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a b s t r a c t

This paper proposes a novel polynomial blossoming approach to designing stabilizing controller for
a class of periodic time-varying systems. Utilizing multi-convexity of a non-homogeneous symmetric
matrix polynomial, the approach can provide a series of convex optimization conditions to guarantee
the negativity/positivity of matrix polynomial. Special cases of the proposed approach are also
discussed, giving the conclusion that our approach generalizes two existing matrix polynomial ap-
proaches. For periodic systems formulated with [0, 1]-bounded time-varying coefficients, the designed
stabilizing controller not only involves user-selectable varying gains over time intervals that are
possibly non-identical to the system fundamental period, but can also guarantee the exponential
stability of the closed-loop system. The effectiveness of our approach is validated and illustrated
through two application-oriented simulation examples.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Periodic systems, usually described by ordinary differential
quations with parametric periodicity, arise in many practical ap-
lications such as helicopter rotor blades, mechanical oscillators
nd ecosystem regulation (Bittanti & Colaneri, 2008). Analytical
tudies on periodic systems in continuous time domain are ad-
ittedly more challenging than discrete-time cases, since such
ystems could not be readily reformulated into time-invariant
orms by lifting techniques (Zhou & Duan, 2011). To deal with lin-
ar continuous-time periodic system involving fixed fundamental
eriods, approaches tackling their stability and control issues
an be roughly categorized into two major types: (i) numerical
pproaches based on the Floquet theory (Bittanti & Colaneri,
008; Vrabel, 2019); (ii) system averaging and approximation
pproaches amenable to convex optimization based on periodic
r looped Lyapunov functions (Briat, 2016; Briat & Seuret, 2015;
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Zhou & Qian, 2017). Stability criteria in the Floquet theory are de-
termined through the monodromy matrix eigenvalues associated
with given parameters (Bittanti & Colaneri, 2008). Averaged or
approximated models of periodic systems such as periodic time-
varying systems that are piecewise in time (Li, Lam, & Cheung,
2015) also require a prescribed partition of system dynamics
over each fundamental period, which may be represented by a
number of time-invariant, time-delay or time-varying subsystems
(Li, Lam, Kwok, & Lu, 2018; Li, Lam, Lu, & Kwok, 2019; Xie & Lam,
2018).

For periodic time-varying systems that can be exactly parame-
terized with time-periodic coefficients, the system and controller
are usually assumed to share the same set of time-varying param-
eters (Sakai, Asai, Ariizumi, & Azuma, 2020a, 2020b). However,
accurate identification and modelling of periodic time-varying
systems may be inaccessible in practice due to the system nonlin-
earity and uncertainty. Previous studies employed periodic time-
varying Lyapunov matrices to solve control and filtering problems
with parametric uncertainty (Xie, Lam, & Fan, 2018) and polytopic
uncertainty (Fan, Lam, & Xie, 2018) via linear matrix inequality
(LMI) conditions. Moreover, matrix polynomials were applied
to representing the time-varying dynamics in controller gains
(Li et al., 2018) and systems over each period (Xie, Fan, Kwok,
& Lam, 2021). In most of the existing results, periodic piece-
wise time-varying/constant controllers and filters are constructed
over time intervals that share the same widths as subsystem
dwell times under a fixed periodic switching sequence. An excep-
tion is our previous work (Xie, Lam, & Kwok, 2020), where the
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ime interpolation-based controller enables more flexible time
egmentation, resulting in the coexistence of two non-identical
inear time-varying (LTV) coefficients in controller design criteria.
owever, the method in Xie et al. (2020) only allows at most two
on-identical time-varying coefficients over each time segmenta-
ion. It will be challenging if the system contains more nonlinear
ime-varying coefficients that cannot be precisely characterized.
o this end, we utilize the polynomial blossoming theory to tackle
his problem.

Polynomial blossoming (also known as ‘‘polar form’’ or ‘‘po-
arization’’) was first proposed by Ramshaw in 1987, indicating
hat a univariate polynomial of degree n is essentially equiva-
lent to a symmetric polynomial in n variables that is linear in
each variable separately (Ramshaw, 1987, 1989). The Blossoming
Principle provides a connection between Bézier simplices and
symmetric multi-affine maps, which can be intuitively extended
to tensor forms facilitating computer graphics (DeRose, Goldman,
Hagen, & Mann, 1993), and linear programming-based synthe-
sis for polynomial dynamical systems (Sassi & Girard, 2012). A
univariate nth degree Bernstein polynomial (Rokne, 1979) can
be regarded as a special case of its blossoming. In this paper,
we propose a non-homogeneous symmetric matrix polynomial
approach to stabilizing controller design for a class of continu-
ous periodic time-varying systems with known system dynamic
boundedness. The novelty is focused on its tractability for tack-
ling multiple time-varying coefficients defined over non-identical
time intervals. The contributions are threefold:

• A lemma inspired by polynomial blossoming is proposed,
focusing on the negativity/positivity of a class of symmet-
ric matrix polynomials with multiple non-identical time-
varying coefficients.

• The polynomial blossoming approach generalizes the exist-
ing matrix polynomial approaches in Li et al. (2019), Xie,
Lam, Fan, Wang, and Kwok (2022) and Xie et al. (2021),
providing a new perspective for decoupling time-varying
coefficients through LMI manipulation in periodic stabilizing
controller design.

• The proposed stabilizing controller can guarantee the global
uniformly exponential stability of periodic time-varying sys-
tems under a general framework.

The paper is organized as follows. Section 2 gives the problem
formulation and preliminaries for stabilizing controller design
and the existing methods. Section 3 proposes the polynomial
blossoming approach, based on which some special cases are
discussed, and sufficient conditions for controller design are es-
tablished. Section 4 validates the proposed approach based on an
equivalent mass–spring–damper system. Section 5 concludes the
paper.

