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1. Introduction

Prostate cancer (PCa) is the second most
prevalent cancer among males.[1] The num-
ber of diagnoses is estimated to increase by
�1.7 million worldwide by 2030.[2] Accurate
prostate lesion assessment, particularly
for classifying clinically significant PCa
(csPCa; Gleason score [GS]≥7)[3] from indo-
lent non-csPCa, can vastly improve the facil-
itation of tailored treatments.[4] The broad
range of PCa’s behavioral pathology makes
assessment challenging.[5] Current clinical
assessment relies on prostate-specific anti-
gen (PSA) blood testing, which, if positive,
requires a transrectal ultrasound (TRUS)
biopsy. However, PSA in conjunction with
blind TRUS biopsy has a high false-negative
rate (�20%), resulting in unnecessary biop-
sies.[6] It is also highly prone to causing
underdetection of csPCa or overdetection
of non-csPCa.[7]

Multiparametric magnetic resonance
imaging (mpMRI) has become a gold
standard for PCa diagnosis, even prior to
biopsy.[8] It typically involves T2-weighted
(T2), high diffusion-weighted imaging
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Multiparametric magnetic resonance imaging (mpMRI) has emerged as a valuable
diagnostic tool in prostate lesion assessment. However, training convolutional
neural networks (CNNs) inevitably involves magnetic resonance (MR) images from
multiple cohorts. There always exists variation in scanning protocol among
cohorts, inducing significant changes in data distribution between source and
target domains. This challenge has greatly limited clinical adoption on a large scale.
Herein, a coarse mask-guided deep domain adaptation network (CMD2A-Net) is
proposed to develop a fully automated framework for prostate lesion detection and
classification (PLDC). No category or mask label is required from the target
domain. A coarse segmentation module is trained to cover the possible lesion-
related regions, so that attention maps can be generated to dedicate the local
feature extraction of lesions within those regions. Experiments are performed
on 512 mpMRI sets from datasets of PROSTATEx (330 sets) and two cohorts,
A (74 sets) and B (108 sets). Using ensemble learning, CMD2A-Net accomplishes
an AUC of 0.921 in cohort A and 0.913 in cohort B, demonstrating its transferability
from a large-scale public dataset PROSTATEx to small-scale target domains.
Results from an ablation study also support its effectiveness in classification
between benign and malignant lesions, compared to the state-of-the-art models.
An interactive preprint version of the article can be found here: https://doi.org/10.
22541/au.166081031.11420810/v1.
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(hDWI) sequence, and its derivative apparent-diffusion coeffi-
cient (ADC) maps.[4,9] Although the magnetic resonance imaging
(MRI) acquisition and interpretation have been standardized
with the guidance of Prostate Imaging Reporting and Data
System version 2.1 (PI-RADS v2.1),[10] image interpretation is
still time-consuming for the readers,[5] and inevitably significant
inter-reader variation still exists.[11] To this end, numerous learn-
ing-based methods have been proposed to facilitate efficient,
accurate, and reliable prostate lesion assessment. In 2017, an
international contest PROSTATEx Challenge[12] was organized.
Twenty-one teams proposed their models with the area under
receiver operating characteristics (ROC) curves (AUC) ranging
from 0.80 to 0.87.[13] Unlike the traditional methods relying
on inputs with handcrafted features,[14] all of them employed
CNNs[15] to detect the complex semantic features automatically,
demonstrating significant advantages of PLDC over traditional
methods.

To enhance network training, prostateMR images have to be pre-
cropped manually, so as to retain the prostate region that originally
occupies a small portion of the entire image set. Few recent studies,
e.g., refs. [2,16], proposed automated PLDC frameworks to reduce
effort from repeated manual prostate segmentation. CNNs were
also utilized to segment the target region, identifying the prostate
profile. These studies, despite notable progress, still assumed the
training/testing datasets have to be shared the same data distribu-
tion from the source and target domains. This would be an overly
ideal assumption,[17] as in normal practice, prostate MR images
from a single cohort could not avoid the nature of medical data
scarcity, or they are typically publicly unavailable.[14] Most likely,
it is necessary to collect and aggregate images frommultiple cohorts
tomaintain sufficient samples for robust model training. Inevitably,
these multisite images exhibit apparent discrepancies in terms of
scanning protocols, in-plane resolutions, field of views (FoV),
etc.[17,18] These inherent intersite discrepancies would cause
“domain shift” while having the models trained in the source
domain, but applied in the target domain. This can significantly
degrade the overall model performance, biasing the PLDC results.

Several paradigms have been proposed to resolve the domain
shift. An intuitive solution is directly mixing heterogeneous
images from multiple cohorts to make the training data adequate.
However, in this approach, the model’s prediction capability could
not be explicitly improved, and in contrast, would be limited by
overfitting when distribution heterogeneity is significant.[18,19]

Another common practice is pretraining the model in the source
domain and then fine-tuning it in the target domain. This gener-
ally requires sufficient labeled data from the target domain to
manually tune massive network parameters, which can still be
a labor-intensive process. Domain adaptation (DA) has emerged
as a more promising method, allowing effective knowledge
transfer[17,20] from the label-rich source domain to the target
domain. Recently, unsupervised DA (UDA) methods have
drawn increased attention, as they do not require target labels
for training.[21] These can be generally categorized as image trans-
lation and feature alignment approaches. In the former, the mod-
els can align image appearance[17,22] by translating images from
one domain to another using generative models, such as genera-
tive adversarial networks (GANs).[23] Difficulties mainly come
from whole-slide image translation, and image synthesis due to
insufficient image similarity. Additionally, these models usually

focus on low-level feature extraction, suffering from inconspicu-
ous lesion texture and characteristics.[24] In contrast, the latter, fea-
ture alignment-based models could be more effective in resolving
domain shift by extracting domain-invariant features, either min-
imizing correlation distance between domains,[25] or assimilating
feature distributions through adversarial learning.[26] Yet, very few
of them are dedicated to prostate lesion detection and/or classifi-
cation, particularly using mpMRI. Therefore, an effective UDA
model for fully automatedmpMRI-based PLDC is highly desirable
for use prior to any invasive biopsy.

