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1. Introduction

The study of light transmission underpins the fundamental
development of many optical devices and photonics

technologies.[1,2] In the area of geometrical
optics, light transmission can be approxi-
mated as the propagation of rays,[3] and
has been utilized in waveguide-based
sensing.[4–8] Given a flexible medium of
homogeneous refractive index with clad-
ding, light rays are guided like a pathway
as a result of total internal reflection.
However, light transmission variations in
light intensity and refraction losses can
occur due to external mechanical stimuli.
In waveguide sensors, these variations
can be detected and converted into useful
sensing feedback in the form of strain sens-
ing or morphology sensing. The application
of waveguide sensors spans many fields
(e.g., wearable devices,[9] robotics,[10–12]

surgical manipulators[13–15]) and shows
potential as an alternative to conventional
microelectromechanical systems (MEMS).
This is particularly true when the primary
design goal of such “soft sensors” or “elec-
tronic skins” is the reconstruction of the

sensor’s deformation or morphology in multiple dimensions,
often requiring high flexibility and some degree of stretchability.

Researchers have previously developed approaches to soft
sensing utilizing MEMS technology, ranging from tactile piezor-
esistive sensor arrays arranged on flexible circuit boards,[16,17] to
localized pressure sensing with polydimethylsiloxane (PDMS)
encapsulation.[18] For the purpose of shape sensing, examples
include the work by Hermanis et al.,[19] where discrete acceler-
ometer modules are embedded in a flexible, but inextensible
fabric sheet for reconstructing its overall morphology.
However, a challenge in implementing many MEMS units for
dense sensing is that discrete sensor modules have inherent
rigidity, meaning that achieving high density and precision
(e.g., through arraying) often comes at the expense of an increas-
ingly rigid structure and encumbering wire routing.

Taking a different approach, highly deformable sensors have
been developed using alternative sensing concepts such as liquid
metals,[20,21] and carbon-embedded substrates fabricated into
customized electronic circuits and components such as touch-
sensitive capacitive elements.[22,23] This approach has been used
for measuring the curvature of flexible structures like soft robotic
fingers by combining the output of multiple 1D strain sensors.[24]

However, through either MEMS or flexible electronics methods,
few studies aim at morphology reconstruction, with the core
focus instead placed on 1D signal feedback which can suffer
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Optical waveguides create interesting opportunities in the area of soft sensing
and electronic skins due to their potential for high flexibility, quick response time,
and compactness. The loss or change of light intensities inside a waveguide can
be measured and converted into useful sensing feedback such as strain or shape
sensing. Compared to other approaches such as those based on microelectro-
mechanical system modules or flexible conductors, the entire sensor state can be
characterized by fewer sensing nodes and less encumbering wiring, allowing
greater scalability. Herein, simple light-emitting diodes (LEDs) and photode-
tectors (PDs) combined with an intelligent shape decoding framework are utilized
to enable 3D shape sensing of a self-contained flexible substrate. Multiphysics
finite element analysis is leveraged to optimize the PDs/LEDs layout and enrich
ground-truth data from sparse to dense points for model training. The mapping
from light intensities to overall sensor shape is achieved with an autoregression-
based model that considers temporal continuity and spatial locality. The sensing
framework is evaluated on an A5-sized flexible sensor prototype and a fish-
shaped prototype, where sensing accuracy (RMSE= 0.27 mm) and repeatability
(Δ light intensity <0.31% over 1000 cycles) are tested underwater.
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from scalability and wiring challenges, instead of effective multi-
plexing or approaches for converting sparse measurements to the
dense sensor output.

Micrometer-sized fiber Bragg gratings (FBGs) are an example
of how discrete, 1D strain sensing can be leveraged to reconstruct
higher dimensions, such as curvature and 3D morphology sens-
ing. Fabricated directly into the optical fiber, FBGs can sense
axial strain based on the wavelength shift of the reflected light,
and achieve shape reconstruction by standalone configurations
(e.g., multicore fiber[14,25,26]) or by embedment in soft substrates
in a variety of curvilinear routing layouts.[27–29] The latter
approach has generated interest in soft robotics research by
directly integrating optical fibers into the robot structure to
model and reconstruct its behavior.[30–33] Despite the advantages
of FBG fibers, including exceptional thinness (<300 μm), electro-
magnetic (EM) immunity, and multiplexability,[34] they still
face challenges due to their relatively rigidity which can inhibit
the ultimate sensor flexibility. Additionally, FBG fibers entail
high costs and bulky measurement equipment (i.e., optical
interrogators).[35,36]

