

PERFORMANCE-AWARE PROGRAMMING

FOR INTRAOPERATIVE INTENSITY-BASED

IMAGE REGISTRATION ON GRAPHICS

PROCESSING UNITS

by

Leong Chun Wing Martin

A thesis submitted in partial fulfilment of the requirements of

the Degree of Master of Philosophy

at The University of Hong Kong

September 2018

i

Abstract of thesis entitled

“Performance-Aware Programming for Intraoperative Intensity-based

Image Registration on Graphics Processing Units”

Submitted by

Leong Chun Wing Martin

for the degree of Master of Philosophy

at The University of Hong Kong

in September 2018

Recent advancement of intraoperative imaging technologies allows real-

time view of the tissue morphologies to ensure safer and efficient interventions.

Particularly, intraoperative imaging is extensively used in surgical scenarios that

require accurate target localization and precise movement of surgical tools.

Stereotactic neurosurgery and cardiac catheterization are typical examples.

However, the intraoperatively acquired image may not be aligned with the

preoperative image used for planning, due to motion, gravity, or interventions.

Intensity-based non-rigid image registration is able to resolve such misalignment,

but it suffers from prolonged registration time due to its high computation

requirement. This extended registration time makes intensity-based registration

inadmissible to the highly dynamic surgical scenarios.

To allow seamless application of intra-operative application without

disrupting the surgical workflow, there is a constant demand for having a fast

intensity-based registration. Graphics processing units (GPU) have attracted the

most attention in the recent years due to its unmatched parallel computing power.

However, many works of GPU-based image registration have overlooked the

underlying memory transaction patterns, which can hamper computation efficacy if

not appropriately managed. In view of achieving fast computation, performance-

aware programming is a specialized practice that involves repeated profiling,

micro-benchmarking, and code optimization to ensure full device utilization.

ii

In this thesis, performance-aware programming techniques were employed

on GPU to resolve for the high computation requirement in the diffeomorphic log-

demons algorithm, which is one of the most popular intensity-based image

registration algorithms. The GPU implementation of the algorithm was tested and

analyzed extensively. By successfully pinpointing and optimizing for the blocking

operations, significant (>200×) performance speed-up has been achieved as a

promising result.

iii

Declaration

I declare that this thesis represents my own work, except where due

acknowledgement is made, and that it has not been previously included in a thesis,

dissertation or report submitted to this University or to any other institution for a

degree, diploma or other qualifications.

Signed ________________________ / Leong Chun Wing Martin

iv

“A dream worth three years of dedication”

三年．一夢

v

ACKNOWLEDGEMENTS

“A dream worth three years of dedication” 三年．一夢

“A dream worth three years of dedication” was a saying since my

undergraduate study, describing how university life goes by. I am privileged to be

allowed spending six years at my alma mater, the University of Hong Kong, to

dream twice. Approaching the conclusion of this wonderful M.Phil. journey, I

would like to take this opportunity to express my gratitude to those who

accompanied and supported me through these years.

This work could not have made possible without my supervisors,

Dr. Ka-wai Kwok and Prof. James Lam’s support in every aspect. They are the ones

who supported me throughout the journey whilst allowing me the room to work in

my own way. Their sense and enthusiasm in research are always motivating. Thank

you for bringing me into this wonderful research journey. My research topic,

performance-aware programming, not only makes me aware of computation

performance, but also taught me to self-aware of my downsides.

Thank you to all current and past colleagues in the Group of Interventional

Robotics and Imaging System for their help and support during both the good days

and the bad days. Especially Brian, Marco, Jacky, Ziyan, Ziyang, Xiaomei, Justin,

Fai, Peggy, and Alan. Thank you to Bowen Kwan, An Qu, and Gary Chow who

worked with me together on this topic. The road of research is harsh, but it is a bit

less bitter to have you here to walk together.

Finally, thank you to my good old friends from high school, Chung, Jeffrey,

Fan, Jeni, Rachel, Loraine and Holly; as well as my classmates from my

undergraduate study, Mannix, Rachel and Keo for their support at all times.

Last but not least, I am greatly blessed to have my parents’ and my girlfriend,

Dorothy’s, unlimited support and consideration throughout this journey.