In this work, we develop a CMD2A-Net for both coarse pros-
tate lesion detection and lesion malignancy classification. We
also extend the proposed network to an open-sourced system.
This executable end-to-end system takes mpMRI sequences as
input, and outputs coarse lesion contours as well as lesion malig-
nancy. The system can also be downloaded online. Our work
contributions can be summarized below: 1) Development of a
deep-learning-based system for fully automated prostate lesion
assessment. Our end-to-end system is dedicated to PLDC on
multicohort mpMRI without the need for prior manual process-
ing on mpMRI sequences. 2) Design of a UDA model (i.e.,
CMD2A-Net) capable of leveraging cross-site representation
transfer to realize accurate PLDC without requiring target labels.
Weakly supervised coarse lesion segmentation modules are
incorporated to extract informative lesion features, thus facilitat-
ing feature alignment between domains. 3) Experimental evalua-
tion of CMD2A-Net on one public dataset (i.e., PROSTATEx[12])
and three local cohort datasets, including lesion assessments with
various mpMRI sequence inputs, comparisons with state-of-the-
art models, as well as an ablation study. The capability of transfer-
ring knowledge from PROSTATEx to our small-scale local cohort
datasets is demonstrated against the state-of-the-art models.

2. Related Work

CNNs have been proved effective and widely applied for mpMRI-
based PCa classification with promising performance. Wang
et al.[13a] explored optimal combinations of mpMRI sequences
as input for the CNN, and their model achieved an AUC of 0.95,
which was reported to outperform all models in the PROSTATEx
Challenge. Instead of only PCa classification, Kiraly et al.[27] devel-
oped a model with an encoder–decoder architecture to detect pros-
tate lesions and simultaneously classify lesionmalignancy. However,
these studies required manually cropped regions of the prostate,
which would be time-consuming and expensive.[22a,28]

End-to-end PLDC frameworks have also been investigated,
with the aim to avoid the need for manual prostate segmentation.
Yang et al.[2] incorporated a CNN for automatic segmentation in
advance to the PLDC. Insufficient prostate image features
extracted by the shallow network (i.e., five layers) could deterio-
rate the overall segmentation performance. Later, Wang et al.[29]

proposed a deeper prostate segmentation model capable of
detecting more complex features. Apart from improving the seg-
mentation performance, fusing spatial features using 3D CNNs
is also another means to enhance the accuracy of PCa classifica-
tion. Mehta et al.[30] employed a patient-level 3D model for binary
classification using volumetric mpMRI, achieving an AUC of
0.79 and 0.86 on their local cohort dataset and PROSTATEx,
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respectively. However, only single-cohort datasets were used to
evaluate the model. Domain shift would occur when it is directly
applied to an unseen cohort.[17,18] Provided with very few studies
(e.g., Mehta et al.[30]) that use mpMRI sequences from multiple
cohorts, they could just directly combine the heterogeneous
images, giving rise to sufficient samples for model training,
but inevitably ignore data source heterogeneity. This approach
would be prone to suffering from severe domain shift, thus bias-
ing predictions by particular cohorts.

Very recently, many studies have attempted to investigate DA
approaches to alleviate intersite distributional variability, among
which UDA methods demonstrated their advantages in exploit-
ing unlabeled target samples.[20] Such UDA methods can be cat-
egorized into two groups: 1) image translation and 2) feature
alignment approaches. The former performs image appearance
alignment.[17,22] The resultant models translate images across
domains using GAN-based networks.[23] However, texture
similarity between the synthesized target image and the source
image would be crucial for the PLDC problem. The DA process
would fail with insufficient texture similarity, particularly found
in the generated lesion area.[22c] Lesions could also be missed
during the translation process due to varying transferability
among image regions, thus worsening the DA process.[31]

Moreover, the GAN models would distort the nonlesion region’s
appearance, further causing unreliable lesion assessment
results.[24]

By using feature alignment approaches, domain-invariant fea-
tures are extracted to reduce domain shift.[26] A common way is
to minimize distribution similarity (e.g., second-order correla-
tion[25]) between domains using Siamese network architecture.
Adversarial learning[26a] can also align features by enforcing
the cross-domain features indistinguishable using a domain clas-
sifier. For instance, Wang et al.[14] developed a GAN-based
method to learn domain-invariant features frommammographic
images acquired for breast cancer screening. However, these
models were usually trained with the entire images, treating
all voxels equally.[26b,28] Previous works[24,26b] revealed that not all
image regions can facilitate knowledge transfer across domains.
Roughly aligning the features in the whole image set would intro-
duce irrelevant knowledge, resulting in ineffective DA. It is hypoth-
esized that the background regions on mpMRI sequences, such as
regions outside the prostate gland, would not significantly improve
DA in our PLDC problem. To our knowledge, only few researchers
have reported PCa classification using multisite ultrasound
images,[32] histopathology images,[33] or T2 image slices only.[13b]

3. Results and Discussion

3.1. Datasets

Five datasets were utilized in this study, i.e., Initiative for
Collaborative Computer Vision Benchmarking (I2CVB),[34]

PROSTATEx (P-x), and three datasets from Hong Kong hospital
local cohorts, LC-A, LC-B, and LC-C. Note that, LC-A and LC-B
were acquired from the same MR imaging center. Table 1 shows
the characteristics of these five datasets. Note that I2CVB is
already available online (https://i2cvb.github.io/), which has
been widely investigated for prostate zone segmentation.[8] It
contains 646 T2 images acquired from 36 patients. Fifteen patients
were scanned by 3.0-T Siemens scanners and 21 patients by 1.5-T
General Electric scanners. Given the segmentation labels on the
prostate, central gland, peripheral zone, and lesion, only image
slices covering the prostate were selected as our samples. A
Mask R-CNN model was employed for prostate segmentation
using this dataset. P-x (https://wiki.cancerimagingarchive.net/
pages/viewpage.action?pageId=23691656), LC-A, LC-B, and LC-
C are mpMRI-based datasets marked with point labels. The four
datasets share the same set of category labels (i.e., csPCa and non-
csPCa). Datasets, P-x, LC-A, and LC-B, were utilized to evaluate the
PLDC performance of our CMD2A-Net, including 330 cases from
P-x, 74 cases from LC-A, and 108 cases from LC-B. To avoid “over-
fitting” caused by LC-C (29 cases) with its small size, it was only
used for cross-site heterogeneity analysis.