Alternatively, others have leveraged simple optoelectronic
components, i.e., light-emitting diodes (LEDs) and various types
of photodetectors (PDs), with flexible waveguide materials
such as PDMS to measure the light intensity variation caused
by deformation. Some purposely induce light transmission
losses during deformation as a result of microcracks in the
reflective surface coating along a PDMS waveguide,[6] and others
have used the deformation-dependent feature of light loss in
polymethylmethacrylate (PMMA).[12] In the prior art, LED and
PD pairs are typically placed at either end of a thin waveguide,
essentially providing 1D measurement per waveguide. An excep-
tion is the work done by Bai et al.,[7] who used a colored dye
along the waveguide to delineate the portion that was deformed
by bending or compression. The use of transmission loss takes
advantage of geometrical optics, and heavily reduces formulation
and modeling complexity often found in the light modulation
approach.[37,38] Generally, simplified PD–LED-based sensors serve
as an interesting proposition with low fabrication costs, ease of
scaling, and potential for unique waveguide and component
placement.

Regardless of the sensing approach, it remains a challenge to
combine multiple low-level sensors to predict high-order mor-
phology changes, particularly for soft mediums which possess
infinitely possible degrees of freedom.[39,40] The substantial com-
plexity in computing finite sensory information for high-level
state estimation requires novel hardware designs and modeling
methods. The data density required to represent the ground truth
of deformed 3D curvatures is generally unmet by current motion
capture technology (e.g., optical motion capture, EM sensing).
One possible approach is utilizing computational analysis data
to tremendously reduce the density of sensing elements.
Given a valid geometrical design and consistent material proper-
ties, computational mechanics could produce infinite possible
virtual configurations. Strains and displacements in these virtual
configurations could be employed as a noise-free dataset.[41] This
data enrichment method can provide significant benefits in cases
where only limited ground truth data are available to estimate a
complex surface. When provided with a comprehensive and con-
sistent set of computational outputs, data-driven mapping

between sensory data (e.g., resistance/refracted wavelength)
and mechanical stimuli (e.g., pressure/shape change) can be
modeled. With data-driven modeling, convincing performance
is shown in both classification (e.g., the spatial accuracy of
pressure) and regression tasks (e.g., pressure magnitude
estimation).[42] A specialized neural network architecture for
high-order sensing outputs, however, requires much more
research effort to explore and verify.

In our previous work, several multilayer perceptron (MLP)
models were ensembled to predict the displacement of markers
on a flat silicone sensor with strain measurements given by
FBGs. An overall prediction RMSE of 2.28mm was attained.[28]

However, it was occasionally observed that the prediction could
momentarily deviate from the ground truth significantly, which
may be caused by overlooking the data’s temporal characteristics.
Recurrent neural networks (RNN), such as long short-termmem-
ory (LSTM), are also popular in soft sensing. An example of a
single-layer LSTM combined with an MLP was used to predict
the magnitude of contact force with an average error of
0.05� 0.06 N in a soft finger.[43] However, a notable delay was
present which may be caused by the high computational cost
of LSTM. Convolutional neural networks (CNN) are utilized in
sparsely distributed sensors, e.g., a CNN layer was used to clas-
sify stimuli type exerted on robotic skin with an accuracy of
98.7%.[44] As the criteria for selecting such learning-based meth-
ods were not explained in previous research, it is challenging to
determine the appropriate framework for newly developed soft
sensors.