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Thesis organization and main technical contributions 3

1.3 Publications and exposure.. 4

CHAPTER 2 INTRAOPERATIVE NON-RIGID IMAGE REGISTRATION . 6

2.1 Introduction .. 6

2.2 Intraoperative imaging ... 7

2.2.1 Surgical workflow in image-guided intervention .. 7

2.2.2 Medical imaging modalities for image-guided intervention 8

2.2.3 Clinical applications and potential problems .. 12

2.3 Demands for intra-op non-rigid image registration 18

2.3.1 Overview ... 19

2.3.2 Feature-based non-rigid image registration ... 20

2.3.3 Intensity-based non-rigid registration ... 23

2.3.4 Application on registering intraoperative images ... 31

2.4 Current trends of high-performance intra-op registration 34

2.4.1 Graphics processing units as application accelerator 35

2.4.2 Horizon scan ... 41

2.5 Conclusion .. 42

CHAPTER 3 ALGORITHMIC ANALYSIS AND PERFORMANCE-AWARE

OPTIMIZATION .. 43

3.1 Introduction .. 43

3.2 GPU performance-aware programming for image registration 44

3.3 Algorithmic breakdown .. 46

3.3.1 GPU memory access patterns.. 46

3.3.2 Computation bottleneck of diffeomorphic log-demons 51

3.4 Computation optimization .. 60

3.4.1 Gaussian smoothing .. 60

vii

3.4.2 Vector field composition ... 65

3.4.3 Velocity field update ... 68

3.5 Conclusion .. 68

CHAPTER 4 GPU-BASED IMPLEMENTATION OF DIFFEOMORPHIC

LOG-DEMONS ... 70

4.1 Introduction .. 70

4.2 Major performance limiter ... 70

4.2.1 Compute-bound and memory-bound kernels .. 71

4.2.2 Latency-bound kernels .. 73

4.3 Optimization results for bottlenecking operations 74

4.3.1 Testing platform .. 74

4.3.2 Optimization for Gaussian smoothing... 76

4.3.3 Optimization for vector field composition .. 83

4.4 Overall optimization results ... 90

4.5 Conclusion .. 97

CHAPTER 5 TECHNICAL CONSIDERATIONS FOR EXTENSIVE

APPLICATIONS .. 99

5.1 Open-sourced high-performance registration tool 99

5.2 Limitations of GPU image registration .. 101

5.2.1 Graphics memory consumption .. 101

5.2.2 Interpolation precision .. 103

5.3 Potential applications ... 104

5.3.1 Algorithmic improvements by meta-heuristic search of parameters 105

5.3.2 Clinical applications .. 106

CHAPTER 6 CONCLUSION AND FUTURE WORK 111

6.1.1 Achievement of this thesis .. 111

6.1.2 Ongoing research and future work .. 113

REFERENCE .. 114

viii

LIST OF FIGURES

Figure 2.1 (a) Intra-op CBCT scanner. (b) Working principle of CBCT

scanner. (c) Hounsfield scale used to quantify radiodensity. (d)

Axial CT image of the brain showing the lateral ventricles. 9

Figure 2.2 (a) Wide-bore iMRI scanner. (b) iMRI enables localization of

surgical tool inserted into the deep brain region. (c) Intra-op MR

thermometry allows visualization of the deep brain ablation

progress.. 10

Figure 2.3 Brain shift after craniotomy and tumor removal [32] (upper row);

image distortion in diffusion MRI (lower row). Misalignments

between the images are visualized in the image overlay at the last

column. .. 13

Figure 2.4 iMRI capable of visualizing scars and edema distinctively with

different imaging sequences (e.g. T2-MRI, DT-MRI). Image

retrieved from [36]. ... 16

Figure 2.5 Tumor contours from 5 distinct treatment days overlaid on pre-op

MRI image. Noticeable shrinkage of the tumor can lead to

radiation overdose of surrounding normal tissue, as well as

radiation under-dose to the target volume. Image retrieved from

[39]. ... 17

Figure 2.6 Feature-based image registration framework using CPs. CPs from

the edge features (d-e) of the (a) fixed and the (b) moving image

are extracted using a Canny edge filter. (e-f) The resultant

deformation field can be generated accordingly to realign the

images. ... 21

Figure 2.7 Free-form deformation transforming the point P to P’ defined by

re-alignment of control points (red dots). Image retrieved from

[53]. ... 22

ix

Figure 2.8 Test of invertibility for additive spatial transformation. (a-b)