The mpMRI samples from multiple domains exhibit apparent
interdomain heterogeneity,[35] which was caused by differences
in MRI scanners, diffusion b-values, in-plane resolutions, FoV,
and subject cohorts/patient populations. As shown in Figure 1,
the MRI[36] examples from P-x and LC-A present apparent inter-
domain heterogeneity, demonstrating visible discrepancies in
lesion morphology, prostate gland appearance, and image inten-
sity distribution. These inherent multidomain discrepancies are
inevitable, and cause “domain shift”[37] that significantly degrades
overall model performance in PLDC.

3.2. Analysis of Cross-Site Heterogeneity

We first evaluated prostate segmentation performance using
mean intersection over union (IoU), in order to ensure that
the prostate regions can be predicted accurately. The IoU indi-
cates the intersection between the predicted prostate contour
and the ground truth mask label, which was measured on the

Table 1. Characteristics of the five MRI datasets for prostate segmentation and PLDC.

Datasets Total cases Positive cases Negative cases MRI scanner Diffusion b-value [s mm�2] In-plane resolution [mm] Task

PSega) CHAb) PLDC

I2CVB 646 N/A N/A Siemens, and General Electric N/A 0.68–0.79
p

N/A N/A

P-x 330 76 254 Siemens Trio and Skyra 50, 400, and 800 0.5 N/A
p p

LC-A 74 51 23 Philips Achieva 0 and 1400 0.229 N/A
p p

LC-B 108 14 94 Philips Achieva 1000 and 1400 0.315 N/A
p p

LC-C 29 11 18 Siemens Skyra N/A 0.625 N/A
p

N/A

a)PSeg, prostate segmentation; b)CHA, cross-domain heterogeneity analysis.
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test split of I2CVB. The mean IoU of the prostate region, central
gland, and peripheral zone is 0.843, 0.781, and 0.516, respec-
tively. These results are comparable with the work of Alkadi
et al.[8] which attained an IoU of 0.673 and 0.599 for the central
gland and peripheral zone, respectively. This implies that the
training set, which contains MR images from 36 patients, is
already sufficient for accurate prostate segmentation. Additionally,
the segmentation results are found to be promising on the image
obtained from either a 1.5-T or 3.0-TMRImachine, indicating that
the IoUmeasuring is not sensitive to the scanner types (see details
in Figure S1, Supporting Information).

Then, we analyzed cross-site heterogeneity on our multicohort
datasets (P-x, LC-A, LC-B, and LC-C). We aim to verify whether
the prior MR image intensity normalization (e.g., Liu et al.[38]) is
effective to reduce domain shift, when domain knowledge is not
considered. Coarse Mask-guided Network (i.e., CM-Net, in
Figure 5) was utilized for cross-site heterogeneity analysis. Here,
training a model on an individual dataset is defined as a “separate
learning approach,” while training a model using a combined
dataset from multiple cohorts is defined as a “joint learning
approach.” As shown in Table 2, we trained the CM-Net using
the individual and combined datasets from P-x, LC-A, and LC-
B. The three separate models were individually trained in these
three domains. They were set as the baselines for comparisons
with the joint models. During the testing phase, each separate

model was tested on the four datasets. LC-C only acted as the
hold-out testing set for domain shift analysis, as its small size
(only 29) would cause overfitting in training and biased predic-
tion in testing. Note that, owing to the limited sample size of local
cohorts (74 and 108 cases on LC-A and LC-B, respectively), sepa-
rate models of LC-A and LC-B were pretrained on the large-scale
dataset P-x (330 cases) and then fine-tuned on the corresponding
domain. Such a transfer learning strategy would reduce overfitting
caused by data scarcity. A common preprocessing method, scaled,
was employed to normalize the image intensities within [0,1].

The results of separate models from P-x, LC-A, and LC-B are
shown in Table 2. For the three sequences (i.e., T2, ADC, and
hDWI), the AUCs of three separate models are relatively high
when tested within their respective domains, but these AUCs
sharply drop when directly tested in the unseen domains.
Such results show the sensible cross-domain discrepancy (i.e.,
domain shift) among the four datasets. Note that, in terms of
the T2 sequence, separate models of LC-A and LC-B accomplish
the highest testing AUCs (0.66 and 0.67) in the unseen domain,
LC-C, which is just marginally higher than those (0.61) within
their corresponding domains. A potential reason for the biased
predictions is the deficiency of testing samples (i.e., 29) on LC-C.
When it comes to the joint models in the table, they cannot bring
remarkable improvements in each sequence compared with the

Figure 1. Non-csPCa and csPCampMRI examples (from P-x and LC-A) of a) T2, b) ADC, and c) hDWI. The prostate gland is contoured with rectangles (in
green) on the original slices (first and third row). The coarse lesion is contoured in red within the cropped prostate regions (second and fourth row) using
the level set method, showing lesion morphological discrepancy of the benign and malignant samples. Apparent intersite heterogeneity (e.g., FoV, image
intensity distribution) of the samples demonstrates domain shift between P-x and LC-A.
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separate models; instead, they may even lead to performance
degradation due to cross-site heterogeneity.

With severe discrepancies among our datasets, we intend to
validate whether the rigorous MR image preprocessing methods
can contribute to classification performance of the joint models.
Similar to scaled, whitening is another common preprocessing
method, capable of normalizing the pixel values with a mean of
zero and unit variance. We took the combined dataset, P-x and
LC-A, as a representative for evaluation. In Table 3, scaled, whit-
ening, and their combined function with bias field correction
(BFC) or noise filtering (NF), six preprocessing methods in total,
were adopted as in ref. [38]. The joint models using scaled and
whitening acted as the two baselines for comparisons with the

rigorous MR image preprocessing methods (i.e., BFC and
NF). Figure 2 depicts the image preprocessing examples of three
methods (i.e., whitening, whiteningþ BFC, and whiteningþNF).
The left and right halves of each sample represent before and after
preprocessing, respectively. Before preprocessing, we can observe
noticeable intensity distribution discrepancies among the sam-
ples. The samples from LC-A are characterized by larger numbers
of low-intensity grayscale pixels as compared with the images of P-
x. Subsequently, the jet color maps were employed to visualize the
intensity distribution between domains after preprocessing. All
the color maps shared the same intensity color scale. Similar
intensity distributions among the samples can be found after pre-
processing, demonstrating the effectiveness of the methods in
image distribution harmonization.