Our previous effort in shape sensing highlights how finite ele-
ment analysis (FEA) produces the displacement predictions for
an A4-sized soft skin[28] and predictions are further used as train-
ing data for multiple neural networks. Followed by ensemble
learning that takes account of local deformation, 3D skin shape
reconstruction is realized. In this study, we propose a general
framework for flexible surface shape sensing in real-time, validat-
ing it on a soft and self-contained optical waveguide sensor using
sparsely placed PD and LEDs. Unlike our previous work, we
incorporate temporal data characteristics to minimize jittering
and inaccuracies during real-time sensing. The framework takes
advantage of computational multiphysics FEA to assist sensor
parameter design, as well as sparse data enrichment. An
autoregressive-based learning model is introduced to target
the spatial time series captured by the sensor. We also propose
a novel sensor design optimization process for data quality
enhancement, and model architecture design that depends on
the sensing data characteristics. The primary contributions of
this study can be summarized as follows: 1) To form a self-
contained “skin” capable of untethered sensing of large-scale
shape changes at high frequency using flexible waveguide with
simple optics devices, namely, LEDs and PDs, where multiphy-
sics FEA is adopted to optimize the sensor layout. 2) To develop
an autoregression (AR)-based learning framework for decoding
RGB light signals into deformation patterns accurately,
which can be a general approach for spatial and temporal sensing
data across different sensing modalities. 3) To validate the
proposed shape decoding framework in a waveguide sensor
prototype in terms of sensing accuracy and repeatability in
high-order complex deformations, alongside usage underwater.
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2. Results and Discussion

The workflow of the proposed shape decoding framework is
described in Figure 1, consisting of four main sequential steps,
i.e., light transmission data analysis, sensor fabrication, data
enrichment by mechanical FEA, and autoregressive deep neural
networks (DNNs)-based decoding. To demonstrate the working
principle of the raised waveguide sensor, an A5-sized soft skin
(148� 210� 4mm) embedded with three pairs of LED and
PD was developed. Before the fabrication of the real prototype,
the locations of sensing elements were determined by multiphy-
sics FEA which investigated the influence of PDs/LEDs distribu-
tion on the light signal transmission inside the skin. The training
data for the mapping between the light signal and the skin shape
were obtained in a fish-shaped prototype underwater, where five
EM tracking markers were used to capture the discrete node
coordinates. Prior to model training, these sparsely distributed
node coordinates were enriched by mechanical predictions,
and then were analyzed by autocorrelation functions (ACFs).
The developed AR-based model could reconstruct the skin defor-
mation continuously. The repeatability test confirmed the high
quality of the collected data.

2.1. Light Transmission Response

The number of sensing elements (i.e., LED and PD) in the pro-
posed shape decoder is limited and their locations would affect
the light intensity data. To create the deformation-light mapping
using a data-driven method, the data pair is required to be one-to-
one. Additionally, the data dimension must be adequate to

support the recognition of high-order skin deformations. To sat-
isfy such requirements on data quality, the optimization of LED
and PD locations is expected. Before optimization, we first estab-
lished a multiphysics (ray optics cum mechanics) analysis model
to investigate the influence of sensing unit distribution on light
intensity. In the simulation, three LEDs and a PD were,
respectively, placed at the clamped and free end of an A5-sized
rectangular waveguide which is flexed in the portrait and land-
scape modes (Figure 2A). The light from LEDs would experience
intensity loss due to reflection, refraction, and transmission
before being captured by PD which is mounted at the midlength
of the skin-free side. As shown in Figure 2B, light signal
responses are almost symmetric about the horizontal configura-
tion of the skin for all three wavelengths during the downward
(①!②) and upward (②!③) bending, which is a hinder to motion
modeling. The same problem would appear in the landscape
mode in which the free-hanging length is shorter (Figure 2C).
During small deflection (free-side deflection <�20mm,
Figure 2C), the red and blue light intensities are nearly zero
as the red and blue lights were put close to the longitudinal
sides and most of the light rays were absorbed or refracted.
Besides, the spiky noise is obvious. In sum, the problems
of symmetricity, zero light intensity variation, and noise would
appear when the arrangement of LED and PD pairs is not
optimized.

As the low-quality data are unfavorable to sensing resolution
and data-drivenmodeling, the multiphysics FEAmodel is used to
optimize the offset angle α and distanceD between LEDs and PD
which are dominant factors to the captured light intensity
(see Figure 3). The light intensities predicted at 46 αs ranging