Opposite transformation yielded by vector field

addition/subtraction. (c-d) Composite of these opposite

transformation cannot cancel out each other, indicating the fields

are not invertible. Image retrieved from [66]. 27

Figure 2.9 “Circle to C” registration for additive demons and diffeomorphic

log-demons. Additive demons failed to converge. In contrast,

diffeomorphic log-demons is able to register the images with a

smooth, invertible field. Image retrieved from [66]. 30

Figure 2.10 Image registration and visual guidance working asynchronously

in the navigation interface. Pre-op model and the intra-op images

can be swiftly aligned by high-performance image registration

(top). Intra-op scanning also enables continual position tracking

of the surgical instruments (bottom). ... 35

Figure 2.11 Hierarchical illustration of the CUDA programming model. Upon

kernel execution, a grid of thread blocks which consist of

numerous threads are instantiated. Therefore, the total number of

threads launched is the product of number of blocks launched and

number of threads in a block. .. 37

Figure 2.12 Simplified schematic diagram showing the hardware

microarchitecture of a CUDA GPU. The GPU possesses

numerous streaming multiprocessors as its basic computation

units. The streaming multiprocessors can access the off-chip

graphics memory via a heavily cached data bus. 40

Figure 3.1 Schematic diagram showing map operation of a function 𝑓 on an

input array with a parallel processing architecture. Each

computation is independent of each other. 47

x

Figure 3.2 Schematic diagram showing gather-scatter operation of a

function 𝑓 with a parallel processing architecture. The threads are

still independent, but the indexed reads/writes may induce

conflicts among threads (red circles). .. 48

Figure 3.3 Schematic diagram showing reduction operation of a function 𝑓

with a parallel processing architecture. To maximize parallelism,

the dataflow is organized in a tree-like pattern. 49

Figure 3.4 (a) Schematic diagram showing stencil operation of a function 𝑓

with a parallel processing architecture. Overlapping of the stencil

pattern induces redundant read operations. The stencil access

pattern can either follow (b) 3D von Neumann stencil pattern, or

(c) 3D Moore stencil pattern.. 50

Figure 3.5 Illustration of trilinear interpolation. The value of point C is

interpolated by the eight closest interpolants (C000 – C111). Images

retrieved from [102]. ... 57

Figure 3.6 On-chip high-bandwidth shared memory used as a user-managed

cache. To avoid unnecessary global memory transection, the

required data are pre-fetched onto the shared memory. Such data

can be swiftly accessed and reused by numerous CUDA cores.

The final results are stored back to the global memory after the

computation. .. 61

Figure 3.7 Thread block management and memory coalescence in GPU

multi-pass convolution. In the unmanaged arrangement, the

slender thread blocks along the y- and z-directions breaks x-

direction memory coalescences (red blocks). Careful

management of the thread block dimensions ensures memory

coalescence for efficient memory transaction (yellow blocks). . 62

xi

Figure 3.8 Code snippet showing instruction-level parallelism for efficient

thread reuse. Computation for multiple voxels can be conducted

by a single thread without the need of launching additional thread

blocks. .. 63

Figure 3.9 Multiple instruction cycles required to access data stored in SoA

(top); in contrast, accessing data stored in AoS only require a

single instruction cycle (bottom). .. 64

Figure 3.10 Strided access to linear memory versus managed memory.

Multiple cached memory access may be required for reading the

misaligned data stored in linear memory (left). In contrast,

spatially localized elements stored in managed memory can be

efficiently cached and accessed with the automatically aligned

memory address (right). .. 67

Figure 4.1 Concurrent execution of multiple thread blocks on a single

streaming multiprocessor. This block-level concurrency can

mitigate memory latency. .. 74

Figure 4.2 Dataset used to evaluate the optimization performance at 3

distinct slices. Pre-/post- deformed brain MRI images were used

as the fixed/moving images of the registration. The generated

velocity vector field from the fixed/moving image pair is shown

on the right with warmer color indicating higher vector

magnitude. ... 75

Figure 4.3 Computation time required to perform Gaussian smoothing on the

velocity fields at 7 levels of resolutions by CPU and the 3

implementations on GPU. The GPU implementation that ensures

data coalescence during shared memory initialization

significantly outperforms other implementations. 77

xii

Figure 4.4 Breakdown of computation time by various passes in (a) sub-

optimal implementation; and (b) optimal implementation of

multi-pass Gaussian smoothing process. The z-pass in the sub-

optimal implementation takes up considerable computation

runtime. .. 79

Figure 4.5 (a) Effective computation speedup relative to CPU; and (b)

Achieved global memory bandwidth by various GPU

implementations at 7 different input resolutions. 81

Figure 4.6 Correlation between computation speed-up and achieved global

memory bandwidth. Significant correlation (R=0.9835) suggests

the sub-optimal implementations are bounded by the memory

latency which causes bandwidth underutilization. 82

Figure 4.7 Computation time required for self-composing a velocity field on

CPU and the 3 GPU implementations at 7 levels of vector field

resolution. .. 84

Figure 4.8 Achieved computation speed-up relative to CPU by the 3 GPU

implementations of vector field self-composition. 85

Figure 4.9 Bandwidth statistics obtained by NVidia profiler. (a) Achieved

L2-global memory bandwidth; (b) achieved L1-L2 memory

bandwidth for the 3 implementations of vector field composition.

