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Abstract—This paper investigates stability issues related to
linear discrete-time cone-preserving systems with time-varying
delays. The study begins by examining the monotonicity of
discrete-time systems with cone invariance. Equivalent asymp-
totic stability conditions for discrete-time cone-preserving systems
with time-varying delays are then provided based on the mono-
tonicity of cone-preserving systems and the comparison principle.
The results indicate that time delays do not affect asymptotic
stability. Furthermore, the α-exponential stability is analyzed to
characterize the decay rate of the system. Finally, a numerical
example is presented to illustrate the theoretical findings. These
results contribute to the understanding of stability analysis of
cone-preserving systems with time-varying delays.

Index Terms—Cone invariance, Exponential stability, Stability
analysis, Time-delay systems.

I. INTRODUCTION

CONE-PRESERVING system, whose states are confined
in a cone located in the linear space, has garnered much

attention from researchers over the past decade. Examples of
cone-preserving systems include those with states in nonneg-
ative orthants, polyhedral cones [1], and ice-cream cones [2].
Due to their cone-invariant property, positive systems can be
considered a special case of cone-preserving systems. As a
popular research topic, there has been a significant amount of
work conducted on positive systems. Positive systems under
different conditions, like positive systems with time delays
[3]–[8], switched positive systems [9]–[11] and 2-D positive
systems [12], [13], have been taken into consideration. In [14],
Frobenius eigenvalues was introduced to prove the asymptotic
stability of positive systems, and several equivalent stability
conditions were presented. In [15], Haddad, Chellaboina and
Rajpurohit proved that positive systems with constant time de-
lays are asymptotically stable if and only if the sum of the state
matrices is Hurwitz. In [5], [16], Liu, Yu and Wang introduced
the comparison principle to analyze the asymptotic stability of
positive systems with time-varying delays. It is shown that the
necessary and sufficient condition for positive systems with
time-varying delays is the same as the one in [15]. In [17],
Ngoc considered a general linear differential positive system
and pointed out that the asymptotic stability of such a system
is independent of magnitude bound of the time delays. In
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addition, exponential stability for positive systems was also
investigated. Based on the Perron-Frobenius theorem, expo-
nential stability was discussed [18], [19]. In [20]. Ilchmann and
Ngoc pointed out that the exponential stability condition for
positive linear integro-differential systems is independent of
magnitude of the constant time delays. In [21], [22], Zhu, Li,
et al. further discussed the decay rate for continuous-time and
discrete-time positive systems with time delays by introducing
the definition of α-exponential stability. Furthermore, in [6]
Liu and Lam analyzed the relationships between asymptotic
stability and exponential stability of positive delay systems.
The results showed that, unlike general dynamic systems,
asymptotic and exponential stability of positive systems are
equivalent under bounded time-delay condition.

All of the aforementioned research showed that the stability
of systems under nonnegative constraint is not affected by
time delays. However, the above research is only focused on
a special kind of cone-preserving systems whose states are
confined to a cone formed by nonnegative linear combination
of bases of vector space. The real-world applications for cone-
preserving systems could be found in traffic control systems
[23], viral escape mechanisms [24], rendezvous problems of
multi-agent systems [25], and chemical reaction networks [26].
Take the rendezvous problem as an example. The state of
each agent is constrained within the specified proper cones
to ensure the relationship between each state component. As
a result, analyzing consensus among the agents becomes the
stability analysis for the multi-agent system. Till now, only a
few considered the monotonicity and stability of general cone-
preserving systems [27], [28]. In [29]–[31], Shen, Tanaka,
et al. discussed monotonicity conditions for systems with
cone invariance. Necessary and sufficient asymptotic stability
criteria for linear systems with cone invariance and time
delays were established. The results showed that stability of
continuous-time cone-preserving systems with constant time
delays and time-varying delays are not affected by the mag-
nitude of time delays. These conclusions also indicated that
delay robustness in positive systems is not due to system’s
positivity but cone invariance property.