In Table 3, for the T2 sequence, BFC with either scaled or
whitening outperforms the baselines. BFC with whitening also
achieves the best AUCs of 0.91 and 0.80 on P-x and LC-A, respec-
tively. However, these findings are not consistent with the results
in ADC and hDWI. In terms of ADC, the models preprocessed
with BFC or NF underperform the baselines. Instead, the baseline
models receive the highest AUCs, where scaled alone and whit-
ening alone accomplish 0.73 and 0.72 on P-x and LC-A, respec-
tively. When it comes to the sequence of hDWI, both BFC and NF
demonstrate limited improvement over the baselines. On P-x, the
AUC increases marginally from 0.73 (scaled only) to 0.80 (scaled
with NF); on LC-A, only an AUC of 0.65 is achieved using scaled
with BFC. The above results of the three sequences show that
these preprocessing approaches could improve CM-Net’s

Table 2. Comparisons of AUC using separate and joint learning approaches.

Datasets T2 ADC hDWI

P-x LC-A LC-B LC-C P-x LC-A LC-B LC-C P-x LC-A LC-B LC-C

P-x only 0.91 0.35 0.55 0.65 0.67 0.53 0.42 0.51 0.81 0.41 0.68 0.50

LC-A only N/A 0.61 0.55 0.66 N/A 0.69 0.38 0.53 N/A 0.70 0.57 0.49

LC-B only N/A 0.39 0.61 0.67 N/A 0.52 0.61 0.48 N/A 0.47 0.88 0.59

Joint P-x, LC-A 0.89 0.67 N/A N/A 0.73 0.54 N/A N/A 0.73 0.54 N/A N/A

Joint P-x, LC-B 0.88 N/A 0.59 N/A 0.66 N/A 0.55 N/A 0.76 N/A 0.87 N/A

Joint LC-A, LC-B N/A 0.63 0.53 N/A N/A 0.74 0.61 N/A N/A 0.72 0.91 N/A

The bold/shading data highlight the baseline models performance in the three sequences (T2, ADC, hDWI).

Figure 2. Image preprocessing examples (from P-x and LC-A) in quantitative analysis on intersite heterogeneity. Among the six methods in Table 3,
whitening, whiteningþ BFC, and whiteningþNF act as representatives. Coarse lesion region is contoured (in red) on the randomly selected pre-cropped
T2 images. Prior to the preprocessing (left half ), the heterogeneity of intensity distribution can be observed obviously in the original samples, while the
distributions are harmonized after the preprocessing (right half ). All the jet color maps share the same scale.

Table 3. Comparisons of AUC using six image preprocessing methods.

Preprocessing methods T2 ADC hDWI

P-x LC-A P-x LC-A P-x LC-A

Scaled 0.89 0.67 0.73 0.54 0.73 0.54

Whitening 0.87 0.73 0.65 0.72 0.56 0.54

Scaledþ BFC 0.90 0.71 0.67 0.65 0.76 0.65

Whiteningþ BFC 0.91 0.80 0.68 0.68 0.73 0.55

ScaledþNF 0.89 0.75 0.66 0.61 0.80 0.56

WhiteningþNF 0.84 0.72 0.64 0.66 0.79 0.57

The bold/shading data indicate the maximum number in the columns.
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classification performance when combining our two datasets.
However, none of the methods is capable of boosting the joint
models’ generalization considerably, as compared with the sepa-
rate models of P-x and LC-A (in Table 2). This indicates that the
preprocessing methods are probably insufficient to solve domain
shift fundamentally. A possible reason is that the severe discrep-
ancies may also come from the intersite discrepancies (in
Table 1), rather than only from the intensity distribution of the
heterogeneous mpMRI sequences (see details in Figure 1).

3.3. Cross-Domain Malignancy Classification and Lesion
Detection

We emphasized the importance of knowledge transfer from a
large-scale public dataset to a small-scale target domain. The
malignancy estimation performance of CMD2A-Net (the architec-
ture is shown in Figure 5) was evaluated. The dataset, P-x, was
only regarded as the source domain. Either LC-A or LC-B was also
set as the source domain for knowledge transfer between local
cohorts. The scaled method was employed for image preprocess-
ing. In general, available types of MR sequences may vary in
healthcare institutions. Thus, we employed ensemble learning
to handle multiple sequences, allowing the use of single and mul-
tiple sequence(s) in our framework. Three common metrics were
adopted for classification performance evaluation, i.e., AUC, sen-
sitivity (SEN), and specificity (SPE).

Table 4 illustrates the classification results (i.e., csPCa or non-
csPCa). Seven sequence combinations were involved for compar-
isons. The former and the later domains in the table are denoted
as the source and target domains, respectively. We define such
pairs of domains/cohorts as DA settings. First, we compared
CMD2A-Net with the separate and joint models (in Table 2) in
terms of AUC. Take the first DA setting (P-x! LC-A) as an exam-
ple. In the T2 sequence, CMD2A achieves an AUC of 0.87 in the
target domain (i.e., LC-A), outperforming both the separate
model (AUC: 0.61) and the joint model (AUC: 0.67). Consistent
findings can be observed in ADC and hDWI.When it comes to the
other three DA settings, CMD2A-Net also demonstrates its
advantage in resolving domain shift between two of our datasets.
This validates our hypothesis that incorporating prostate lesion
information in prior to the DA process can facilitate PCa
classification.

Second, we analyzed our model’s PCa classification perfor-
mance using a single sequence, i.e., T2, ADC, or hDWI. In most
source-target DA settings, T2 is the most effective, while ADC
receives the lowest AUC. The sequence, hDWI, shows unstable
performance in the four DA settings. For example, it accom-
plishes the most superior performance (w.r.t. AUC, SEN, and
SPE) in “P-x! LC-B,” but underperforms T2 and ADC in
“LC-A! LC-B.” This could be caused by heterogeneous b-values
among the domains. As shown in Table 1, b-values of 50, 400,
and 800 smm�2 were employed on P-x, while 0 and 1400 s
mm�2 were used in LC-A, and 1000 and 1400 s mm�2 were used
in LC-B. Thus, we can conclude that the significant discrepancies
in the acquisition parameters would result in the inconsistent
performance of hDWI. Note that there were no widely accepted
guidelines regarding b-value until the release of PI-RADS in
2019, which recommended a minimum value of 1200 s mm�2.