The benchmark for distinguishing bandwidth or latency bound

kernels (200 GB/s for L2-global memory; 470 GB/s for L1-L2)

are also indicated. .. 87

Figure 4.10 Registration process of a highly deformed image. Misalignments

between the fixed and the moving images are iteratively resolved

by our GPU diffeomorphic log-demons implementation using a

coarse-to-fine multi-resolution registration approach. 90

xiii

Figure 4.11 Time required for CPU (black line) and GPU with optimized

kernels (red line) to complete the registration. The overhead due

to memory transfer in the initialization of GPU is also included

(dotted line in purple). ... 95

Figure 4.12 Breakdown of required computation time by the major

computation steps in for diffeomorphic log-demons. These

recorded run time are obtained by to register the testing images in

7 levels of resolution with number of voxels ranging from 1×106

to 3.6×107 voxels. .. 95

Figure 4.13 Evaluated registration energy of first 50 log-demons iterations

from CPU and GPU implementations. No significant disparity

between the evaluated energy values by CPU and GPU is found.

This confirms consistent behavior among the CPU and optimized

GPU implementations. .. 97

Figure 5.1 Computation time required to register an image with resolution of

300×300×150. The presented diffeomorphic log-demons

implementation on GPU significantly outperforms the other 2

open-sourced image registration packages. 100

Figure 5.2 Memory size requirement on the GPU with respect to the input

image dimensions. The memory size demand can exceed the

allowable memory provided by mid-end GPU (e.g. NVidia

GTX1050Ti), or even high-end GPUs (e.g. NVidia GTX980)

when the image dimension is large. .. 103

Figure 5.3 Fixed image warped by deformation field using full and reduced

interpolant precision. Although hardwired texture filtering uses

reduced interpolant precision, the resultant difference in terms of

intensity is negligible (typ. 0.25%).. 104

xiv

Figure 5.4 (a) EA map of the left atrium obtained prior to the EP process.

The mapping gathered by EA contact points may not be

anatomically correct. (b) Anatomically correct left atrium model

obtained by segmentation of an MR image. (c) Image registration

used to realign the EA mapping data back to the anatomically

correct left atrium model. Images retrieved from [118-120]. .. 107

Figure 5.5 (a) EP roadmap of left atrium rendered based on pre-op MR

images. (b) Significant mismatch indicated by orange arrows

between the roadmap and intra-op images. (c) Ablation

landmarks selected on a slice of 2-D intra-op MR images. Yellow

arrows illustrate the deformation. (d) Ablation landmarks

realigned appropriately on the 3-D roadmap based on the

deformation field. .. 108

Figure 5.6 CT image showing significant tissue deformation at the thorax

after receiving 50Gy of radiation in radiotherapy. This large-scale

deformation may lead to damage to critical organs if not

compensated. Image retrieved from [124]............................... 109

xv

LIST OF ALGORITHMS

Algorithm 2.1 Pseudocode showing the general framework used in the additive

demons algorithm. ... 23

Algorithm 2.2 Pseudocode showing the iterative registration process in the

diffeomorphic log-demons algorithm. 30

Algorithm 3.1 Pseudocode showing the computation procedure of multi-pass 3D

Gaussian smoothing... 54

Algorithm 3.2 Pseudocode showing the key computation procedure for fast

approximation of vector field exponentials using the “scaling and

squaring” method. ... 55

Algorithm 3.3 Pseudocode showing the key computation procedure for vector

field composition, which is one of the essential computations

inside the diffeomorphic log-demons algorithm. 56

Algorithm 3.4 Pseudocode showing the key computation procedure for trilinear

interpolation, which is performed numerous times in a single

compositive operation. .. 58

Algorithm 3.5 Pseudocode showing the key computation procedure for vector

field update, which contains a considerable amount of branching

and arithmetic computations.. 59

xvi

LIST OF TABLES

Table 2.1 Summary of different update rules under the additive demons

framework.. 24

Table 3.1 Abstract results of the MATLAB profiler report after running 100

diffeomorphic log-demons iterations on a small (60×60×60)