Notation: Rn denotes the n-dimensional Euclidean space. N and
+ denote the set of natural numbers (including zero) and the
et of positive integers, respectively. For n ∈ N+, In and 0n denote
he n × n identity matrix and the n × n zero matrix, respec-
ively (dimensions are consistent with the context if subscripts
mitted). PT and P−1 are the transpose and inverse of matrix P ,
espectively. For real symmetric matrices P and Q , P ≥ Q (resp.,
> Q ) means that matrix P − Q is positive semi-definite (resp.,
ositive definite). λ(P), λ(P) denote the minimal and maximal
igenvalues of square matrix P , respectively, and sym(P) ≜ PT

+P .
nteger set i, j ≜ {i, i + 1, . . . , j − 1, j} denotes an interval from
nteger i to j, i < j. Given a set S , |S| denotes the cardinality of
, and Υ (S, k, q) denotes the product of all elements in the qth
ombination derived by selecting k distinct elements from set S ,
= 1, 2, . . . , |S|, q = 1, 2, . . . ,

(
|S|
)
.
k

2

. Problem formulation and preliminaries

Consider a class of continuous-time periodic systems with a
nown fundamental period Tp > 0:

˙(t) = A(t)x(t) + B(t)u(t), (1)

where x(t) ∈ Rnx and u(t) ∈ Rnu are the state vector and
the control input, respectively; A : [0, ∞) → Rnx×nx and
B : [0, ∞) → Rnx×nu are continuously Tp-periodic time-varying
matrix functions, that is, A(t) = A(t + Tp) and B(t) = B(t +

Tp), ∀t ≥ 0. Suppose A0 ∈ Rnx×nx is a constant matrix, based
on Zhou and Huang (2020) we can represent periodic matrix
function A(t) without any loss of generality as

A(t) = A0 − A0 + A(t) ≜ A0 + Ã(t), (2)

where Ã(t) = Ã(t + Tp). The model in (2) is widely applied in
practical studies on continuous-time periodic systems, such as
the rain-wind induced vibration model for cable-stayed bridges
(Hartono & van der Burgh, 2004). Hence, in this paper we consider
the following approximation for system (1):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A(t) = A0 + Ã(t) = A0 +

N∑
i=1

αi(t)Ai

B(t) = B0 + B̃(t) = B0 +

S∑
j=1

βj(t)Bj

(3)

where A0, Ai ∈ Rnx×nx and B0, Bj ∈ Rnx×nu are known constant
matrices; αi(t) = αi(t + Tp), i ∈ 1,N , and βj(t) = βj(t + Tp), j ∈

1, S, are continuous Tp-periodic scalar functions, satisfying αi(t) ∈

[0, 1], βi(t) ∈ [0, 1], ∀i, j.

Remark 1. The model in (3) uses time-varying coefficients
αi(t), βj(t) ∈ [0, 1], i ∈ 1,N, j ∈ 1, S, to represent both periodic
dynamics and uncertainty in measurement and/or approxima-
tion. These coefficients may be scaled to within [0, 1] during the
modelling process (Schouten, Lou, & Weiland, 2019), or possibly
be normalized in [0, 1] based on the known parameter bounds.
Take the case N = 2 for example, consider A(t) = A0 +ϵ1(t)A1 +

ϵ2(t)A2, ϵi(t) ∈ [ϵ i, ϵ i], ϵ i < ϵ i, i = 1, 2, and we can obtain

A(t) = A0 + ϵ1(t)A1 + ϵ2(t)A2

= A0 +
(
ϵ1(t) − ϵ1 + ϵ1

)
A1 +

(
ϵ2(t) − ϵ2 + ϵ2

)
A2

=
(
A0 + ϵ1A1 + ϵ2A2

)
+

2∑
i=1

ϵi(t) − ϵ i

ϵ i − ϵ i
(ϵ i − ϵ i)Ai

= A0 +

2∑
i=1

αi(t)Ai, (4)

where A0 ≜ A0 + ϵ1A1 + ϵ2A2, Ai ≜ (ϵ i − ϵ i)Ai, αi(t) ≜
ϵi(t)−ϵi
ϵi−ϵi

∈

[0, 1], i = 1, 2. Hence, formulation (3) can provide efficiency in
modelling. It also enables more generality than periodic piece-
wise linear system models (Li et al., 2015; Xie et al., 2018), and
covers the existing periodic piecewise LTV system models (Li
et al., 2019; Xie et al., 2020) by setting αi(t), βj(t) as periodic
piecewise LTV functions.

Note that periodic system (1) satisfying formulation (3) can
also be regarded as a class of linear parameter varying (LPV)
formulations. However, in most of the studies on periodic time-
varying systems and LPV control systems, it is usually assumed
that the varying parameters appeared in a quadratic Lyapunov
function candidate

V (t) = xT (t)P(t)x(t) > 0, P(t) > 0, t ≥ 0, (5)
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nd in the state feedback time-varying control law

(t) = K(t)x(t), t ≥ 0, (6)

are identical to those in the system model (see Remark 2). In this
paper, since the parameters in formulation (3) are time-periodic,
our direct thought is to consider a controller in form of (6) with
periodic time-varying gains K(t) = K(t + Tp). We aim to find a
direct and effective approach to stabilize periodic system (1) that
satisfies (3), without imposing the time-varying parameters in the
controller gains to be identical to those in the system model.

Remark 2. Existing studies on periodic time-varying control
or LPV control tend to use the same set of parameters in both
the system matrix and the controller. For instance, in Sakai et al.
(2020a, 2020b), all the time-varying elements in system ma-
trix A(t), input matrix B(t), Lyapunov matrix function P(t) and
controller K(t) are assumed to share the same time-varying co-
efficients sin(rωt), cos(rωt), which are exactly parameterized
before the controller design. However, in practice we may en-
counter the cases that such time-varying coefficients are not
exactly known, while a bounding interval may be available. Thus,
it is desirable to find a straightforward approach for periodic
time-varying controller design, which allows using non-identical
time-varying structures in the system and controller.