Figure 1. Workflow of the proposed waveguide shape decoding framework. The skin deformation changes the light transmission within the waveguide
body, leading to the mapping between the skin shape and the light signal. Distributions of LEDs and PDs are optimized by multiphysics FEA. Then, the
collected sparse shape data are enriched by mechanical FEA. Finally, an autoregressive DNN is developed to reconstruct the skin shape for any given
light signals.
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from 0 to 90° and four Ds ranging from 30 to 150mm were com-
pared in Figure 3A. For a specified α, the light intensity drops
exponentially with the distance. Most primary rays would undergo
free scattering and cannot reach PD through a specific pathway
like conventionally in optical fiber. Moreover, the extended dis-
tance would bring increased light loss. Under a fixed distance,
the angle of 90° is optimal as the PD can only receive light from
the front side. Figure 3B shows the light transmission predictions
inside a skin sensor with the optimized setting in which α andD of
red, green, and blue LEDs with respect to PD are (45°, 45mm),
(90°, 60mm), and (150°, 60mm), respectively. When corner I
at the left-hand side of the skin sensor is lifted (Figure 3B I),
the light intensity is varying continuously without plateau phases,
and thus one type of shape corresponds to one set of light. When
corner II at the right-hand side is lifted (Figure 3B II), the zero
light intensity variation, i.e., plateau phase, exists in all colors.
These imply the need for optimizing the location of PDs/LEDs,
or the numbers of PDs/LEDs pairs in order to increase the data
dimension. To demonstrate the optimized sensing effect, we pro-
totyped a five-layered PDMS silicone sensor (148� 210� 4mm)
with three pairs of PDs/LEDs (Figure 3C) and their locations are
set to the optimized ones based on the multiphysics prediction.
It can be observed that the light intensity is correlated with the
deformation mode. For instance, when the sensor was lifted at

its top left corner (first column in Figure 3C), the first (left)
PD’s signal varied obviously while the third (right) one tended
to be stagnant. This deformation mode mostly affected the light
transmission in the left-hand and middle regions while only
having a slight effect on the light path in the right-hand region.
When the sensor was lifted at the other three corners (other col-
umns in Figure 3C), the signal and motion are also consistent.
With this optimized PDs/LEDs setting, the discrete deformation
pattern can be roughly recognized from the light intensity data.
For continuous shape reconstruction in detail, we still have to
establish a model capable of mapping light intensity to sensor
shape.

2.2. Repeatability and Hysteresis Test

To further verify that the proposed waveguide sensing method is
sufficiently robust for subsequent data-driven modeling and
potential task-based application, a repeatability test of 1000 defor-
mation cycles was conducted. A fish-shaped prototype was
developed (Figure S1, Supporting Information). With one side
clamped, it was undulated underwater by external hydrodynamic
force (top view initial state ① shown in Figure 4A). The undulat-
ing motion was cyclic, flexing leftward twice, and flexing right-
ward twice (see ②, ③, ④, and ⑤ in Figure 4A).

Figure 2. Multiphysics FEA of an A5-sized waveguide without design optimization. A) Simple bending with a clamped side along two orientations (i.e.,
portrait and landscape orientation). The skin was released from the lower bent position (①, time= 0), passing the flat state (②, time= 0.5 s), to the higher
position (③, time= 1 s) symmetrically. B) Multiphysics predictions of normalized light intensities at the mid-length of the free side during the period of
portrait flipping motion. The schematic of RGB light transmission inside the skin at the flat state (time= 0.5 s) was depicted. C) Problems in RGB light
intensities for different free-side deflections in both flipping modes (highlighted in pale yellow). When the free-side deflection is �60mm, the red light
intensities are 0.409 and 0.406, respectively, which are almost symmetric about the zero free-side deflection. When the free-side deflection is within
�20mm, the blue light intensity keeps unvaried (difference< 0.01). The raw light intensity was normalized to zero mean and unit variance.
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Initially, the fish-shaped waveguide sensor was kept in the
neutral position until 0.2 s (Figure 4B), and three channels of
light intensity remained steady with fluctuation below 0.05%
(Figure 4C). The red light intensities received by three PDs in
the 1st and 1000th cycles were analyzed as shown in Figure 4D.
In terms of the nodal deflection, the light intensity changes in
these two cycles are nearly the same and the maximum differ-
ence is below 0.31%. In conclusion, the results imply that the
sensing data are stable with small noise, and reliable even after
1000 repeated motion cycles. It also reveals that the rigidity of the
tiny LEDs and PDs is not hindering the flexibility of soft sensors,
especially in the case of high-order morphology changes
involving bending, twisting and stretching. Data communication
in an underwater environment (with negligible water pressure) is
also stable due to the excellent water-repellence of silicone
PDMS.