image set. ... 51

Table 3.2 The required number of threads in x-direction to enforce 128 Byte

global memory transaction coalescence for various float data

types in AoS format. .. 65

Table 4.1 Key metrics shown in the profiler for the identification of

performance limiter in a GPU kernel. 71

Table 4.2 List of optimized GPU computation modules in the

implementation of diffeomorphic log-demons. 91

Table 4.3 Performance gain for different computation steps in an iteration

using the GPU implementation of diffeomorphic log-demons. 92

Table 4.4 Registration parameters and the iterations required, and the time

required for GPU to initialize and perform the registration

computation for different test images. 94

Table 5.1 Memory requirement for accommodating different essential

variables with dimension 𝑑𝑖𝑚 for the diffeomorphic log-demons

algorithm within the GPU memory. .. 102

xvii

LIST OF ACRONYMS

AoS Array-of-Structure

API Application Programming Interface

CBCT Cone-Beam CT

CP Control Point

CPU Central Processing Unit

CT Computed Tomography

CUDA Compute Unified Device Architecture

DARTEL
Diffeomorphic Anatomical Registration Using
Exponentiated Lie Algebra

DoF Degree-of-Freedom

EA Electro-Anatomical

EP Electrophysiotherapy

FFD Free Form Deformation

GPU Graphics Processing Unit

ICP Iterative Closest Point

iMRI Intraoperative MRI

IGRT Image-guided Radiotherapy

Intra-op Intraoperative

IMRT Intensity-modulated Radiotherapy

MRI Magnetic Resonance Imaging

MSE Mean Squared Error

nvvp NVidia Visual Profiler

OP/s Operation per Second

Pre-op Preoperative

PSO Particle Swarm Optimization

xviii

PTX Parallel Thread Execution

SDK Software Development Kit

SIMT Single Instruction, Multiple Threads

SoA Structure-of-Array

SVF Stationary Vector Field

TPS Thin Plate Spline

1

Chapter 1

INTRODUCTION

1.1 Motivation

Intraoperative (intra-op) imaging allows perioperative visualization of any

tissue morphological changes. By providing timely visual guidance to the surgical

instruments, intra-op imaging enables safer and efficient interventions. Particularly,

intra-op imaging is very useful in surgical scenarios that require precise

manipulation and control of surgical tools, such as stereotactic neurosurgeries and

cardiac catheterization. However, anatomical disparity can present between the

preoperative (pre-op) image and intra-op image, due to physiological motion,

gravity, or tool-tissue interaction. Such disparity will have to be resolved using non-

rigid image registration. Once the misalignment is resolved, accurate surgical

guidance can be achieved by virtually augmenting the predefined treatment target/

critical regions onto the intra-op images.

There are two main streams of non-rigid registration approaches: feature-

based and intensity-based registration. Feature-based registration relies on

automatic feature detection to re-align the image. Intensity-based registration

accesses the pixel/voxel intensity value for image co-registration. Considering

image noise and artifacts can be prevalent in the intra-op images, intensity-based

methods is a more preferable approach due to its higher tolerance to noise and

artifacts. However, most intensity-based registration requires substantial

computation to register the images, which can preclude smooth surgical workflow

in image-guided surgeries.

2

The current trend of non-rigid image registration resides in the realization

of these co-registration algorithms in the surgical scenario. In particular, despite a

number of intensity-based image registration algorithms were proposed, these

algorithms are generally set back by their high computation requirement. To this

end, there is a need to accelerate the computation process of such registration.

Computation enhancement can be achieved by utilizing application accelerators.

Particularly, the graphical processing unit (GPU) is one of the most commonly used

application accelerators with massive parallel computation power. However, many

works on GPU image registration overlooked the importance of low-level

optimizations in their implementations, which can lead to under-utilization of the

device. In this regard, performance-aware programming is the key to ensure full

device utilization. With the implementation being optimized, GPU can accelerate

the image registration process by at least an order of magnitude for seamless

integration with existing surgical navigation devices.

The purpose of this thesis is to address the technological gap in the actual

realization of recent non-rigid image registration algorithms in clinical practice.

Performance-aware programming techniques will be implemented on GPU to

accelerate a popular intensity-based image registration algorithm, the diffeomorphic

log-demons. The main objectives of the thesis include:

(1) To provide a comprehensive performance analysis of diffeomorphic log-

demons, thus pinpointing the key computation process that bottlenecks the

computation process;

(2) To devise proper optimization schemes to accelerate any bottlenecking

computations pinpointed by (1) using a GPU; and

(3) To realize high-performance diffeomorphic log-demons on a GPU to enable

rapid co-registration between the pre-op and the intra-op images.