To construct a Lyapunov function in the form of (5) with a
continuous symmetric matrix function P(t) > 0, we use the
Dini derivative of P(t) to generalize the case when P(t) is not
differentiable at t ≥ 0. Considering a Dini-differentiable con-
tinuous periodic symmetric matrix function with a prescribed
fundamental period Tp > 0, that is, P(t) = P(t + Tp) > 0, ∀t ≥ 0,
the upper right Dini derivative of P(t) is defined as

D+P(t) = lim sup
h→0+

P(t + h) − P(t)
h

. (7)

When P(t) is differentiable for all t ≥ 0, the derivative of P(t) is
denoted as Ṗ(t).

Definition 1 (Definition of GUES). Periodic time-varying system
(1) with u(t) = 0 is said to be globally uniformly exponentially
stable (GUES) if there exist two constants ϕ > 0 and χ∗ > 0,
uch that the solution of the system from any x(0) ∈ Rn

x satisfies
x(t)∥ ≤ ϕe−χ∗t

∥x(0)∥, ∀t > 0.

Definition 2 (Definition of GUAS Zhou, 2016). A scalar system
ẏ(t) = µ(t)y(t) is said to be globally uniformly asymptotically
stable (GUAS) if there exists a function ζ ∈ KL (Hespanha, 2004)
such that ∥y(t)∥ ≤ ζ (∥y(0)∥, t) for any y(0) ∈ R.

Definition 3 (Definition of USF Zhou, 2016). A piecewise continu-
ous function µ(t) is said to be a uniformly stable function (USF)
if ẏ(t) = µ(t)y(t) is GUAS.

We also revisit four useful lemmas on time-varying systems
and matrix polynomials:

Lemma 1 (Necessary and Sufficient Condition for USF Zhou, 2016).
A piecewise continuous scalar function µ(t) is a USF if and only if
for two given constants c1 > 0 and c2 > 0, there exists a constant
T > 0 (maybe dependent on c1) such that the following inequalities
hold for any t > 0:∫ t+T

t
µ(s)ds ≤ −c1, (8)∫ t+θ

µ(s)ds ≤ c2, ∀θ ∈ [0, T ]. (9)

t

3

Lemma 2 (Sufficient Condition for GUES Time-varying System Zhou,
2016). A time-varying system ẋ(t) = A(t)x(t) is GUES if there exist
a Dini-differentiable continuous symmetric matrix function P(t), a
SF µ(t), and constants r2 ≥ r1 > 0 such that
T (t)P(t) + P(t)A(t) + D+P(t) ≤ µ(t)P(t), (10)

r1Inx ≤ P(t) ≤ r2Inx . (11)

emark 3. Lemma 2 is adapted from Zhou (2016) but we replace
he ordinary derivative of P(t) by its upper right Dini deriva-
ive, generalizing the case when P(t) is composed of piecewise
ifferentiable symmetric matrix functions.

emma 3 (Negativity/Positivity Property for a Class of Matrix Poly-
omials Li et al., 2019; Xie et al., 2022). Consider a symmetric matrix
olynomial function f : [0, 1]n → Rd×d, n, d ∈ N+, defined as

(ε1, ε2, . . . , εn) = Λ0+ε1Λ1+ε1ε2Λ2+· · ·+

(
n∏

k=1

εk

)
Λn, (12)

ith scalars εk ∈ [0, 1] and symmetric matrices Λk ∈ Rd×d, k ∈

1, n. Matrix polynomial f (ε1, ε2, . . . , εn) < 0 (resp., > 0) if and
only if the following inequalities hold:

k∑
ν=0

Λν < 0 (resp., > 0), k = 0, 1, . . . , n. (13)

Lemma 4 (Negativity/Positivity Property for Another Class of Matrix
Polynomials Xie et al., 2020). Let p : [0, 1]2 → Rd×d be a matrix
polynomial function defined as

p(ε1, ε2) = Θ0 + ε1Θ1,1 + ε2Θ1,2 + ε1ε2Θ2,1 (14)

where ε1 ∈ [0, 1], ε2 ∈ [0, 1], and symmetric matrices Θ0, Θ1,1,
Θ1,2, Θ2,1 ∈ Rd×d. Symmetric matrix polynomial p(ε1, ε2) <
0 (resp., > 0) if and only if

Θ0 < 0 (resp., > 0), (15)

Θ0 + Θ1,1 < 0 (resp., > 0), (16)

Θ0 + Θ1,2 < 0 (resp., > 0), (17)

Θ0 + Θ1,1 + Θ1,2 + Θ2,1 < 0 (resp., > 0). (18)

From Lemma 3, we notice that matrix polynomial (12) can be
written as:

f (ε1, ε2, . . . , εn) = Λ0 +ε1(Λ1 + ε2(Λ2 + · · ·

+εn−1(Λn−1 + εnΛn))). (19)

f we consider scalars εk, k ∈ 1, n, n ∈ N+, as variables that
may not be identical but bounded in [0, 1], it can be found that
the non-homogeneous symmetric matrix polynomials in (12) and
(14) are multi-convex (or multi-affine) (Shen, Diamond, Udell, Gu,
& Boyd, 2017). For n = 2, matrix polynomial (12) becomes

f (ε1, ε2) = Λ0 + ε1Λ1 + ε1ε2Λ2, (20)

ith ε1 ∈ [0, 1], ε2 ∈ [0, 1]. Comparing (20) with (14) by letting
0 = Θ0, Λk = Θk,1, k = 1, 2, it can be seen that (14) not only
overs (20), but also provides one more term ε2Θ1,2. However,
Lemma 4 only takes account of the case n = 2. In the following
section, the result in Lemma 4 will be extended to ∀n ∈ N+.

3. Main results

3.1. Polynomial blossoming approach

We first generalize the negativity/positivity property consid-
ered in Lemma 4 to a symmetric matrix polynomial blossoming
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orm with n ∈ N+, based on which we can obtain some useful
esults for tackling matrix polynomials.