2.3. Model Architecture

The soft skin shape reconstruction through multiphysics FEA
needs large computational time, which fails to meet the require-
ment of high-frequency response and high-accuracy sensing on
sensors in practical use. Therefore, we proposed to exploit deep
learning to create the end-to-end mapping between light signals
and skin configuration that could be represented by 3D coordi-
nates of spatial nodes on the skin surface.

Prior to the training attempt using various deep learning mod-
els, an analysis of sensing data was carried out to observe the
spatial and temporal characteristics, as well as to select appropri-
ate learning models. Considering the skin deformation is of spa-
tial locality, we grouped nodes with respect to their locations
as shown in Figure 5A, and inspected the average transverse
deflections of these three groups during the bending

Figure 3. Design optimization of LED and PD placement, and validation in an A5-sized sensor (148� 210� 4mm). A) Light intensity predictions for
different absolute distance D and the offset angle α between the LED and PD, assuming the PD captures the light ray only from Lambertian light distri-
bution. The offset angle α is regarded as 0 and 90° when the front face of PD and the side face of LED are, respectively, parallel and perpendicular. B) Light
intensity when two opposite corners (I and II) of the skin embedded with three LEDs (red, green, and blue) and a PD are lifted. C) LED and PD locations
and the four deformation patterns (first row), measured light intensities of A5-sized waveguide sensor with three pairs of LED and PD under four
deformation patterns, which are respectively fixed in left (second row), middle (third row), and right (fourth row) regions.
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deformation. The nodal coordinates have an obvious tendency
along with the skin bending (Figure 5B). When the top/bottom
right (left) corner was deformed, the coordinates of the nodes in
right (left) group would change sharply; and the coordinate vari-
ation of nodes in middle group is relatively mild because the
deflection at the skin corner would hardly affect them. The
deflection data are of spatial locality, and therefore, techniques
targeting at spatial data such as convolution operators and
patch-wise processing can be considered in the deep learning
model. As the flexing motion is smooth rather than impulsive,
it can be assumed that the data are also time-sequential, meaning
that the historical signal would hold influence over a period of
time. We evaluated the ACF of light signal and nodal coordinates
using lag k ranging from 0 to 10, which could describe the degree
of similarity between a time series and its lagged version.[45] As
displayed in Figure 5C, most of the autocorrelation values exceed
the error band. In other words, the data have a significant auto-
correlation. For such a time series, we consider exploiting the AR
model to extract the time-sequential feature of the data, and eval-
uate complex motions such as the combination of flexing and
twisting.

When constructing the deep learning model to map the light
signal to skin shape, two criteria should be considered: data char-
acteristics and computation efficiency. Since the skin motion has
the characteristics of time-continuity and space-locality, the

sensing data are time series as well as spatial. Having considered
the requirement for high update frequency in a real-time sensing
application, we should take a trade-off between the computa-
tional cost and accuracy of our proposed modeling. Taking the
aforementioned two criteria into account, we developed a
patch-wise AR model as shown in Figure 6. The input was
divided into two modules which are the light intensity at the cur-
rent time-step t and the nodal displacement at the last time-step
t�1. The output was the nodal displacement corresponding to the
current time-step t. The model can recursively generate and
receive the nodal displacement with the aim of data training
and forecasting in tests. To enhance the continuity of prediction,
a time window was defined for temporal data sampling, implying
that both the input and output would be a series of frames within a
fixed time range. To handle the spatial deformation variation, the
nodal displacements have to be clustered into several groups
according to the nodal location. Mappings of each group from
the light signal to the nodal coordinates would be processed using
independent MLPs.

2.4. Shape Decoding Using Autoregressive DNNs

To assess the sensor’s shape-decoding performance, a total of
3000 frames of data (2300 for training and 700 for testing) were
collected underwater on the fish shape skin over 48 nodes in