3

1.2 Thesis organization and main technical contributions

In Chapter 2, an overview of current intra-op imaging technique, as well as

the clinical demands of such image-guidance will be highlighted. Basic principles

of non-rigid image registration, particularly intensity-based image registration, will

also be included. The chapter concludes by introducing the programming model

and hardware architecture of modern GPU, and a horizon scan of related work of

using GPU to accelerate the computation of intensity-based image registration.

In Chapter 3, extended testing and profiling on the diffeomorphic log-

demons, one of the most popular intensity-based image registration algorithm, will

be conducted. Different memory access pattern on the GPU will be investigated.

Moreover, time-critical computation steps of the diffeomorphic log-demons

algorithm will also be looked into. Focusing on these time-critical operations,

various performance-aware programming techniques are proposed to resolve the

computation bottlenecks.

In Chapter 4, the implementation of an optimized GPU version of

diffeomorphic log-demons using performance-aware programming techniques will

be presented. Focusing on the previously identified computation bottlenecks,

extensive experiments will be conducted to quantitatively investigate the

computation enhancement brought by performance-aware programming. In-depth

analysis of such optimized computation will also be performed. Finally, an optimal

implementation of diffeomorphic log-demons will be presented.

With the working implementation of diffeomorphic log-demons on GPU,

Chapter 5 discusses the technical considerations for this optimized GPU image

registration scheme to be employed for extensive applications. With the ability to

swiftly perform the registration, potential impact of this work will also be discussed.

This implementation of this high-performance diffeomorphic log-demons on GPU

will also be open sourced in the near future.

4

1.3 Publications and exposure

The author of this thesis has participated and in the authorship of various

peer-reviewed international journals and conferences proceedings within the period

of this study:

Related publications:

1. M.C.W. Leong, P.Y. Kwan, K.H. Lee, G.C.T. Chow, W. Luk and K.W.

Kwok,

"Performance-aware Programming in Intensity-based Non-rigid Image

Registration: Implementation with GPU and FPGA", Medical Image

Analysis. (in preparation)

2. Z. Guo, M.C.W. Leong, H. Su, K.W. Kwok, D.T.M. Chan and W.S. Poon,

"Techniques for Stereotactic Neurosurgery: Beyond the ‘Frame’, Towards

the Intraoperative MRI-guided and Robot-assisted Approaches”, World

Neurosurgery, 2018. (in press)

3. K.H. Lee, D.K.C. Fu, Z. Guo, Z. Dong, M.C.W. Leong, C.L. Cheung,

A.P.W. Lee, W. Luk and K.W. Kwok, "MR Safe Robotic Manipulator for

MRI-Guided Intracardiac Catheterization ", IEEE/ASME Transactions

on Mechatronics, vol.23, no.2, pp.586-595, 2018.

4. Z. Dong, Z. Guo, D.K.C. Fu, K.H. Lee, M.C.W. Leong, C.L. Cheung,

A.P.W. Lee, W. Luk and K.W. Kwok, "A Robotic Catheter System for

MRI-guided Cardiac Electrophysiological Intervention", Workshop in

IEEE International Conference on Robotics and Automation (ICRA),

2017.

5

Other publications published in the study period:

1. S.Fan, A.Chan, S.Au, M.C.W. Leong, M. Chow, Y.T. Fan, R. Wong, S.

Chan, S.K. Ng, A.P.W. Lee and K.W. Kwok, "Personalized anaesthesia:

three-dimensional printing of facial prosthetic for facial deformity with

difficult airway”, British Journal of Anaesthesia, 2018. (in press)

2. M.C.W Leong, K.W. Kwok, Y.T. Fan and A.P.W Lee, " Using 3D Printed

Models For Planning Transcatheter Aortic Valve Implantation in Patients

With Bicuspid Aortic Valve", Journal of the American College of

Cardiology, vol. 71, no. 11, p. A1130, 2018.

3. M.C.W Leong, K.W. Kwok and A.P.W Lee, "Prediction of Paravalvular

Leak after Transcatheter Aortic Valve Implantation using Patient-specific

3D-printed Models - a case with Bicuspid Aortic Valve Stenosis",

Proceedings of 43rd Annual Scientific Meeting of Korean Society of

Echocardiography, 2017.

4. K.H. Lee, D.K.C. Fu, M.C.W. Leong, M. Chow, H.C. Fu, K. Althoefer,

K.Y. Sze, C.K. Yeung and K.W. Kwok, "Nonparametric Local Learning

for Hyper-Elastic Robotic Control: An Enabling Technique for Effective

Endoscopic Navigation", Soft Robotics, vol. 4, no. 4, pp. 324-337, 2017.