By extending p(ε1, ε2) in (14) to the case of n > 2, we have
a matrix polynomial in a form obtained by the product of n
inomials inspired by polynomial blossoming based on a number
f scalars εk ∈ [0, 1] and symmetric matrices Θk,q ∈ Rd×d,

k ∈ 1, n, q = 1, 2, . . . ,
(n
k

)
:

(ε1, ε2, ε3, . . . , εn)
= Θ0 + ε1Θ1,1 + ε2Θ1,2 + ε3Θ1,3 + · · · + εnΘ1,(n1)

+ ε1ε2Θ2,1 + ε1ε3Θ2,2 + · · · + ε1εnΘ2,n−1

+ ε2ε3Θ2,n + · · · + εn−1εnΘ2,(n2)

+ ε1ε2ε3Θ3,1 + · · · + εn−2εn−1εnΘ3,(n3)

+ · · · + ε1ε2 · · · εnΘn,(nn)

= Θ0 +

n∑
k=1

(nk)∑
q=1

( ∏
ν∈Sk

Sk⊆1,n
|Sk |=k

εν

)
Θk,q (21)

where Sk denotes an integer set of the combinations obtained by
selecting k distinct numbers from 1, 2, . . . , n. Matrix polynomial
(21) can be regarded as a blossoming form varied by symmetric
matrices Θk,q. Here we obtain a generalized lemma concerning
the negativity/positivity property for matrix polynomial (21).

Lemma 5 (Negativity/Positivity Property Generalized by Polynomial
Blossoming). Consider a non-homogeneous symmetric matrix poly-
nomial function p : [0, 1]n → Rd×d defined in (21), with scalars
εk ∈ [0, 1], k ∈ 1, n, and symmetric matrices Θk,q ∈ Rd×d, k ∈ 1, n,
q = 1, 2, . . . ,

(n
k

)
, n, d ∈ N+. Symmetric matrix polynomial function

p(ε1, ε2, . . . , εn) < 0 (resp., > 0) if and only if the following
inequalities hold:

Θ0 < 0 (resp., > 0), (22)

Θ0 +

k∑
ν=1

∑
q∈Sν

Sν⊆1,n
|Sν |=(kν)

Θν,q < 0 (resp., > 0), k = 1, 2, . . . , n. (23)

roof. For n ∈ N+, from (22) and (23) we can derive 2n symmet-
ic matrix inequalities. The necessary and sufficient condition is
roved as follows.

ecessity: With εk ∈ [0, 1], k ∈ 1, n, the necessity can be proved
y substituting the endpoint values 0,1 of εk into (21). It can be
een that for k = 1, 2, . . . , n, the endpoint values of εk provide
n-digit binary number combination, corresponding to the 2n

atrix inequalities. The same principle with further details can be
ound in the proof of Lemma 1 and Remark 3 in Xie et al. (2022).

ufficiency: When n ≤ 2, the sufficiency has been proved by
emma 4 (Xie et al., 2020). When n = 3, we can transform
(ε1, ε2, ε3) into the following convex combination:

(ε1, ε2, ε3) = Θ0 + ε1Θ1,1 + ε2Θ1,2 + ε3Θ1,3

+ ε1ε2Θ2,1 + ε1ε3Θ2,2 + ε2ε3Θ2,3

+ ε1ε2ε3Θ3,1

= (1 − ε3)∆a
3(ε1, ε2) + ε3∆

b
3(ε1, ε2), (24)

here ∆a
3(ε1, ε2) ≜ Θ0 + ε1Θ1,1 + ε2Θ1,2 + ε1ε2Θ2,1 and

b
3(ε1, ε2) ≜ (Θ0 + Θ1,3) + ε1(Θ1,1 + Θ2,2)

+ ε2(Θ1,2 + Θ2,3) + ε1ε2(Θ2,1 + Θ3,1).
4

y (15)–(18) and εk ∈ [0, 1], k = 1, 2, 3, we have
a
3(ε1, ε2) = Θ0 + ε1Θ1,1 + ε2Θ1,2 + ε1ε2Θ2,1 < 0,

nd
b
3(ε1, ε2) = (Θ0 + Θ1,3) + ε1(Θ1,1 + Θ2,2)

+ ε2(Θ1,2 + Θ2,3) + ε1ε2(Θ2,1 + Θ3,1) < 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Θ0 + Θ1,3 < 0
Θ0 + Θ1,1 + Θ1,3 + Θ2,2 < 0
Θ0 + Θ1,2 + Θ1,3 + Θ2,3 < 0

Θ0 +

3∑
j=1

Θ1,j +

3∑
j=1

Θ2,j + Θ3,1 < 0

(25)

ased on the matrix inequalities derived from (22) and (23). Then
e have p(ε1, ε2, ε3) < 0 for n = 3. For n ≥ 3, by repeating the
imilar procedures we can always obtain a convex combination
n form of

(ε1, ε2, . . . , εn) ≜ (1 − εn)∆a
n(ε1, ε2, . . . , εn−1)

+ εn∆
b
n(ε1, ε2, . . . , εn−1), (26)

here ∆a
n(ε1, ε2, . . . , εn−1) < 0 and ∆b

n(ε1, ε2, . . . , εn−1) < 0
an be recursively proved by p(ε1, ε2, . . . , εn−1) < 0 and the 2n

atrix inequalities, similar to the case of n = 3. Hence, with
k ∈ [0, 1], k ∈ 1, n, we have p(ε1, ε2, . . . , εn) < 0.
In addition, it is clear that p(ε1, ε2, . . . , εn) > 0 if and only

if the matrix inequalities in (22) and (23) hold, with ‘‘<0’’ re-
placed by ‘‘>0’’. Therefore, both the necessity and sufficiency are
proved. □

Note that conditions (22) and (23) in Lemma 5 provide a
general formulation inspired by polynomial blossoming. To facil-
itate the understanding, we compare the inequality constraints
to guarantee p(ε1, ε2, . . . , εn) < 0 under some different cases in
Table 1, taking n = 2 and n = 3 for examples. It can be seen
that Lemma 4 (Xie et al., 2020) is actually the n = 2 case of the
proposed polynomial blossoming approach.