We also investigated the effect of ensemble learning using
multiple sequences, which could provide references to choose
appropriate sequences for PLDC. In each DA setting, the models
using multiple sequences are always more effective than those
relying on a single sequence. Besides, although ADC or hDWI
always leads to the worst classification results, T2 ensembled with
one or both can explicitly enhance the model’s performance. This
finding is consistent with the clinical practice of usingmpMRI for
PCa diagnosis. Sequences ADC and hDWI are usually regarded
as secondary references by radiologists. It should be noted that
the all-sequence-ensembled (i.e., ensemble of T2, ADC, and
hDWI) models show significant predictions in most DA settings.
Although an ensemble of the three sequences could not yield the
best performance in the second DA setting (i.e., P-x! LC-A), the
model still achieved a remarkable AUC of 0.91, which is only
about 1% lower than the highest AUC (0.92). It can be concluded
that using more sequences would help multicohort MRI harmo-
nization, thus boosting the final classification performance.
Moreover, with the same target domain (i.e., either LC-A or
LC-B), the CMD2A-Net transferred from P-x attains a higher AUC
than transferred from a local cohort domain in each sequence
combination. This implies more source samples could enhance
the model’s cross-domain knowledge transferability, thus improv-
ing the model’s generalization in the target domain. The superior
performance also demonstrates CMD2A-Net’s capability of trans-
ferring the knowledge from a public dataset to our local cohort
domains.

Table 4. Malignancy classification results in the target domains in four combinations of source–target domains.

Sequences combinations P-x! LC-A P-x! LC-B LC-A! LC-B LC-B! LC-A

AUC SEN SPE AUC SEN SPE AUC SEN SPE AUC SEN SPE

T2 0.87 0.79 0.80 0.84 0.75 0.79 0.65 0.60 0.59 0.70 0.60 0.62

ADC 0.79 0.76 0.66 0.75 0.74 0.73 0.64 0.62 0.59 0.67 0.62 0.66

hDWI 0.79 0.74 0.74 0.90 0.80 0.80 0.61 0.57 0.55 0.70 0.69 0.68

T2þ ADC 0.91 0.76 0.86 0.86 0.76 0.75 0.69 0.60 0.64 0.74 0.67 0.64

T2þ hDWI 0.92 0.80 0.84 0.92 0.94 0.68 0.68 0.61 0.64 0.73 0.62 0.68

ADCþ hDWI 0.84 0.79 0.74 0.90 0.83 0.73 0.68 0.62 0.68 0.74 0.64 0.62

T2þ ADCþ hDWI 0.92 0.83 0.90 0.91 0.79 0.82 0.74 0.73 0.70 0.77 0.74 0.74

The bold/shading data indicate the maximum number in the columns
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Figure 3 shows coarse lesion detection results of the
accurately classified and misclassified examples. Two DA
settings (i.e., P-x to LC-A, and P-x to LC-B) were selected as
representatives for lesion detection evaluation. Results of the
all-sequence-ensembled method were selected as a representa-
tive for analysis. In the correctly classified examples, coarse
lesion contours could encircle the lesion ground-truth point in
all sequences (as shown in Figure 3a). However, in the unclassi-
fied examples, the coarse lesion position could not be precisely
detected in most sequences as shown in the third row. In the
example of LC-A, the lesion on the T2 image was correctly
detected, but the lesion contours on ADC and hDWI maps were
falsely identified. The possible reason is that the coarse lesion
masks applied as the training ground truth could not depict
the actual lesion contours accurately. Therefore, we can observe
that accurate detection on ADC and hDWI also play a role in
enhancing the ensembled classification, although lesion
detection generally heavily relies on T2 images. In the future,
robust weak label processing methods (e.g., deep extreme level
set evolution method[39]) will be employed. For the example from
LC-B, undersegmentation of the prostate region can be found on
the T2 image, which could lead to failed lesion detection. As the
prostate regions on ADC and hDWI were transformed using
T2, under/oversegmentation of the prostate gland on T2 would
deteriorate the lesion detection in the other two sequences.
Despite the inaccurate lesion detection on ADC and hDWI,
it should be noted that the models with multisequences input

still outperform the models using T2 alone in lesion classifica-
tion, accredited to the reuse of prostate features from ADC
and hDWI.

3.4. Comparisons with the State-of-the-Art Methods

We compared our model with three state-of-the-art models using
AUC, i.e., Resnet50,[40] DANN,[41] and Deep Coral.[25] The data-
set, P-x, was used as the source domain. Our local cohort
datasets, LC-A and LC-B, acted as the target domains. The indi-
vidual (i.e., T2, ADC, and hDWI) and the ensembled (i.e.,
T2þ ADCþ hDWI) sequences were involved. The other
ensembled sequences, T2þ ADC, T2þ hDWI, and ADCþ hDWI,
were not involved here due to their inferior performance as dis-
cussed in Section 4.2. Detailed comparison results are summa-
rized in Table 5.

Resnet50 is a common classification model. It was pretrained
from the source domain, and then tuned and tested in the target
domain; therefore, no DA was utilized. In Table 5, Resnet50
underperforms all other methods in all sequences. A possible
reason may be the weak cross-domain knowledge transferability
of the fine-tune strategy. This shows the advantage of domain
adaptation methods over the fine-tune strategy. Another model,
DANN, is GAN-based and has been widely employed in lesion
assessment. It can extract low-level features from the entire
image. Deep Coral was also introduced, which can leverage
domain knowledge transfer by aligning the second-order

Figure 3. Coarse lesion detection results of a) accurately classified and b) misclassified examples in target domains, LC-A and LC-B, relative to the source,
P-x. All-sequence-ensembled (T2, ADC, hDWI) approach is employed. In lesion detection results (first and second rows), the lesions (ground-truth) are
pointed in green. The predicted coarse lesion regions are colored in yellow. Promising prediction of lesion region, i.e., containing the ground-truth in all
sequences, can yield the higher correctness of classification as in (a). Moreover, undersegmented prostate regions marked with yellow boxes/contours
(i.e., the example of LC-B in the third row) would also worsen the classification outcome.
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statistics. Similar to DANN, it also adopts a common encoder for
feature extraction from the input of a whole image slice.
Comparatively, our model could fuse both lesion features and
prostate features for effective DA, instead of extracting the pros-
tate features. We “strengthened” the point labels to be coarse
mask labels, such that features, particularly lesion features,
can be robustly aligned for DA using the mask labels. In
Table 5, CMD2A-Net outperforms the two UDA models in all
the sequences in terms of AUC, indicating the effectiveness
of our model in cross-domain feature harmonization and its
advantage in prostate lesion classification. It is worth noting that
all four models accomplish their highest AUCs using the
ensembled sequence. A consistent conclusion can be found in
Section 4.2, showing the benefits of the all-sequence-ensembled
method again.