5. K.H. Lee, M.C.W. Leong, M. Chow, H.C. Fu, W. Luk, K.Y. Sze, C.K.

Yeung, K.W. Kwok, "FEM-based Soft Robotic Control Framework for

Intracavitary Navigation", Proceedings of IEEE International

Conference on Real-time Computing and Robotics (RCAR), Okinawa,

2017, pp.11-16.

6. C.L. Cheung, K.H. Lee, Z. Guo, Z. Dong, M.C.W. Leong, Y. Chen,

A.P.W. Lee and K.W. Kwok, "Kinematic-Model-Free Positional Control

for Robot-Assisted Cardiac Catheterization", Proceedings of 9th Hamlyn

Symposium on Medical Robotics, 2016.

6

Chapter 2

INTRAOPERATIVE NON-RIGID

IMAGE REGISTRATION

2.1 Introduction

Image-guided intervention has caught constant research attention since

1986 when the first image-guided surgery is performed [1]. It satisfies the much-

needed accuracy requirement by providing essential visual guidance to the surgeons.

Particularly, having thorough knowledge on the locations of the critical/target tissue

through image guidance is imperative to perform precise instrument manipulation.

Damage to the surrounding healthy tissues, and subsequently invasiveness dealt on

the patient can, therefore, be reduced. The advancement of image-guided surgeries

also enables minimally invasive interventions by visualizing the patient’s anatomy

in real-time.

In this chapter, a brief survey on intra-op imaging techniques will be

conducted, followed by the clinical demands of intra-op imaging in some surgical

applications. Potential problems caused by misalignment between the pre-op image

and the intra-op image will also be discussed. Non-rigid registration schemes are

the clue to resolving the image misalignment, but they will have to be robust and

fast enough to cope with the dynamic intra-op scenario. A balance between

accuracy, reliability and computation speed will have to be made. GPU is one of

the promising application accelerators which can be used to accelerate the

registration. To pinpoint the current research demand to enable intra-op registration,

7

a survey of image registration techniques and related work to accelerate the

registration process is also presented in the latter part of this chapter.

2.2 Intraoperative imaging

Image-guided intervention is a general term describing any surgical or

interventional procedures where the procedure is done in conjunction with intra-op

imaging to guide the interventional procedure. It is often used to perform operations

that associate with high risk, for example, when the treatment target (e.g. tumor) is

very close to critical regions or organs (e.g. brain stem, major arteries, etc.). The

surgical instrument used in such intervention is often tracked. A wide variety of

intra-op imaging modalities are developed for accurate tracking of the surgical

apparatus and tissue margins, such as ultrasound-based [2], optical-based [3-5], X-

ray-based [6], and MR-based [7]. Particularly, the latter two imaging modalities are

able to provide timely intra-op images with a fixed frame of reference, which can

be useful to realign the image with a pre-op roadmap for accurate guidance [8, 9].

In this section, the general surgical workflow of image-guided intervention

will be introduced, which depicts the current demand for frequent intra-op scans

throughout the procedure. The basic principle, application, advantages, and

disadvantages of some mainstream intra-op imaging modalities are also discussed.

2.2.1 Surgical workflow in image-guided intervention

Prior to any surgery, surgical planning is essential for the surgeons to have

an overview. Pre-op scanning in different imaging modalities allows the

construction of a knowledge-based model that allows surgeons to plan the operation

procedures. For example, in image-guided radiation therapy, the planned target

volume and other critical regions/organs are segmented during the treatment

planning process [10]. This knowledge-based model provides invaluable guidance

for the surgeons to select appropriate strategies to achieve the expected clinical

outcomes. However, such pre-op model will not account for any possible

anatomical/pathological changes that occur after the pre-op scan. Any

misalignment between the pre-op models and the actual surgical scenario

introduces uncertainties to the surgeons.

8

Intra-op imaging allows perioperative localization of the treatment target as

well as the surgical instrument. Prior to any critical procedures (e.g. insertion of the

biopsy needle, surgical resection, etc.), an intra-op image is usually acquired for the

surgeons to make any necessary adjustments to the instruments. This image

acquisition – instrument reposition process may iterate for several times in order to

get the surgical tool to align with the treatment target [11]. Furthermore, treatment

effectiveness of surgical procedure can be instantly validated using intra-op scans

after any critical procedures (e.g. placement of electrode, removal of tumor, etc.)

are performed. Malposition of instruments or implants can also be promptly

visualized peri-operatively to make any necessary adjustments.

In all, intra-op guidance mitigates the risks of unintentional damage to

surrounding healthy tissue near the treatment area. With accurate target localization

and precise instrument manipulation, image-guided intervention can undoubtedly

improve surgical safety and accuracy.