By Lemma 5, the resulting constraints for n = 3 can be
obtained based on (24)–(25), with ε1, ε2, ε3 ∈ [0, 1] and sym-
metric matrices Θk,q, k ∈ 1, 3, q = 1, 2, . . . ,

(3
k

)
. Symmetric

matrix polynomial p(ε1, ε2, ε3) < 0 if and only if the inequality
conditions listed in Polynomial Blossoming Case, Table 1 (n = 3)
hold. Respectively, the same principle goes with p(ε1, ε2, ε3) > 0
y changing ‘‘<0’’ to ‘‘>0’’ in the relevant inequalities.

.2. Discussions on special cases

Based on Lemma 5, a special case arises when εk ≜ ϵ ∈ [0, 1],
∈ 1, n, and p(ε1, ε2, . . . , εn) will become a symmetric matrix

polynomial p(ϵ), which can be expanded based on the Bernstein
basis (Rokne, 1979):

p(ϵ) = Θ0 + ϵ

(n1)∑
q=1

Θ1,q + ϵ2
(n2)∑
q=1

Θ2,q + · · · + ϵnΘn,1

=

n∑
k=0

(
n
k

)
ϵk(1 − ϵ)n−kΞk (27)

where Ξ0 ≜ Θ0, and

Ξk ≜

k∑ (k
ν

)(n) (nν)∑
Θν,q, k = 1, 2, . . . , n. (28)
ν=1 ν q=1
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Table 1
Inequality constraints under different cases to guarantee p(ε1, ε2, . . . , εn) < 0 (n = 2, 3).

Degree Polynomial Blossoming Case
(Lemma 5)

Bernstein Polynomial Case
εk ≜ ϵ ∈ [0, 1], k ∈ 1, n

(Lemma 6 adapted based on Xie et al. (2021))

Special Case
Θk,q = 0, k ∈ 1, n, q = 2, 3, . . . ,

(n
k

)
(Lemma 3 Li et al., 2019; Xie et al., 2022)

n = 2

Θ0 < 0

Θ0 + Θ1,1 < 0

Θ0 + Θ1,2 < 0

Θ0 + Θ1,1 + Θ1,2 + Θ2,1 < 0

Θ0 < 0

Θ0 +
1
2
(Θ1,1 + Θ1,2) < 0

Θ0 + Θ1,1 + Θ1,2 + Θ2,1 < 0

Θ0 < 0

Θ0 + Θ1,1 < 0

Θ0 + Θ1,1 + Θ2,1 < 0

n = 3

Θ0 < 0

Θ0 + Θ1,1 < 0

Θ0 + Θ1,2 < 0

Θ0 + Θ1,3 < 0

Θ0 + Θ1,1 + Θ1,2 + Θ2,1 < 0

Θ0 + Θ1,1 + Θ1,3 + Θ2,2 < 0

Θ0 + Θ1,2 + Θ1,3 + Θ2,3 < 0

Θ0 +

3∑
q=1

Θ1,q +

3∑
q=1

Θ2,q + Θ3,1 < 0

Θ0 < 0

Θ0 +
1
3

3∑
q=1

Θ1,q < 0

Θ0 +
2
3

3∑
q=1

Θ1,q +
1
3

3∑
q=1

Θ2,q < 0

Θ0 +

3∑
q=1

Θ1,q +

3∑
q=1

Θ2,q + Θ3,1 < 0

Θ0 < 0

Θ0 + Θ1,1 < 0

Θ0 + Θ1,1 + Θ2,1 < 0

Θ0 + Θ1,1 + Θ2,1 + Θ3,1 < 0
w
∆

r

H

∆

C
p
T

3

m
p
s
c
u
t
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n
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t
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(
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According to the property of Bernstein polynomials discussed in
Xie et al. (2021), we have the following lemma for the Bernstein
Polynomial Case which is a special case when εk ≜ ϵ ∈ [0, 1],

∈ 1, n, of its blossoming form (21).

emma 6 (Negativity/Positivity Property for the Bernstein Polyno-
ial Case). Consider an nth degree symmetric matrix polynomial

unction p : [0, 1] → Rd×d defined in (27) with a scalar ϵ ∈ [0, 1].
Given symmetric matrices Θk,q ∈ Rd×d, k ∈ 1, n, q = 1, 2, . . . ,

(n
k

)
,

, d ∈ N+, symmetric matrix function p(ϵ) < 0 (resp., >0) if (22)
nd the following matrix inequalities hold:

0 + Ξk < 0 (resp., >0), k = 1, 2, . . . , n, (29)

here matrices Ξk, k = 1, 2, . . . , n, satisfy (28).

roof. In the Bernstein Polynomial case, inequalities (22) and
29) constitute the constraints for a sufficient condition of sym-
etric matrix polynomial p(ϵ) < 0 (resp., >0). Let Θk ≜
(nk)
q=1 Θk,q, k = 1, 2, . . . , n. When (22), (28) and (29) hold, we

ave Θ0 < 0 (resp., >0), and for k = 1, 2, . . . , n, it holds that

0 + Ξk = Θ0 +

k∑
ν=1

(k
ν

)(n
ν

)Θν < 0 (resp., >0). (30)

sing the property of Bernstein polynomial (Rokne, 1979) and
emma 3 in Xie et al. (2021), it is immediate to obtain p(ϵ) < 0
resp., >0), which completes the proof. □

For comparison, we also display the inequality conditions
ased on Lemma 6 to guarantee p(ϵ) < 0, n = 2, 3, in the column
f Bernstein Polynomial Case, Table 1.
Comparing Lemmas 5 and 3, it is clear that symmetric matrix

olynomial (12) in Lemma 3 is another special case of matrix
olynomial (21) in Lemma 5, with Θk,q = 0, k ∈ 1, n, q =

, 3, . . . ,
(n
k

)
. Take n = 3 for example, to guarantee p(ε1, ε2, ε3) <

with ε1, ε2, ε3 ∈ [0, 1], the special case means that the symmet-
ric matrices in Lemma 3 satisfy Λ0 = Θ0, Λ1 = Θ1,1, Λ2 = Θ2,1,
Θ1,2 = Θ1,3 = Θ2,2 = Θ2,3 = 0, and thus the inequality
constraints will reduce to those listed in the column of Special
Case, Table 1 (n = 3), which are corresponding to (13). Since
both Lemmas 5 and 3 are necessary and sufficient conditions, it
can be concluded that Lemma 5 covers the result in Lemma 3.