3.5. Visualization of Sample Distribution and Ablation Study

Apart from AUC, we also visualized the sample distribution of
source and target domains, in support to any improved perfor-
mance of handling domain shift intuitively. Datasets, P-x and
LC-A, were adopted to visualize the data distribution before
and after the DA. Algorithm, t-SNE,[42] was employed to visualize
the data distributions of all sequences, i.e., T2, ADC, and hDWI.
Fifty mpMRI cases from each dataset were randomly chosen. As
shown in Figure 4a–c, obvious clustering can be observed before
DA in each sequence, indicating severe domain shift between the
two domains. After CMD2A-Net training (i.e., DA), domain-
invariant features were extracted by the well-trained model.
After the DA, samples from the two cohorts for each sequence
are evenly distributed, proving that CMD2A-Net could assure fea-
ture alignment on the heterogenous mpMRI sequences.

To carry out the ablation study, we selected two key compo-
nents, i.e., the coarse segmentation module and the domain
transfer module, to analyze their contribution to lesion malig-
nancy classification using T2 images. We compared our
CMD2A-Net with its two variants using AUC, i.e., 1) CMD2A-Net
excluding the domain transfer module (i.e., CM-Net, shown in
the black dashed box in Figure 5) and 2) CMD2A-Net excluding
the course segmentation modules (D2A-Net). As the CM-Net
does not contain DA modules, it was trained in the source
domain, and then fine-tuned and tested in the target domain.
Datasets, P-x and LC-A, were selected as the source and target
domain, respectively. D2A-Net obtains a lower AUC (0.65) com-
pared with CMD2A-Net (0.87). This suggests that the coarse seg-
mentation module is essential for domain-invariant feature

Figure 4. Sample distribution before and after DA for sequences a) T2, b) ADC, and c) hDWI using t-SNE. Similar change in distributions can be observed
in all the sequences. Before DA, sample distributions of the source (red dots) and target (blue triangles) are dispersed in separate clusters, indicating
severe domain shift. The mixed and even distribution after DA demonstrates the effectiveness of CMD2A-Net in feature alignment. d) Indicates the impact
of hyperparameters (i.e., α and β) in the loss sensitivity analysis.

Table 5. AUC comparisons on malignancy classification (i.e., csPCa or
non-csPCa) with the three existing models.

Methods P-x! LC-A P-x! LC-B

T2 ADC hDWI Ensemble T2 ADC hDWI Ensemble

Resnet50 0.65 0.70 0.55 0.70 0.66 0.71 0.68 0.71

DANN 0.70 0.72 0.66 0.79 0.68 0.66 0.75 0.80

Deep Coral 0.71 0.75 0.67 0.75 0.74 0.73 0.80 0.85

CMD2A-Net (Ours) 0.87 0.79 0.79 0.92 0.84 0.75 0.90 0.91

The bold/shading data indicate the maximum number in the columns
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extraction between domains. This also supports our hypothesis
that the coarse lesion maps would enhance the malignancy clas-
sification accuracy. CM-Net obtains an AUC of 0.67, also less
than CMD2A-Net. This indicates that the domain transfer mod-
ule can substantially mitigate domain shift, thus enhancing
CMD2A-Net’s PCa classification performance.

The loss parameters sensitivity was also analyzed. CMD2A-Net
was trained using P-x (source domain) and LC-A (target domain).
Hyperparameters α and β(i.e., weighting parameters of the total
loss) in Equation (6) would influence the model’s generalization
ability essentially. The two hyperparameters could not be learned,
which were preset prior to the model training. They were used to
balance the contributions of the three network modules, such
that joint optimization on all modules can be realized, thus facil-
itating the training process to reach equilibrium. Therefore, we
manually tuned the hyperparameters in {0, 0.1, 0.05, 0.1, 0.5, 1.0,
5.0} to analyze the modules’ contribution to lesion malignancy
classification. As shown in Figure 4d, we could see a group of
hyperparameters were preset to yield an optimal model. We
can observe that our model demonstrates superior classification
performance with α within [0.1, 1.0] and β within [0.05, 1.0]. It
should be noted that our model receives the lowest AUC when

either α or β is set to 0, showing that the coarse segmentation
module and the domain transfer module could enhance cross-
domain knowledge transferability positively, thus improving
lesion classification accuracy.

4. Conclusion

In this article, we address the issue of performance heterogeneity
in target domains arising from real-world usage across multiple
sites/cohorts. We present a fully automated framework for
mpMRI-based prostate lesion assessment. The framework
involves a Mask R-CNN network to pre-crop the prostate region,
and a novel UDA network (i.e., CMD2A-Net) for coarse lesion
detection and malignancy classification (i.e., csPCa or non-
csPCa). By introducing weakly supervised coarse segmentation
modules, CMD2A-Net can incorporate both the prior lesion fea-
tures and prostate features into the domain knowledge transfer
process, yielding robust feature alignment between heteroge-
neous datasets. No labeling is necessary for the target domain.
CMD2A-Net serves as a general UDA model primarily designed
for PLDC, which could also be applied in other lesion assessment