Motivated by above works, this paper proposes a method
for analyzing the stability of discrete-time systems with cone
invariance. Different from the one in [31], multiple time delays
are considered and the comparison method is proposed to build
the relation between the constant time delays systems and
time-varying delay systems. The paper is outlined as follows:
First, a necessary and sufficient condition to characterize a
cone-preserving system with time delays is introduced. Then,
based on the partial ordering relation of state in discrete-



time cone-preserving systems, asymptotic stability conditions
of linear discrete-time cone-preserving systems with constant
delays and time-varying delays are analyzed. Furthermore,
the definition of α-exponential stability for cone-preserving
systems is introduced, and a necessary and sufficient ex-
ponential stability condition for discrete-time systems with
cone invariance and time delays is established. In this paper
some major contributions to the analysis of discrete-time
cone-preserving systems will be carried out, including: 1)
Comparison methods are proposed to analyze the discrete-
time systems, highlighting the monotonicity and relationships
between systems with constant time delays and those with
time-varying delays; 2) The derived stability conditions in-
dicate the delay robustness inherent in discrete-time cone-
preserving systems; 3) An equivalent condition to characterize
the convergent speed of the state in the system is proposed.

II. PRELIMINARIES

In this section, the notions and definitions on cones will
be introduced. First, some mathematical notions are given as
follows. Rn denotes the set of n-dimensional real vectors.
Rn×m denotes the set of real matrices of n×m dimension.
AT denotes the transpose of matrix A. N = {1,2, . . .} and
N0 = {0} ∪N. ∥v∥2 =

√
∑

n
i=1 v2

i denotes the 2-norm of the
vector v on Rn.

Some basic definitions about cones in [14] are recalled. Give
a set S ⊆ Rn, and SG denotes a set consisting all nonnegative
linear combinations of elements in set S. The boundary of a
set and its interior are denoted by ∂S and int(S) accordingly.
If there exists a set K that satisfies K = KG, then K is
called a closed cone. A cone K is said to be pointed if
K ∩ (−K) = {0} and solid if the interior of K is not empty.
If a cone is closed, pointed, solid and convex, then it is
called a proper cone. K∗ denotes the dual of the cone K
satisfying K∗ =

{
y ∈ Rn|yT x ≥ 0,∀x ∈ K

}
. x ≺K y (x ≻K y)

denotes y− x ∈ int(K) (x− y ∈ int(K)) and x ⪯K y (x ⪰K y)
denotes y−x ∈ K (x− y ∈ K). Furthermore, for a proper cone
K and a matrix A, if for all x ∈ K, Ax ∈ K, then matrix A is
called a K-nonnegative matrix.

In the following, some lemmas and definitions about the K-
nonnegative matrix and cone-induced vector norms are given.

Lemma 1. [32] For a K-nonnegative matrix A, there exists
a vector λ ∈ int(K) letting (I −A)λ ∈ int(K) if and only if
matrix A is a Schur matrix.

Definition 1. Let K ⊂Rn be a proper cone and let u ∈ int(K),
an order interval is formed as

Bu = {x ∈ Rn | −u ⪯K x ⪯K u} .

Then for any vector y ∈ Rn, a cone-induced vector norm on
Rn is defined as

∥y∥u,∞ = inf{t ≥ 0 | y ∈ tBu} .

Note that the cone-induced vector norm ∥x∥u,∞ = 0 if and
only if x = 0. The cone-induced norm ∥x∥u,∞ is monotonic
with respect to cone K, that is, if x ⪰K y, then ∥x∥u,∞ ≥ ∥y∥u,∞
holds. Furthermore, it should be mentioned that Definition 1

and Lemma 1 are given for proper cones. In the subsequent
sections of this paper, all cones referred to are considered to
be proper cones.

III. MAIN RESULTS

The system taken into consideration is as follows:

x(k+1) = A0x(k)+
N

∑
i=1

Aix(k−di(k)), k = 0,1, . . . ,

x(s) = ϕ(s), s =−τ,−τ +1, . . . ,0,

(1)

where x(k) ∈ Rn is the state vector, Ai ∈ Rn×n is the system
matrix, τ ∈ N0, and di(k) ∈ N0 is the time delay satisfying
0 ≤ di(k)≤ τ for all i ∈ {1,2, . . . ,N}.