Figure 4. Repeatability and hysteresis analyses of the fish-shaped sensor in 1000 cycles of asymmetric undulating motion underwater. A) Top view of five
sensor morphologies. The sensor was deformed in a cyclic mode in sequence ②, ③, ④, ⑤, and ① is the initial state). B) RGB light intensity variations of the
second pair of LED/PD in the first cycle of motion captured at 150 Hz. C) Close-up view of (B) at the initial undeformed state (0–0.2 s). The signal noise is
below 0.05%. D) Hysteresis plot of the red light intensity captured by three PDs along with the maximum nodal deflection of the skin respectively, where
the green shaded region refers to the 95% confidence interval.
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three groups (Figure 7A). The edge in the fish head was clamped
inside the water tank and the body complied with the water flow.
Each frame of data consists of light intensity (input) provided by
PDs and 3D nodal displacements (output). To continuously rep-
resent the shape of the soft sensor and make use of spatial char-
acteristics, we enriched five EM-tracked nodes to 48 densely
distributed nodes (detailed in Section 3.3). The nodal displace-
ment error distribution of three groups and 48 nodes is depicted
in Figure 7B and collectively in Figure 7C, respectively. It can be
inferred that error would grow while the sensors are undergoing
larger deformation. An ablation study was conducted by remov-
ing three key components, i.e., time window (TW), history (HX)
module, and patch-wise (PW) processing from the original model
(OM) individually or jointly with an error comparison table shown
in Figure 7D and histograms in Figure S2, Supporting Information.
The smallest error among these five models indicates the impor-
tance of these components to the model accuracy. As discussed
in Section 2.2, sensing data form a time series, such that the his-
tory module and time window data offering information on pre-
vious steps could play important roles. From the comparison
between OM and OM w/PW, we can conclude that patch-wise
processing improves the ability of the model in tackling the spa-
tial locality of data. The finite element (FE) mesh for nodal coor-
dinate enrichment in the mechanical FEA and the overview of
the sensing system are depicted in Figure 8A,B, respectively.
The predicted skin shape is compared with the reality in

Figure 8C. The reconstruction is shown to be close to the ground
truth, despite the relatively complex deformation which com-
bines flexing and twisting, and involves large (100mm) deflec-
tion of the tail region. As displayed in Figure 8D, the shape
reconstruction error is less than 5mm during a 2 s time span
without momentary large deviations, indicating that our decod-
ing model could predict the skin shape.

3. Experimental Section

To ensure reproducibility of this work, we provide detailed infor-
mation for constructing the waveguide sensor, and the settings
in the multiphysics and mechanical FEA. PDMS and RGB LED–
PD pair were chosen as the light transmission medium and light
sensing elements, respectively, and Bluetooth worked for wire-
less data delivery. COMSOL Multiphysics was used in the multi-
physics (ray optics cum mechanics) FEA for light transmission
simulation. Meanwhile, ABAQUS is used in the mechanical FEA
for data enrichment.

3.1. Fabrication

The proposed optical waveguide sensor is composed of three
main parts, namely, the soft skin, sensing elements, and wireless
data transmission modules. The soft skin consisting of five layers

Figure 5. Data analysis on the light intensity and nodal deflection collected on the A5-sized waveguide sensor. A) Nodes on the skin surface are clustered
into left, middle, and right groups. B) Average transverse deflection of the three groups and corresponding skin deformation patterns during a series of
bending motions. C) Autocorrelations of light intensity and grouped nodal displacement with lags ranging from 0 to 10. The blue bar represents the
maximum ACF value in all channels under a specified lag, short colored horizontal lines are ACF of data channels (i.e., nine light intensity channels and
three node displacement channels), and the green shaded regions are corresponding error bands.
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as shown in Figure S1B and Video S1, Supporting Information,
works as the medium of light transmission. Isotropic and
nondispersive PDMS is commonly used as the substance for
light-transmitting due to its high refractive index (�1.4) and
transmittance (>90%) for visible light.[46] The fabrication of soft
skin followed the standard silicone curing process, which was
repeatedly carried out for all layers. The mixed PDMS (Sylgard
184) in a 10:1 ratio was degassed and cured under 60 °C for 48 h,
followed by 120 °C for 30min. For the opaque and semiopaque
layers, PDMS was additionally mixed with silicone dye. RGB
LEDs (Kingbright 0603 LED) and PDs (AMS TCS34725FN,
400 kHz) were, respectively, selected as light-emitting and trans-
ducing elements, both of which were embedded in the transparent
layer. The electronics were connected to a Field Programmable
Gate Arrays (FPGA)-based printed circuit board (PCB) with
Bluetooth 5.0 (HC Tech, nRF52832) module and lithium-ion bat-
tery (3.7 V, 400mAh) (Figure S3, Supporting Information). The bat-
tery life is approximately 30min for consecutive sensing. These
components are all off-shelf available in the market and inter-
changeable. For instance, the waveguide medium can be substi-
tuted by the synthetic hydrogel. The total cost is around 150 USD.

