong Kong and the University of Melbourne.

Professor Lam is a Chartered Mathematician (CMath), Chartered Scientist
(CSci), Chartered Engineer (CEng), Fellow of Institute of Electrical and
Electronic Engineers (FIEEE), Fellow of Institution of Engineering and
Technology (FIET), Fellow of Institute of Mathematics and Its Applications
(FIMA), Fellow of Institution of Mechanical Engineers (FIMechE), and
Fellow of Hong Kong Institution of Engineers (FHKIE).

He is Editor-in-Chief of IET Control Theory and Applications, Journal
of The Franklin Institute and Proc. IMechE Part I: Journal of Systems and
Control Engineering, Subject Editor of Journal of Sound and Vibration, Editor
of Asian Journal of Control, Senior Editor of Cogent Engineering, Section Ed-
itor of IET Journal of Engineering, Consulting Editor of International Journal
of Systems Science, Associate Editor of Automatica and Multidimensional
Systems and Signal Processing.

His recent research interests include multi-agent systems, positive systems,
Boolean networks, networked control systems, and vibration control. He is a
Highly Cited Researcher in Engineering (2014 to 2021), Computer Science
(2015), and Cross-Fields (2021).

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3201529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Domain Adaptation
	Graph Representation Learning
	Cross-graph Learning

	Proposed Method
	Problem Definition and Notations
	Overview of Model Architecture
	Node Representation Learning
	Node Label Prediction
	Adversarial Domain Adaptation
	Overall Loss and Model Training
	Theoretical Analysis on Conditional Adversarial Networks

	Experiments
	Experimental Setup
	Datasets
	Baselines
	Implementation Details

	Cross-graph Node Classification
	Node Classification in Citation Graphs
	Node Classification in Social Graphs
	Loss Curve during Training

	Ablation Study
	Performance of Model Variants
	Visualization of Node Representations
	Effect of Global Information

	Distribution Discrepancy Analysis
	Sample Complexity Analysis
	Hyperparameter Sensitivity Analysis

	Conclusion
	References
	Biographies
	Jiaren Xiao
	Quanyu Dai
	Xiaochen Xie
	Qi Dou
	Ka-Wai Kwok
	James Lam