Lemma 2. For any ϕ(·)∈ Kx and di(k)∈ {0,1, . . . ,τ}, x(k)∈
Kx for all k ∈ N0, if and only if Ai is Kx-nonnegative matrix
for all i ∈ {0,1,2, . . . ,N}.

Proof. Sufficiency: Mathematical induction is applied to prove
the sufficiency. Assume that Ai is Kx-nonnegative and ϕ(k) ∈
Kx. First, when k = 0, the above state space equation can be
written as x(1) = A0x(0)+∑

N
i=1 Aix(−di(0)). Since −di(0) ∈

{−τ,−τ +1, . . . ,0} and Ai is Kx-nonnegative matrix, A0x(0)
and Aix(−di(0)) ∈ Kx and their nonnegative linear combina-
tion x(1) ∈ Kx. Then we assume x(k) ∈ Kx for all k ≤ p.
When k = p, the state space equation can be rewritten as,
x(p+1) = A0x(p)+∑

N
i=1 Aix(p−di(p)). Similar to the proof

of x(1)∈ Kx, x(p+1)∈ Kx holds. By induction, x(k)∈ Kx, for
all k ∈ N0.

Necessity: Assume that there exists a number is ∈ N0 such
that Ais is not a Kx-nonnegative matrix and x(k) ∈ Kx for all
k ∈N. There exists at least one xout ∈Kx such that Aisxout /∈Kx.
Without loss of generality, we assume that is = 0. Then ϕ(k)
can be chosen as follows, ϕ(0) = xout , ϕ(k) = 0 where k ∈
{−τ,−τ +1, . . . ,−1} and di(0) ∈ {0,1, . . . ,τ}. When k = 0,
x(1) = A0xout /∈ Kx. This statement contradicts the assumption.
The necessity of Lemma 2 is established. □

Lemma 2 provides an equivalent condition for the cone
preserving property in system (1). In the following discussion,
system (1) denotes the discrete-time cone-preserving system,
where matrices Ai are Kx-nonnegative for all i ∈ {0,1, . . . ,N}.
Before analyzing the stability condition of system (1), a
preliminary lemma that illustrates the relation of the states
in system (1) under different initial conditions is presented.
This lemma will assist in determining the stability of system
(1) under arbitrary initial conditions.

Lemma 3. Let xI and xII denote the states of system (1)
with different initial conditions ϕI(k) and ϕII(k), respectively.
If ϕI(k) ⪯Kx ϕII(k) holds for all k ∈ {−τ,τ +1, . . . ,0}, the
inequality xI(k)⪯Kx xII(k) holds for all k ∈ N0.

Proof. A new system is formed by defining x(k) = xII(k)−
xI(k) and ϕ(k) = ϕII(k) − ϕI(k). Since ϕI(k) ⪯Kx ϕII(k),
ϕ(k) ∈ Kx holds. According to Lemma 2, x(k) ∈ Kx for all
k ∈ N0. In other words, xI(k)⪯Kx xII(k) for all k ∈ N0. □

Cone-preserving systems with constant time delays can
be viewed as a special kind of time-varying delay systems,



as described in (1), in which the delays di(·) are constant
functions. As a special case, the equivalent stability condition
for systems with constant time delays serves as a necessary
stability condition for system (1). Moreover, this condition as-
sists in analyzing the sufficient condition using the comparison
method. Therefore, rather than directly analyzing the stability
condition of system (1), the linear cone-preserving systems
with constant time delays are first introduced as follows:

y(k+1) = A0y(k)+
N

∑
i=1

Aiy(k− τi), k = 0,1, . . . ,

y(s) = φ(s), s =−τ,−τ +1, . . . ,0,

(2)

where τi ∈N, τi = max∀k∈N0 {di(k)}, and Ai is Kx-nonnegative
matrix for all i ∈ {0,1, . . . ,N}. In the subsequent discussion,
we present two lemmas that demonstrate the monotonicity and
stability conditions of system (2) when the initial condition
φ(·) is a constant vector function.