Figure 5. Overview of the proposed CMD2A-Net using T2, ADC, and hDWI image inputs. Each image sequence network features two parallel branches
with respect to the source and target domains. Three main modules in the source one: 1) coarse segmentation module for coarse lesion detection and
feature alignment enhancement; 2) domain transfer module for knowledge transfer between domains; and 3) classifier module for malignancy
classification.
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tasks (e.g., liver tumors). Its PLDC performance has been evalu-
ated on datasets of P-x, LC-A, and LC-B. The models with multi-
sequence input accomplish higher AUC than any model using a
single sequence only. The all-sequence-ensembled (T2, ADC,
and hDWI) model demonstrates the most superior PCa classifi-
cation performance w.r.t. AUC, SEN, and SPE. Additionally,
when P-x acts as the source domain, the model ensembled with
all the three sequences accomplishes an AUC of 0.921 in LC-A
and 0.913 in LC-B, demonstrating its transferability from a large-
scale public dataset P-x (330 cases) to our small-scale local cohorts
(LC-A with 74 cases and LC-B with 108 cases). Experimental
results also show that our model accomplishes higher AUC in
PCa malignancy classification, compared to the state-of-the-art
models, Resnet50, DANN, and Deep Coral. Other experimental
results, including an ablation study and visualization of data dis-
tribution, further support the effectiveness of CMD2A-Net in
domain adaptation. It is worth noting that our open-sourced
system can be downloaded from GitHub (https://github.com/
jdai019/domain-adaptation-lesion-assessment.git), capable to
streamline the PLDC in an end-to-end manner without requiring
manual prostate segmentation and annotation. We would be the
first to develop a PLDC executable system available online for
open usage, which is also deep-learning-based and trained by
multicohort mpMRI sequences. In our future work, we will
resolve few limitations: currently, lesions are distributed in dif-
ferent prostate zones (e.g., transition zone and peripheral zone).
We will incorporate the prostate zones as input parameters to our
model, in order to attain a higher AUC for prostate lesion assess-
ment. Deep learning will also be used properly to facilitate effec-
tive feature extraction for the prostate zones.

5. Experimental Section

Weakly Supervised Coarse Lesion Detection: We employed Mask
R-CNN[43] to crop the prostate region accurately for PLDC. When a sample
is fed in, the prostate region and the remaining areas can be separated,
respectively, as foreground (as known as image mask) and background. In
general, the T2 sequence is necessary for the model input, while other ADC
and hDWI are optional. A circumscribed rectangle (as the bounding box)
of the detected prostate contour marks out the regions of interest (ROIs).
The prostate mask on T2 images can also be applied to other accompanied
input images (e.g., ADC, hDWI) through coordinate transformation, to
obtain their corresponding ROIs. In comparison with Yang et al.[2] using
a five-layer shallow segmentor, we chose a deeper feature extractor, i.e.,
Resnet50,[40] such that more complex features can be learned for more
accurate prostate detection. Besides, a multiscale deep spatial feature
extraction module, i.e., Feature Pyramid Networks,[44] was utilized to deal
with FoV difference and varying prostate cross-sectional size.

Since fine delineation of the lesion region (e.g., the pixel-level label) is
time-consuming, and demanding to even professionals, prostate lesions
are commonly marked with a typical weak label,[45] i.e., point label. In gen-
eral, weak labels are widespread in real-world applications. Recent work
has explored various forms of weakly supervised labeling to alleviate
the annotation effort, including point annotations, scribbles, and bound-
ing boxes.[46] To accomplish prostate lesion detection, pixel-level labels are
required prior to model training. However, the point label is insufficient to
represent the prostate lesion area for training, as the lesion area not
marked or pinpointed with such a point label would be probably miscate-
gorized as healthy tissue.

We attempted to “strengthen” the existing point-level labels to coarse
lesion areas by aggregating their neighbor pixels into a region through pre-
processing. Such preprocessed areas would be comparable to “strong”

labels (i.e., manually labeled pixel-level contours), providing promising
cues for lesion detection model training. Recently, Kiraly et al.[27] expanded
the single marked pixel to a small-diameter circle using Gaussian kernels,
but such a processing method focuses on lesion localization rather than
contour approximation. Here, we applied a more sophisticated weak label
processing method, i.e., distance regularized level set evolution,[47] to
automatically generate a pixel-level weak label, i.e., a coarse mask label
(in Figure 5). This level set method is an edge-based active contour
approach. The labels can be produced in three steps: 1) initialize a level
set function to represent the lesion contour originated from a manually
marked point; 2) expand the lesion contour outward and update the level
set function; and 3) terminate the expansion and finalize the function once
exceeding the predefined iteration steps. As shown in Figure 1, several
examples of the coarse mask labels were automatically generated using
such a level set method. The coarse mask contours were annotated (in
red) on the cropped prostate regions (2nd and 4th row). Therefore, the
weak labels were “strengthened” from points to coarse lesion areas
through preprocessing. The weak supervision would significantly reduce
the time needed for accurate pixel-level annotation by experts, so as to
enable coarse lesion detection and enhance malignancy classification.

Figure 5 illustrates the network architecture of the proposed
CMD2A-Net. The coarse segmentation module outputs coarse lesion con-
tour and also enables local feature extraction on lesion regions. Provided
with more lesion features, the domain transfer module is introduced to facil-
itate feature alignment. A classifier module is incorporated for malignancy
prediction. CMD2A-Net is trained on the three sequences (i.e., T2, ADC, and
hDWI) individually. Based on the model output (i.e., lesions malignancy
probability) of the three sequences, we can obtain the final malignancy
predictions using ensemble learning. CMD2A-Net has two parallel branches
with respect to (w.r.t.) the source and target domain, where two encoders
extract features of prostate MR images separately in the two domains.
The segmentors from the two domains share the same weights. The source
segmentor is optimized by a supervised loss function (i.e., coarse lesion
segmentation loss). Samples and coarse mask labels from the source
domain are required for training. The segmentation loss LSeg can be
defined as

LSeg ¼ 1�
2
Pw

i

Ph
j ½mi,j si,j� þ εPw

i

Ph
j mi,j þ

Pw
i

Ph
j si,j þ ε

(1)

where si,j and mi,j indicate the pixel element values of mask label S and
predicted lesion map M, respectively. Indices i and j denote the ith column
and jth row of the image matrix in a dimension of w� h. Constant value, ε
(set to 10�5), is applied to avoid the zero-denominator case, as well as to
guarantee numerical stability.

Attention-Based Malignancy Estimation: In recent studies of prostate
lesion classification (e.g., Guan et al.[28]), lesion identification was sug-
gested to be highly associated with disease-related regions in MR images.
Instead of treating all pixels in the entire MR slice equally, an attention
mechanism can be introduced to specifically extract lesion features.
With these insights, we hypothesized that incorporating the prior knowl-
edge of lesion regions into the DA process could enhance the model’s
classification performance. As illustrated in Figure 5, the two branches fol-
low the same pipeline to generate attention feature maps. In each branch,
the attention map can be produced using the prostate region and the
coarse lesion mask, enabling our model to focus on the lesion region
and also extract more lesion representations. The prostate region and
the coarse lesion mask are denoted as P and M, respectively. Note that
the subscripts “s” and “t” of variables (e.g., Ms and Mt) in Figure 5
represent the source and target domains, respectively. The attention maps
of source and target domains, Asand At, respectively, can be calculated by

Ai ¼ σðPi ∘ MiÞ, i ¼ s, t (2)

where the operation ∘ means the element-wise product, and the sigmoid
function is denoted by σ which is adopted as the nonlinear activation to
generate attention maps. Such a simple but effective function can
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constrain each element of the feature maps in [0,1], thus weighting the
importance of regions. As a result, guided by coarse mask labels, the
lesion areas would be assigned higher weights than the noninformative
background (i.e., healthy tissue) in the feature maps.