3.2. Data Acquisition

For learning-based modeling dataset preparation, we collected
multiple data sequences on both the A5-sized and fish-shaped
waveguide sensors. In particular, the fish-shaped sensor was
clamped along one side and performed undulating swimming

motions driven by external hydrodynamic force. During deforma-
tion, light intensities were acquired by multiple PDs and transmit-
ted by an FPGA board (Figure S3, Supporting Information). Five
EM tracking markers were sparsely adhered to the sensor to cap-
ture real-time 3D coordinates at 20Hz (Aurora V3, NDI). Other
motion-tracking methods (e.g., infrared-based or dynamic Lidar
detection) could also be alternatives if the difficulty of line-of-sight
is overcome. During the model evaluation and repeatability test,
light intensity data were wirelessly transmitted to the processing
PC (i9-12900H, RTX 3060, 16GB RAM) at 150Hz for shape
decoding.

3.3. Multiphysics FEA for Design Optimization

Multiphysics FEA was conducted using the Geometrical Optics
and Solid Mechanic modules in COMSOL. The A5-sized wave-
guide sensor was meshed into 1260 eight-node hexahedral ele-
ments (C3D8). The refractive index of PDMS varies with light
wavelength. For red (700 nm), green (510 nm), and blue (440 nm)
lights, the indexes are 1.4273, 1.4364, and 1.4433, respectively.[46]

Assuming the embedded optoelectronic components would not
affect the flexibility of the skin, the waveguide medium PDMS
was set to be an elastic material with Poisson’s ratio of 0.495,[47]

density of 965 kgm�3, and elastic modulus of 2.5MPa.[48] Light
rays in these three colors, each simulated with 5000 vectors, were
emitted based on a Lambertian distribution. The predicted light
loss was set at a reflection coefficient of 0.75. Zero polarization
is assumed. A static study with nonlinear geometricity was carried

Figure 6. Model architecture. The input consists of two parts, i.e., the history module storing the nodal displacement at the last step t�1, and the light
module storing the light signal at the current step t. The output is the predicted nodal displacement at the current step t. All the input and output are
within the time window from t�w to t. To handle the spatial locality of skin deformation, the whole architecture is ensembled by three models, i.e., the
head, body, and tail models. The prediction rollout iteratively to the next step tþ 1 with nodal displacement at step t and light signal at step tþ 1, and
so forth.
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out for deformation at step 1 (t= 0), followed by a ray tracing study
at step 2 (t= 20 ns).

3.4. Mechanical FEA for Data Enrichment

The dense data point is crucial to subsequent shape reconstruc-
tion regardless of motion tracking technology. As proved in our
previous work, FE-based data enrichment outperforms bilinear
and nonlinear interpolation in terms of error, and thus it is
exploited in this study.[28] The FE model was fed with 3D coor-
dinates of five markers as point displacement constraints, and
generated 48 sets of nodal coordinates via the commercial soft-
ware ABAQUS. And the material property setting of PDMS is the
same as in Section 3.3. The FE model contained 5394 eight-node
hexahedral elements with incompatible modes (C3D8IH), which
deliver much better accuracy than the standard hexahedral ele-
ment under bending deformation.

3.5. Learning-Based Model Configuration and Error Metrics

We implemented the proposed deep learning framework using
PyTorch, and trained the neural networks with a batch size of 128
using L2 loss

Loss ¼ 1
n

Xn

i�1

kxi � x�i k
2

(1)

where xi and x�i are, respectively, the predicted and label nodal
displacements, and n is the number of nodes. The data were sam-
pled using a time window of five frames (�0.03 s). To enhance
generalizability of the model, both the input and output were val-
ues relative to the one in the stable initial state, and then normal-
ized to zero mean and unit variance. All six MLPs in our
architecture have four hidden layers with 128 neurons and
ReLU is the activation function. Dropout (p= 0.5) was adopted
to alleviate overfitting. The RMSE was utilized to evaluate model
performance quantitatively

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i�1

kxi � x�i k
2

s
(2)

For the ablation study (Figure 7D), RMSE is the mean error on
48 nodes in 700 frames; for the study of prediction stability
(Figure 8C), RMSE is the mean error on 48 nodes. To determine
whether the model for time series is suitable for the study,
we used k-order ACF to analyze the light signal and node
displacement

ACFðkÞ ¼
Xm

t¼kþ1

ðyt � yÞðyt�k � yÞPn
t¼1 ðyt � yÞ2 (3)

where k= 1, 2, 3, … is the lag value, yi is the data at the ith time
step, y is the average value, and m is the last time step.