Lemma 4. (Monotonicity) Consider system (2) with initial
condition φ(·)≡ λ ∈ Kx. If the vector λ satisfies the condition(
∑

N
i=0 Ai − I

)
λ ⪯Kx 0, the state of system (2) satisfies y(k +

1)⪯Kx y(k) for all k ∈ {−τ,−τ +1, . . . ,0}∪N.

Proof. First, when k = 0, system (2) can be written as
y(1) = A0y(0)+∑

N
i=1 Aiy(0−τi). Since φ(·)≡ λ , the equation

can be written as y(1) = y(0)+
(
∑

N
i=0 Ai − I

)
λ . Since the in-

equality
(
∑

N
i=0 Ai − I

)
λ ⪯Kx 0 holds, inequality y(1)⪯Kx y(0)

is obtained.
Then assume that inequality y(k+1)⪯Kx y(k) holds for all

k ∈ {−τ,−τ +1, . . . , p}. For k = p+1,

y(p+2) = A0y(p+1)+
N

∑
i=1

Aiy(p+1− τi).

Since y(p)− y(p+ 1) ⪰Kx 0, y(p− τi)− y(p+ 1− τi) ⪰Kx 0
and Ai is Kx-nonnegative, inequalities A0y(p) ⪰Kx A0y(p+1)
and Aiy(p− τi) ⪰Kx Aiy(p+ 1− τi) hold. Moreover, equation
y(p+ 2) ⪯Kx A0y(p)+∑

N
i=1 Aiy(p− τi) = y(p+ 1) holds. By

induction, the above system satisfies y(k+1)⪯Kx y(k) for all
k ∈ {−τ,−τ +1, . . . ,0}∪N. □

Lemma 5. (Asymptotic Stability of System (2)) System (2)
with initial condition φ(·) ≡ λ1 ∈ int(Kx) is asymptotically
stable if and only if there exists a vector λ ≻Kx 0 satisfying
that (∑N

i=0 Ai − I)λ ≺Kx 0.

Proof. Sufficiency: Since λ ≻Kx 0, without loss of generality,
one could assume that there exist a positive scalar l such
that lλ ≻Kx λ1. First, we consider the system (2) with initial
condition φ· ≡ lλ , where the state is denoted by y∗. According
to Lemma 4, for any k ∈ {−τ,−τ +1, . . . ,0}∪N, inequality
y∗(k + 1) ⪯Kx y∗(k) holds. Lemma 2 indicates that when Ai
is Kx-nonnegative, y∗(k) ⪰Kx 0 holds. Therefore, the limit of
y∗(k) exists and it can be defined as c = limk→∞ y∗(k). Then
following equations are obtained:

lim
k→∞

y∗(k+1) = lim
k→∞

A0y∗(k)+
N

∑
i=1

lim
k→∞

Aiy∗(k− τi),

c =
N

∑
i=0

Aic.

By Lemma 1, eigenvalues of ∑
N
i=0 Ai are inside the unit circle.

Matrix ∑
N
i=0 Ai− I is a full rank matrix. Equation c = ∑

N
i=0 Aic

holds if and only if c = 0. Based on Lemma 3, the state y(k)
with the initial condition φ(·) ≡ λ1 satisfies y(k) ⪯Kx y∗(k).
When k → ∞, y(k) → 0. System (2) with initial condition
φ(·)≡ λ1 is asymptotically stable.

Necessity: According to system (2), for a positive integer p,
following p equations can be obtained,

y(1) = A0y(0)+
N

∑
i=1

Aiy(0− τi) ,

y(2) = A0y(1)+
N

∑
i=1

Aiy(1− τi) ,

...

y(p) = A0y(p−1)+
N

∑
i=1

Aiy(p−1− τi) .