To achieve accurate lesion classification, features from the lesion atten-
tion maps can be extracted by an encoder, such that high-level lesion fea-
tures can be captured for the classifier module. Thus, in each branch, an
encoder is incorporated after the segmentor to extract each domain’s spe-
cific features. Besides, we proposed to fuse the lesion features and the
prostate features to boost the classification accuracy. Skip connection
and concatenation operations are introduced to reuse prostate features
from the segmentors.

We designed a domain transfer module (in Figure 5) without requiring
target labels in the training process. The semantics features from both the
prostate region and attention map are fused, such that deep coral features
from fully connected (FC) layers can be captured for feature affinity. Deep
Coral loss[25] is employed to minimize cross-domain feature distribution
discrepancy, owing to its generality, transferability, and ease of implemen-
tation. It is defined as the difference of second-order covariances between
domains. Our domain transfer loss LCoral is defined as

LCoral ¼
Xl

i¼1

λi
1

4di2
kCs � Ctk2F (3)

where l indicates the number of FC layers. Constants λi, i ¼ 1, 2, : : : , l are
the weights that balance the contribution of FC layers, which are set to 1
here. The squared matrix Frobenius norm is denoted as k ⋅ k2F . The
dimension of the ith FC layer is indicated by di. The feature covariance
matrices of source and target domains, Cs and Ct, respectively, can be
calculated by

Ci ¼
1

ni � 1
DT

i Di �
1
ni
ð1TDiÞTð1TDiÞ

� �
, i ¼ s, t (4)

where ni denotes the number of images in the corresponding domain, and
Di indicates the feature matrices of the corresponding FC layer, and 1 is a
column vector with all elements as 1.

To accomplish malignancy prediction using mpMRI, an ensemble
learning approach is employed to fuse the predictions of the three
separated models (w.r.t T2, ADC, and hDWI). We trained the classifier
module, as in Figure 5, using labeled source data. The FC layers in the
source domain are employed, not only for cross-domain feature affinity,
but also for malignancy classification. The cross-entropy loss is utilized
to optimize the classifier module. Our classification loss LCls can be
defined as

LCls ¼
1
ns

Xns
i¼1

�ŷsi log r� ð1� ŷsi Þ logð1� rÞ (5)

where variables ŷsi and r denote the ground truth and the malignancy pre-
diction w.r.t. each source sample, respectively.

The ultimate purpose of CMD2A-Net is to accomplish accurate PLDC.
To this end, we simultaneously trained the coarse segmentation module,
domain transfer module, and classifier module. Note that, minimizing
segmentation loss alone would cause overfitting to the source domain,
and only optimizing domain transfer loss would lead to generalization
degradation in the target domain. Therefore, joint optimization on the
total loss could facilitate the training process to reach equilibrium, such
that the domain-invariant features could be extracted to achieve accurate
classification. The total loss LTotal can be defined to

LTotal ¼ αLSeg þ βLCoral þ LCls (6)

where α and β are weighting hyperparameters of the total loss. Both of
them were set to 0.5 in our experiments.

To leverage the benefits of multiple sequences, we utilized the weighted
average ensemble learning-based method. The outputs of the three

separated models were incorporated, thus contributing to the final ensem-
ble prediction rens as follows

rens ¼
rT þ ωArA þ ωBrB

1þ ωA þ ωB
(7)

where rT, rA, and rB are the malignancy probability predictions of T2, ADC,
and hDWI, for which the weights are 1, ωA, and ωB, respectively. Binary
variables ωA, ωB ∈ f0, 1g are assigned based on the availability of ADC
and hDWI. For example, if the samples include ADC but without
hDWI, ωA ¼ 1 and ωB ¼ 0.

Implementation Details: Our models (i.e., Mask-RCNNmodel, CM-Net,
and CMD2A-Net) were trained using a GeForce GTX 1080 Ti GPU (Nvidia,
California, USA) with API Keras.[48] For the Mask-RCNN model training,
data augmentation with random rotation was applied on the 646 T2 image
slices on I2CVB. All the slices were split into training, validation, and test-
ing sets in the ratio of 7:2:1. The input shape of Mask R-CNN was set to
512� 512 pixels. Adam optimizer was applied with a learning rate of 10�3.
The batch size was set to 4 and the total epoch was 200. During the train-
ing process, the model with the highest dice coefficient score on the vali-
dation set was retained. For CM-Net and CMD2A-Net training, the
prostate regions from P-x, LC-A, and LC-B were scaled to 224� 224 pixels.
Random rotation of {�3°, �6°, �9°, �12°, �15°} was applied for data
augmentation. Adam optimizer was chosen, and its learning rate was
set to 10�5. The batch size was set as 2. In the training process of
CM-Net, due to the limited sample size, all the slices were split into train-
ing and testing sets in the ratio of 4:1 using the hold-out method. The
segmentation loss was optimized first to accelerate model convergence,
and CM-Net with the pretrained coarse segmentation module was further
trained. In terms of CMD2A-Net, we initialized both of its branches first
using the weight of pretrained CM-Net, in order to facilitate its conver-
gence. To be specific, we trained both the coarse segmentation module
and classifier of CM-Net first, with the combined samples from both
domains. Then, we optimized the total loss of CMD2A-Net with labeled
source samples and unlabeled target samples. By cotraining all the mod-
ules, the model with the highest accuracy was saved for malignancy eval-
uation in the target domain.

We also offered our executable codes and files online available via
GitHub, so as to allow any work extension or application by others.
This open-sourced deep-learning-based model acts as an end-to-end
system, with input from prostate mpMRI sequences (i.e., T2, ADC, and
hDWI), and output to prediction results (i.e., prostate segmentation,
coarse lesion detection, and malignancy estimation). The system supports
multiformat inputs, including DICOM, jpeg, png, and jpg files. It is empha-
sized that no manual prostate segmentation or annotation is required.
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