Remark 4. Note that the orders of εk, k ∈ 1,N , in symmetric
atrix polynomial p(ε , ε , . . . , ε ) do not exceed one, which
1 2 n

5

easily preserves the multi-convexity of p(ε1, ε2, . . . , εn) (Shen
et al., 2017). This property is different from that for another type
of symmetric matrix polynomials given as ρ : [0, 1]2 → Rd×d,

ρ(ε1, ε2) = ∆0 + ε1∆1 + ε2∆2 + ε2
1∆11 + ε2

2∆22 + ε1ε2∆12,

here ε1 ∈ [0, 1], ε2 ∈ [0, 1], and symmetric matrices ∆0, ∆1,

2, ∆11, ∆22, ∆12 ∈ Rd×d. The existence of ε2
1∆11 and ε2

2∆22
esults in the following Hessian matrix:

ρ(ε1,ε2) =

⎡⎢⎣ ∂2ρ

∂ε21

∂2ρ

∂ε1∂ε2

∂2ρ

∂ε2∂ε1

∂2ρ

∂ε22

⎤⎥⎦ =

[
∆11 ∆12
∆12 ∆22

]
, (31)

which can preserve the multi-convexity of ρ(ε1, ε2) if ∆11 ≥ 0,
22 ≥ 0 and ∆11∆22 − ∆2

12 ≥ 0 to guarantee Hρ(ε1,ε2) ≥ 0.
onditions on the negativity of ρ(ε1, ε2) can be given by the
arameterized LMI technique in Proposition 4.1 of Apkarian and
uan (2000).

.3. Tractable conditions for controller design

Regarding time-varying controller design, we revisit the seg-
entation approach that has been widely applied in studies on
eriodic piecewise time-varying systems (Xie et al., 2020) and
witched systems (Allerhand & Shaked, 2011; Xiang, 2015). The
ore idea is partitioning a known time interval into M segments,
sing LTV matrix functions to establish piecewise Lyapunov func-
ion candidates. This approach has been found effective and easy-
o-use in time-varying controller synthesis, but may be limited
hen there exist more than two time-varying coefficients over
on-identical time intervals (Xie et al., 2020). To solve this prob-
em, we employ the proposed Lemma 5 to tackle controller design
nd enable more flexibility.
Before the controller design, we give a sufficient condition for

he stability of system (1) with formulation (3), using a periodic
SF µ(t) based on Lemmas 1–2.

heorem 1 (GUES Criterion). Consider periodic time-varying system
1) with formulation (3) and u(t) = 0. The system is GUES if there
xist a scalar c1 > 0, a periodic USF µ(t) = µ(t + Tp) and a
ini-differentiable continuous periodic symmetric matrix function
(t) = P(t + Tp) > 0, such that the following conditions hold:

ym(P(t)A(t)) + D+P(t) − µ(t)P(t) ≤ 0, (32)∫ t+Tp
µ(s)ds ≤ −c1. (33)
t
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roof. Consider Lyapunov function (5) with a Dini-differentiable
ontinuous periodic symmetric matrix function P(t) = P(t +

p) > 0. Since P(t) > 0 and USF µ(t) are periodic and naturally
ounded for t ≥ 0, (11) can be satisfied. If (33) holds, there always
xists a scalar c2 > 0 such that

∫ t+θ

t µ(s)ds ≤ c2, ∀θ ∈ [0, Tp]. For
∈ [lTp, (l+1)Tp), l = 0, 1, . . ., we can always find a scalar ϱ ≤ Tp
atisfying t = lTp +ϱ, such that −l ≤ −

(
t
Tp

− 1
)

= 1−
t
Tp
. When

(32) holds, we have D+V (t) ≤ µ(t)V (t), which indicates that

V (t) ≤ e
∫ t
lTp µ(s)ds+

∫ lTp
(l−1)Tp

µ(s)ds+···+
∫ Tp
0 µ(s)dsV (0)

≤ ec1+c2−
c1
Tp

tV (0), (34)

nd thus we have ∥x(t)∥ ≤ ϕe−χ t
∥x(0)∥, ∀t ≥ 0, where ϕ =

1
2 (c1+c2)

√
λ(P(0))
λ(P(0)) > 0, χ =

c1
2Tp

> 0. By Definition 1, the system is
UES. The proof is complete. □

Compared with Lemma 2, Theorem 1 specializes µ(t) as a
eriodic USF. Such an assumption not only reduces the need of
onditions (9) and (11), but also facilitates a tractable stabilizing
ontroller design that follows. To simplify the condition related to
(t) in practice, we can directly use a periodic piecewise constant

USF µ(t) = µ(t + Tp) = µm, t ∈ Tm ≜ [lTp + (m − 1)δ, lTp + mδ),
o improve the tractability in controller design.

heorem 2 (Tractable Criterion for Periodic Stabilizing Controller
esign). Consider periodic time-varying system (1) with formula-

tion (3) and periodic controller (6). Given a periodic piecewise USF
µ(t) = µm, t ∈ Tm, m ∈ 1,M, the system is GUES if there exist a
calar c1 > 0, symmetric matrices Qm > 0 and Um, m ∈ 1,M, such
hat the following conditions hold:

Ω0,m < 0, (35)

0,m +

k∑
ν=1

∑
q∈Sν

Sν⊆1,n
|Sν |=(kν)

Ων,q,m < 0,

k = 1, 2, . . . ,N + S + 1, (36)