Sum the above equations, one has y(p) + ∑
p−1
i=1 y(i) =

A0 ∑
p−1
i=0 y(i) + ∑

N
j=1 A j ∑

p−1
i=0 y(i − τ j). Rewrite the equation,

one can obtain

y(p)− y(0) = (A0 − I)
p−1

∑
i=0

y(i)+
N

∑
j=1

A j

p−1

∑
i=0

y
(
i− τ j

)
,

y(p)− y(0)−
N

∑
j=1

A j

τ j−1

∑
i=0

y
(
i− τ j

)
=−

p−1

∑
i=0

y(i)+
N

∑
j=0

A j

p−τ j−1

∑
i=0

y(i) ,

where τ0 = 0. Since the system is asymptotically stable, one
has y(p)→ 0 when p → ∞. When p → ∞, the above equation
can be written as

−y(0) = lim
p→∞

[
N

∑
j=1

A j

τ j−1

∑
i=0

y
(
i− τ j

)
−

p−1

∑
i=0

y(i)+
N

∑
j=0

A j

p−τ j−1

∑
i=0

y(i)

]

= lim
p→∞

[
N

∑
j=1

A j

τ j−1

∑
i=0

y
(
i− τ j

)
−

p−1

∑
i=0

y(i)+
N

∑
j=0

A j

p−1

∑
i=τ j

y
(
i− τ j

)]

= lim
p→∞

[
N

∑
j=1

A j

p−1

∑
i=0

y
(
i− τ j

)
+A0

p−1

∑
i=0

y(i)−
p−1

∑
i=0

y(i)

]

= lim
p→∞

[
N

∑
j=0

A j

p−1

∑
i=0

y
(
i− τ j

)
−

p−1

∑
i=0

y(i)

]

⪰Kx lim
p→∞

[
N

∑
j=0

A j

p−1−τ j

∑
i=0

y(i)−
p−1

∑
i=0

y(i)

]
=

(
N

∑
i=0

Ai − I

)
∞

∑
i=0

y(i).

Since y(0) = λ1 ∈ int(Kx), there exists a λ = ∑
∞
i=0 y(i) ∈

int(Kx) such that
(
∑

N
i=0 Ai − I

)
λ ≺Kx 0. □

To establish the relationship between the stability conditions
of systems (2) and (1), Lemma 6 is presented. It illustrates
the connection between the states in systems (1) and (2) when
subjected to the same initial condition φ(·).

Lemma 6. Consider system (1) and system (2) with initial
condition ϕ(·) ≡ λ and φ(·) ≡ λ , respectively, If there exists
a vector λ such that

(
∑

N
i=0 Ai − I

)
λ ⪯Kx 0, the inequality

x(k) ⪯Kx y(k) holds for all k ∈ N0, where x(k) and y(k) are
states of system (1) and system (2), respectively.



Proof. For k = 0, x(1) and y(1) can be written as

x(1) = A0x(0)+
N

∑
i=1

Aix(0−di(0)) ,

y(1) = A0y(0)+
N

∑
i=1

Aiy(0− τi).

Since φ(·) = λ , y(1)−x(1) = A0(λ −λ )+∑
N
i=1 Ai(λ −λ ) = 0,

which satisfies x(1)⪯Kx y(1). Then we assume x(k)⪯Kx y(k)
when k ≤ p. For x(p+ 1) and y(p+ 1), following equations
hold:

x(p+1) = A0x(p)+
N

∑
i=1

Aix(p−di(p)) ,

y(p+1) = A0y(p)+
N

∑
i=1

Aiy(p− τi).

By considering the difference of the above two equa-
tions, we can obtain y(p+ 1)− x(p+ 1) = A0 [y(p)− x(p)]+
∑

N
i=1 Ai [y(p− τi)− x(p−di(p))].
Based on Lemma 4, the state y(k) monotonically decreases

under the partial order defined by the cone Kx and the inequal-
ity y(p−τi)⪰Kx y(p−di(p)) holds. Combining the inequality
with the assumption, inequality y(p−τi)⪰Kx y(p−di(p))⪰Kx

x(p−di(p)) holds. It is obviously that y(k) ⪰Kx x(k) for all
k ∈ N0. □

Based on the stability condition of system (2) and the
relation between states outlined in Lemma 3 and Lemma
6, Theorem 1 is presented to demonstrate several equivalent
asymptotic stability conditions for system (1).