Figure 7. Sensor skin configuration and prediction performance through 33 600 node instance samples collected from 700 frames. A) Selected 48 nodes
to represent the overall sensor morphology. B) Distribution of nodal displacement error per group in box plot and mean per node with colormap.
C) Distribution of nodal displacement error of all node instances. D) Error comparison between the OM and other four other models in the ablation
study, which do not include three key components, individually or jointly, namely TW, HX module, and PW processing.
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4. Conclusion

In this study, we presented a shape decoding framework for the
light-transmission-based soft skin sensor utilizing multiphysics
FEA for design optimization, mechanical FEA for data enrich-
ment, and deep learning for shape modeling. The multiphysics
FEA uses ray optics and mechanics principles. It plays an impor-
tant role in the prefabrication design analysis of the sensor,
allowing us to optimize the distribution of sensing units on
the skin sensor in a short time. The effect of distance and offset
angle between LEDs and PDs on light transmission was investi-
gated in the analysis, and low-resolution issues were discovered.
Many-to-one in sensing data could have been eliminated after
design optimization. The resulting real-time shape decoding per-
formance was demonstrated using a simple test as shown in
Video S2, Supporting Information, in which a corner of the sen-
sor was lifted. The A5-sized prototype indicates that a relatively
short distance (�75mm) and large angle (�90°) between PD and
LED could reduce light energy loss and promote data

recognizability for data-driven modeling. The interpolation of
sparse data using the mechanical FEA provides significantly
more datasets for model training, easing the requirement for
the dense markers on skin sensors for the record of high-
resolution and complicated deformation. We described the skin
sensor deformation using 48 nodal coordinates interpolated
through the analysis from the coordinates obtained by five EM
markers. Thus, the dataset including the measured continuous
light signal and the enriched nodal coordinates was collected.
The repeatability test shows that data of the fish shape sensor
are reliable even after 1000 deformation cycles, with acceptable
noises (<0.05%) and the difference of light intensity below
0.31%. Before training, we analyzed the data and deemed out that
the skin motion was of spatial locality and temporal continuity.
Results indicate that the averaged coordinates in the three groups
of nodes can be used to characterize the skin deformation, and
ACF reveals both the light signal and nodal coordinates are
affected by their history. We developed the mapping from light
intensity to skin shape based on an autoregressive model in

Figure 8. Shape decoding of the fish prototype in the underwater test. A) FEmesh used in the mechanical FEA for data enrichment. B) Components of the
sensor skin system. The sensor body was embedded with three pairs of PD and LED, and connected with an FPGA board that carried the Bluetooth
module and battery for data transmission. C) Four different motion poses ②, ③, ④, and ⑤, following the numbering in Figure 4A, and their corresponding
decoded shape with colorbar showing the nodal displacement error. D) Error of decoded shapes during this 2 s deformation. The time instants of four
poses in (C) were marked. E) Isometric view of the reconstructed skin shape. The colored shape referred to the four poses in (C), while the orange
phantom represented other intermediate poses during this 2 s time span.
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which time window and patch-wise processing were utilized. The
trained model could reconstruct the nodal displacement with
RMSE of 0.27mm (for the 700-frame test data). The predicted
skin shape was close to ground truth as supported in Video S3,
Supporting Information, even for the complex motion (e.g., a
combination of bending and torsion). The ablation study on
the model architecture implies the three key components of
the framework, namely, the time window, AR, and patch-wise
processing, are beneficial to model accuracy.

The proposed LED–PD-based optical sensing could be inte-
grated into artificial skin to enable the perception of human body
motions, or enclosed in soft robots to offer shape information in
robot–environment interaction. It is important to note that our
study focused on 3D morphological changes, and further
research is needed to investigate other sensing modalities such
as accurate proprioception involving localized pressure or
stretching (e.g., multipoint fingertips). In summary, our study
presents a shape-sensing framework for an LED–PD-based soft
waveguide sensor. The FE-based analyses for sparse-to-dense
data processing and design optimization, and the autoregressive
shape prediction model can also be extended to other trans-
ducing techniques such as electrical impedance[49] or acoustic-
based methods.[44,50]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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