Tp
M

M∑
m=1

µm ≤ −c1, (37)

here

Ω0,m = sym(A0Qm + B0Um) − δ−1Q̃m − µmQm,

Ω1,i,m = sym(AiQm), i = 1, 2, . . . ,N,

Ω1,N+j,m = sym(BjUm), j = 1, 2, . . . , S,

Ω1,N+S+1,m = sym(A0Q̃m + B0Ũm) − µmQ̃m,

Ω2,i,m = sym(AiQ̃m), i = 1, 2, . . . ,N,

Ω2,N+j,m = sym(BiŨm), j = 1, 2, . . . , S,

2,N+S+ϑ,m = 0nx , ϑ = 1, 2, . . . ,
(
N + S

2

)
,

Ωk,q,m = 0nx , k = 3, 4, . . . ,N + S + 1,

q = 1, 2, . . . ,
(
N + S + 1

k

)
,

nd δ ≜
Tp
M . Over each period, the periodic time-varying controller

gains are calculated by

K(t) = U(t)Q−1(t), t ∈ [lTp, (l + 1)Tp), (38)

where for t ∈ Tm, m ∈ 1,M, time-varying matrix functions Q(t) and
(t) are obtained by

Q(t) = Q + σ (t)Q̃ , (39)
m m

6

U(t) = Um + σ (t)Ũm, (40)

nd Q̃m ≜ Qm+1 − Qm, QM+1 = Q1, Ũm ≜ Um+1 − Um, σ (t) =
(t−lTp−(m−1)δ)

δ
∈ [0, 1), m ∈ 1,M.

Proof. Combining the system formulation in Section 2 with (39),
(40) and δ = Tp/M , it follows that αi(t), βj(t) ∈ [0, 1], i ∈ 1,N ,
j ∈ 1, S, and σ (t) ∈ [0, 1) ⊂ [0, 1]. For t ∈ Tm, m ∈ 1,M , the
upper right Dini derivative of Q(t) is given by

+Q(t) =
Qm+1 − Qm

δ
= δ−1Q̃m. (41)

here QM+1 = Q1. When conditions (35) and (36) hold, by
he polynomial blossoming-inspired Lemma 5, for t ∈ Tm, we
an guarantee the negativity of the following symmetric matrix
olynomial:

ym(A(t)Q(t) + B(t)U(t)) − D+Q(t) − µ(t)Q(t)

= Ω0,m +

N∑
i=1

αi(t)Ω1,i,m +

S∑
j=1

βj(t)Ω1,N+j,m

+ σ (t)Ω1,N+S+1,m + σ (t)
N∑
i=1

αi(t)Ω2,i,m

+ σ (t)
S∑

j=1

βj(t)Ω2,N+j,m +

(N+S
2 )∑

ϑ=1

Υ (Φ, 2, ϑ)Ω2,N+S+ϑ,m

+

N+S+1∑
k=3

(N+S+1
k )∑

q=1

Υ (Ψ , k, q)Ωk,q,m

< 0, (42)

with two sets consisting of the [0, 1]-bounded time-varying co-
efficients given as

Φ ≜
{
αi(t), βj(t), | i ∈ 1,N, j ∈ 1, S

}
, (43)

≜
{
αi(t), βj(t), σ (t) | i ∈ 1,N, j ∈ 1, S

}
. (44)

ince continuous matrix function Q(t) = Q(t + Tp) > 0, for any
≥ 0, we have Q−1(t) = Q−1(t + Tp) > 0, and

in
t

λ(Q(t))Inx ≤ Q−1(t) ≤ max
t

λ(Q(t))Inx . (45)

ext, multiplying both sides of (42) by Q−1(t), based on (38) and
he fact D+Q−1(t) = −Q−1(t)D+Q(t)Q−1(t) it follows that for
∈ Tm,

ym(Q−1(t)Ac(t)) + D+Q−1(t) − µ(t)Q−1(t) < 0, (46)

here Ac(t) ≜ A(t) + B(t)K(t). Similar to (5), we construct a
yapunov function:

(t) = xT (t)Q−1(t)x(t), t ≥ 0. (47)

t follows that D+V (t) < µ(t)V (t) = µmV (t), t ∈ Tm.
Based on the proof of Theorem 1, inequality (46) corresponds

o condition (32). Moreover, when (37) holds, the condition of
(t) in (33) is satisfied. Thus, periodic time-varying system (1)
ith formulation (3) and periodic controller (6) is GUES. The
ime-varying controller gains can be calculated by (38)–(40). □

emark 5. The periodic time-varying controller gains K(t) in
heorem 2 may be discontinuous at the switching instants upon
he end of each period, that is, t = lTp, l = 1, 2, . . .. According
to previous studies (Li et al., 2019; Xie et al., 2022), K(t) can
be imposed to be continuous at all the switching instants if we
suppose U(t) as a continuous function by letting U = U . The
M+1 1
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Fig. 1. Illustrative results of Example 1: (a) Open-loop system state trajectory; (b) Closed-loop system state trajectory; (c) Variations of ∥Q(t)∥, ∥U(t)∥ and ∥K(t)∥
emonstrated over 3 periods (discontinuous controller gains).
,

c

Fig. 2. Equivalent mass–spring–damper system with time-periodic coefficients.

otal number of decision variables in Theorem 2 is Mnx( nx+1
2 +

u) + nxnu, which will become Mnx( nx+1
2 + nu) when U(t) is

ontinuous at the end of each period. When M increases, more
atrix variables will be introduced to improve the feasibility.
ote that in this study, we do not need a very large M . We just
eed to choose an appropriateM to ensure the feasibility, in order
o keep the computational complexity from getting too high.