Theorem 1. (Asymptotic Stability of System (1)) For a
discrete-time cone-preserving system (1) with time-varying
delays, the following statements are equivalent:
i) System (1) is asymptotically stable;
ii) There exists a vector λ ∈ int(Kx) that satisfies condition(
∑

N
i=0 Ai − I

)
λ ≺Kx 0;

iii) Matrix ∑
N
i=0 Ai is a Schur matrix.

Proof. Based on Lemma 1, condition ii) and condition iii)
are equivalent. Consequently, to establish the equivalence
for Theorem 1, it is only necessary to demonstrate the
equivalence between conditions i) and ii).
Sufficiency: Assume that there is a vector λ which
satisfies equation

(
∑

N
i=0 Ai − I

)
λ ⪯Kx 0. Inequality(

∑
N
i=0 Ai − I

)
mλ ≺Kx 0 holds for all m > 0. Denote that

ϕmax = max
k

{∥ϕ(k)∥2}. For a λ1 satisfies conditions(
∑

N
i=0 Ai − I

)
λ1 ≺Kx 0 and ∥λ1∥2 = 1, there always exists a

positive scalar ε letting λ1−εx ∈ Kx for any ∥x∥2 = 1,x ∈Rn.
Letting vector λ = mλ1, where m = ϕmax/ε . For any ϕ(k),
it holds that λ − ϕ(k) ⪰Kx 0. By Lemma 4 and Lemma
6, inequality 0 ⪯Kx x(k) ⪯Kx yλ (k) holds, where yλ (k)
is the solution of system (2) with the initial condition
φ(k) ≡ λ . By the Squeeze Theorem, when k → ∞, there
is 0 ⪯Kx limt→∞ x(k) ⪯Kx limk→∞ yλ (k). In other words,
limk→∞ x(k) = 0. System (1) is asymptotically stable for any
ϕ(k) ∈ Kx.

Necessity: Assume ϕ (k) ≡ λ ∈ int(Kx) and di (·) ≡ τi.
According to Lemma 1, there exists a λ ∈ int(Kx) letting

(
∑

N
i=0 Ai − I

)
⪯Kx 0 is a necessary and sufficient asymptotic

stability condition for linear discrete-time cone-preserving
systems with fixed initial condition and constant time delays.
Therefore, the condition that there exists a vector λ ∈ Kx
satisfying

(
∑

N
i=0 Ai − I

)
≺Kx 0 is a necessary condition for

system (1). □

Remark 1. When letting the proper cone Kx be the nonnega-
tive orthant constructed by unit basis vectors, Theorem 1 could
be used to characterize the stability of discrete-time positive
systems with constant time delays [33], [34] or time-varying
delays.

Definition 2. (α-exponential stability) For a given scalar 0 <
α < 1, system (1) is called α-exponentially stable if there exist
a scalar Γ > 0 and a vector λ ∈ int(Kx) letting the state of
system (1) satisfy the equation ∥x(k)∥u,∞ ≤ Γ∥λ∥u,∞ αk for all
k ∈ N0.

Note that in the definition of α-exponential stability of the
cone-preserving system, convergent rate α is prescribed. We
can always find an ε > 0 letting α +ε < 1. With the definition
of α-exponential stability, we derive Theorem 2 to analyse
whether a cone-preserving system is α-exponentially stable.

Theorem 2. System (1) is α-exponentially stable if and only
if A0α−1 +∑

N
i=1 Aiα

−τi−1 is a Schur matrix.

Proof. Sufficiency: First consider system (2) with initial condi-
tion φ(s)≡αsλ . Define ȳ(k) =α−ky(k). Then system (2) with
the initial condition φ(s) can be written as following form,

ȳ(k+1) = A0α
−1ȳ(k)+

N

∑
i=1

Aiα
−τi−1ȳ(k− τi) , k = 0,1, . . . ,

ȳ(k) = α
−k

φ (k)≡ λ , k =−τ,−τ +1, . . . ,0.

Since α > 0, A0α−1, Aiα
−τi−1 are Kx-nonnegative matrices

and equation
(
A0α−1 +∑

N
i=1 Aiα

−di−1
)

λ ≺kx 0 holds, ȳ(k +
1) ⪯Kx ȳ(k) for any k ∈ N can be proved by Lemma 4. The
following inequality holds,

∥ȳ(k)∥u,∞ =
∥∥∥α

−ky(k)
∥∥∥

u,∞
≤
∥∥∥α

−k+1y(k−1)
∥∥∥

u,∞
.

Then inequality ∥y(k)∥u,∞ ≤ αk ∥λ∥u,∞ can be obtained. Let-
ting x̄(k) = α−kx(k), where x(k) is the state of system (1) with
initial condition ϕ(·) ∈ Kx. Similar to the proof in Theorem 1,
there always exists a scalar named Γ letting Γλ ⪰Kx α−sϕ(s),
for all s ∈ {−τ,−τ +1, . . . ,0}. Equation for x̄ is as follows:

x̄(k+1) = A0α
−1x̄(k)+

N

∑
i=1

Aiα
−di(k)−1x̄(k−di (k)) .

Let the error ē(k)≜ ȳ(k)− x̄(k), the error system can be written
in the following form:

ē(k+1) =A0α
−1ē(k)+

N

∑
i=1

Aiα
−di(k)−1ē(k−di(k))

+
N

∑
i=1

{
Ai

(
α
−τi−1 −α

−di(k)−1
)

ȳ(k− τi)

+Aiα
−di(k)−1 [ȳ(k− τi)− ȳ(k−di (k))]

}
.



Since α−sφ(s) ⪯Kx Γλ and the fact that
∑

N
i=1

{
Ai

(
α−τi−1 −α−di(k)−1

)
ȳ(k− τi)+Aiα

−di(k)−1[ȳ(k− τi)−
ȳ(k−di(k))]} is in cone Kx, we can derive that ē ∈ Kx by
Lemma 2. Combining with the above conclusion, inequality
∥x(k)∥u,∞ ≤ Γ∥λ∥u,∞ αk holds.

Necessity: First, the following assumption is made that there
exist a set of matrices Ai such that A0α−1 +∑

N
i=1 Aiα

−τi−1 is
not a Schur matrix, and system (1) is α-exponentially stable.
Since 0 < α < 1, there exists a scalar ε > 0 letting α +ε < 1.
Define x̃(k) = α̃−kx(k), where α̃ =α+ε . Then system (1) can
be transformed into the following forms:

x̃(k+1) = A0α̃
−1x̃(k)+

N

∑
i=1

Aiα̃
−1−di(k)x̃(k−di (k)) , k ≥ 0,

x̃(k) = α̃
−k

ϕ(k), k =−τ,−τ +1, . . . ,0.

Since A0α̃−1 and Aiα̃
−1−di(k) are Kx-nonnegative matrices

and α̃−kϕ(·) is in cone Kx, x̃(k) is always in cone Kx. In
other words, the above system is a cone-preserving system.
Furthermore, according to the above assumption, system (1) is
α-exponentially stable and inequality ∥x(k)∥u,∞ ≤ Γ∥λ∥u,∞ αk

holds. For x̃, there is

∥x̃(k)∥u,∞ =
∥∥∥α̃

−kx(k)
∥∥∥

u,∞
≤
(

α + ε

α

)−k

Γ∥λ∥u,∞ .