. Simulation verification

.1. Example 1

Consider a helicopter model adapted from Hooshmandi, Bayat,
ahed-Motlagh, and Jalali (2020) and Narendra and Tripathi (1973)
ith time-varying parameters due to air speed variation:

˙(t) =

⎡⎢⎣−0.036 0.0271 0.018 −0.455
0.048 −1.01 0.002 −4.02
0.1 a32(t) −0.707 a34(t)
0 0 1 0

⎤⎥⎦ x(t)

+

[
0.4422 b21(t) −5.52 0
0.1761 −7.59 4.99 0

]T
u(t), (48)
7

where state variable x(t) = [x1(t), x2(t), x3(t), x4(t)]T is composed
of horizontal velocity, vertical velocity, pitch rate and pitch angle;
control input u(t) = [u1(t), u2(t)]T consists of collective pitch
ontrol and longitudinal cyclic, respectively; parameters a32(t),
a34(t) and b21(t) are periodic time-varying as follows:

a32(t) = 0.066 + |0.42 sin(0.35t)|,
a34(t) = 0.11 + |2.25 sin(0.35t)|,

b21(t) = 0.97 + |4.1 sin(0.35t)|. (49)

Note that (49) is just used for simulation, and we do not need the
exact periodic time-varying coefficient | sin(0.35t)| in controller
design or assume the same coefficients in the controller gains.
The system and control input matrices in (48) are formulated as
A(t) = A0 + α1(t)A1, B(t) = B0 + β1(t)B1, where α1(t) = β1(t) =

| sin(0.35t)| ∈ [0, 1].
We use Theorem 2 to solve the stabilizing controller gains

with σ (t), M = 6, and µm sampled from a USF −0.5 cos(0.35t),
m ∈ 1,M . The results of open-loop/closed-loop system state tra-
jectories, and variations of ∥Q(t)∥, ∥U(t)∥ and ∥K(t)∥ over 3 peri-
ods are shown in Fig. 1(a)–(c), which demonstrate the stabilizing
control effects under K(t) with controller gains discontinuous at
the end of each fundamental period.

4.2. Example 2

Moreover, we consider an equivalent mass–spring–damper
system model that involves time-periodic spring stiffness and
damping coefficients, as shown in Fig. 2. The system comprises
of two masses m1,m2, two spring elements with stiffness co-
efficients k1(t), k2(t), two damping elements with coefficients
c1(t), c2(t), and two external force inputs u1(t), u2(t); z1(t) and
z2(t) are the displacements of m1 and m2, respectively. Let z(t) =

[z (t), z (t)]T , u(t) = [u (t), u (t)]T , for t ≥ 0 we have the
1 2 1 2
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Fig. 3. Illustrative results of Example 2: (a) Open-loop system state trajectory; (b) Closed-loop system state trajectory; (c) Variations of ∥Q(t)∥, ∥U(t)∥ and ∥K(t)∥
demonstrated over 3 periods (continuous controller gains).
following dynamic system:[
m1 0
0 m2

]
z̈(t) +

[
c1(t) + c2(t) −c2(t)

−c2(t) c2(t)

]
ż(t)

+

[
k1(t) −k1(t)

−k1(t) k1(t) + k2(t)

]
z(t) = u(t), (50)

Let x(t) = [z1(t), z2(t), ż1(t), ż2(t)]T , (50) is rewritten as ẋ(t) =

A(t)x(t) + B0u(t), where

A(t) =

⎡⎢⎢⎢⎣
0 0 1 0
0 0 0 1

−
k1(t)
m1

k1(t)
m1

−
c1(t)+c2(t)

m1

c2(t)
m1

k1(t)
m2

−
k1(t)+k2(t)

m2

c2(t)
m2

−
c2(t)
m2

⎤⎥⎥⎥⎦ ,

B0 =

[
0 0 1

m1
0

0 0 0 1
m2

]T

.

For this system, we assume that the approximation in form of
(3) is available, and set the parameter values as listed in Table 2
for simulation purpose. Thus, A(t) can be formulated by A(t) =

0 + α1(t)A1 + α2(t)A2, where

0 =

⎡⎢⎣ 0 0 1 0
0 0 0 1

−1.25 1.25 −0.1875 0
2.5 −3.875 0 0

⎤⎥⎦ ,

1 =

⎡⎢⎣ 0 0 0 0
0 0 0 0
0.5 −0.5 0 0
−1 1.75 0 0

⎤⎥⎦ ,

2 =

⎡⎢⎣0 0 0 0
0 0 0 0
0 0 0.625 −0.25
0 0 −0.5 0.5

⎤⎥⎦ ,
8

Table 2
Parameter values.
Parameter Value Unit

m1 8 kg
m2 4 kg
k1(t) 8 − 2 sin(t) N/m
k2(t) 4 − 1.5 sin(t) N/m
c1(t) −1.5 cos(t) N s/m
c2(t) −1 − cos(t) N s/m

and α1(t) = 0.5(sin(t) + 1) ∈ [0, 1], α2(t) = 0.5(cos(t) + 1) ∈

[0, 1], Tp = 2π s. Let M = 5 and µm sampled from a USF
−0.5 − sin(t), we can stabilize the open-loop unstable system
by Theorem 2. Using σ (t) for controller design, there are three
[0, 1]-bounded time-varying coefficients in total. The results of
open-loop/closed-loop system state trajectories, and variations
of ∥Q(t)∥, ∥U(t)∥ and ∥K(t)∥ demonstrated over 3 periods are
shown in Fig. 3(a)–(c). In this example, we use continuous con-
troller gains to satisfy the practical requirement in smoothness of
state variations.

5. Conclusions

A polynomial blossoming approach to stabilizing a class of pe-
riodic time-varying systems is developed in this paper. Based on
the multi-convexity of symmetric matrix polynomial blossoming
(or polar) form, the proposed approach can transfer optimization
constraints with [0, 1]-bounded time-varying coefficients over
non-identical time intervals into LMI conditions. It also gen-
eralizes the existing matrix polynomial approaches in Li et al.
(2019) and Xie et al. (2021), and therefore provides an alternative
approach capable of tackling systems with complex time-varying
structures. We have applied the proposed approach to the sta-
bilizing controller design for a class of periodic time-varying
systems. The obtained controller involves periodic time-varying
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ains either continuous or discontinuous at switching instants
ends of period intervals), and can guarantee the globally uni-
ormly exponentially stability of the closed-loop system. Benefit-
ng from the polynomial blossoming approach, we do not need
o use the same time-varying coefficients in the controller as
n the system model, enabling less requirement in modelling
ccuracy. The proposed approach is validated via two simula-
ion examples. Our future work will be devoted to improving
he performance of polynomial-based controller synthesis while
educing the computation complexity.
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