When k → ∞, ∥x̃(k)∥u,∞ → 0. The above system is asymptoti-
cally stable. According to Theorem 1, when time delay di(k) is
set to be τi, the statement that A0α̃−1+∑

N
i=1 Aiα̃

−1−τi is Schur
matrix is true for all α+ε

α
> 1. It contradicts the assumption,

so the necessity of Theorem 2 is proved. □

Remark 2. The necessity of Theorem 2 means that for
a given α , ρ

(
A0α−1 +∑

N
i=1 Aiα

−τi−1
)
< 1 is a necessary

condition for α-exponentially stable. It does not mean that
for any 0 < α < 1 system (1) is α-exponentially stable only if
A0α−1 +∑

N
i=1 Aiα

−τi−1 is a Schur matrix. Furthermore, when
choosing different vectors u, the values of the induced vector
norm ∥x(k)∥u,∞ are different. However, α-exponential stability
of system (1) is not affected by vector u.

IV. ILLUSTRATIVE EXAMPLES

To illustrate the theoretical results, system (1) with the time
delay d1(k) and following system matrices

A0 =

0.033 0.227 0.24
0.2 0.113 0.167

0.087 0.12 0.013

 , A1 =

0.287 0.033 0.02
0.06 0.207 0.093

0.173 0.14 0.307

 ,
are given. Matrices A0 and A1 are Kx-nonnegative, with cone
Kx formed by three edges

e1 =
[
2 2 −1

]T
, e2 =

[
2 −1 2

]T
, e3 =

[
−1 2 2

]T
.

It can be observed that the edges remain within the cone Kx
even after applying linear transformations by matrices A0 and
A1. According to the definition of cone-preserving systems,
this confirms the Kx-nonnegative property of matrices A0 and
A1.

In this illustrative example, two types of time delays are
considered for d1(k). The first is a constant time delay, where

Fig. 1. Trajectory of states for system (1) with the time-varying delay and
the constant time delay

αi eigenvalues of matrix A0α
−1
i +∑

N
i=1 Aiα

−di−1
i

α1 = 0.90 1.0699, 0.1736 and 0.1387
α2 = 0.93 0.9879, 0.1325 and 0.1090

TABLE I
EIGENVALUES OF MATRIX A0α

−1
i +∑

N
i=1 Aiα

−di−1
i FOR DIFFERENT αi

d1(k) = 4 for all k ∈ N0. The second is a time-varying delay,
in which d1(k) is an integer randomly selected from the range
0 to 4, with equal probability for each value. The initial
condition ϕ(s) in system (1) is set to be

ϕ(s) =
[
1 0.95+0.05sin π(5+s)

6 0.6+0.1sin π(5+s)
6

]T
,

where s =−4,−3, . . . ,0.
The state trajectories for different time delays are depicted

in Fig. 1. Arrows illustrate the evolution of the states, demon-
strating that the states ultimately converge to zero in both
cases. Furthermore, α-exponential stability of system (1) is
also discussed. By introducing the vector norm ∥·∥u,∞ where
u =

[
1 1 1

]T and applying α1 = 0.9 and α2 = 0.93 to α in
matrix A0α−1 +∑

N
i=1 Aiα

−di−1, the eigenvalues of the matrix
with two different α are shown in Table I. It can be found
that the spectral radius of the matrix with α1 is more than 1
and the one with α2 is less than 1. It indicates that the decay
rate of the system is faster than 0.93 but slower than 0.90.
Since max{ϕ(·)}= 1.1, Γ∥λ∥u,∞ can be chosen as 1.1. Fig. 2
shows the variation of the function ln∥x(k)∥u,∞, where x(k) is
the state of the system with the time-varying delay. It can be
found that the convergent rate is in the range of [0.90,0.93],
which verifies the theoretical results.

V. CONCLUSION

In this paper, a necessary and sufficient asymptotic stability
condition for discrete-time linear cone-preserving systems
with bounded time-varying delays is proposed based on com-
parison principle. Furthermore, by introducing α-exponential
stability of systems with cone invariance, a necessary and
sufficient condition is established for exponential stability of
discrete-time systems with cone invariance and time-varying
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Fig. 2. Variation of ln∥x(k)∥u,∞ for the time-varying delay system

delays. Finally, some numerical examples are presented to
illustrate the theoretical results.
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