2.2.2 Medical imaging modalities for image-guided intervention

2.2.2.1 Intra-op computed tomography

Intra-op computed tomography (CT), alongside with other X-ray-based

scans (e.g. radiography and fluoroscopy), are well adopted in image-guided

interventions [12, 13]. The principle of these X-ray-based scans is based on distinct

radiodensity between different body parts: body parts with a high radiodensity (e.g.

bones) can attenuate incident X-ray from the detector on the other side. Such

difference in radiodensity is measured by attenuation units that lie on the

Hounsfield scale. Hence, the brightness of any spot on an X-ray detector represents

the summation of the radiodensity of all materials along the line of X-ray projection.

Intra-op CT makes use of back-projection algorithms [14] to reconstruct the

3D tomography from multiple of radiographs imaged at different incident angles.

To-date, intra-op Cone-beam CT (CBCT) scanners are usually adopted as they tend

to have lower scan time. The average scan and reconstruction time required for a

CBCT scan is typically 1 minute [15, 16]. The image resolution of CBCT scans is

also usually quite high (typ. resolution = 0.2mm3) [17]. Intra-op CT is widely

9

adopted in numerous operations that require target localization, such as cardiac

catheterization, neurosurgery, and radiotherapy.

However, the major drawback of the intra-op CT is the involvement of

potentially harmful ionizing radiation. Also, as most soft tissues (e.g. brain and

myocardium) have similar attenuation coefficients, X-ray-based imaging

techniques produce a high contrast images of these tissues [18]. This inability

hinders the sensitivity of the intra-op scanners, making accurate localization of soft

tissue margins very difficult. Although increasing X-ray intensity can increase

image contrast, it will also inevitably increase the radiation exposure to the patient

[15]. As a result, to avoid excessive radiation dose acumination, frequent intra-op

scans using CT is also not desirable. Thus, intra-op CT a less useful in applications

that require constant updates of the position of surgical instruments and tissue

margins by frequent imaging.

Figure 2.1 (a) Intra-op CBCT scanner. (b) Working principle of CBCT
scanner. (c) Hounsfield scale used to quantify radiodensity. (d) Axial CT image of
the brain showing the lateral ventricles.

10

2.2.2.2 Intraoperative MRI

Magnetic resonance imaging (MRI) is one of the more important imaging

modalities. It is a non-invasive imaging technique due to the lack of involvement

of ionizing radiation. Being first proposed in 1971, physicists had already found

nuclear magnetic resonance useful in body tomography scans, as well as tumor

diagnosis [19]. The basis of MRI is to excite and detect change in rotational

direction of protons in water, which make up of most soft tissue. As a result, MRI

is able to produce clear images of soft tissues with excellent contrast. Moreover,

MRI can also reveal any physiological changes inside the body, including the

formation of scars, edema, and fluid flow [20]. As such, MRI poses significant

contributions to the actual clinical usage. For example, surgeons are able to directly

visualize the effect of the ablation delivered by observing the scar/edema formed

using MRI.

Figure 2.2 (a) Wide-bore iMRI scanner. (b) iMRI enables localization of
surgical tool inserted into the deep brain region. (c) Intra-op MR thermometry
allows visualization of the deep brain ablation progress.

There is a large clinical demand to employ MRI intraoperatively given the

ability of imaging soft tissues in high contrast. However, most MRI scanners have

to be close-bored to maintain a strong magnetic field, which precludes direct access

to the patient. The long MRI scanning and reconstruction time required is also

prohibiting. Therefore, the demand for intra-op MRI (iMRI) has motivated the

development of open- or wide-bore MRI imagers to allow easier patient acces. The

11

first iMRI-guided neurosurgery performed in Brigham and Woman’s Hospital with

a double-donut shaped intra-op imager [21]. This double donut design of the MRI

provides a spherical imaging volume with 30cm in diameter and a relatively wide

(50cm) area for direct patient access [22]. However, the long reconstruction time

can be limiting; the small area-of-access is also inconvenient.

As the technology advances, the scanning time for MRI can be drastically

reduced. To-date, rapid MRI can be achieved under-sampling the k-space [23]; real-

time MRI with a frame rate of 3.6 frame/s is also reported [24]. Fast low angle shot

MR imaging (also known as “FLASH” MRI) is usually used for real-time MRI with

a typical frame rate of 5 frames per second [25]. However, as the scanning time for

MRI is directly proportional to the number of slice acquisition, these real-time 3D

MRI images usually have a low resolution in terms of slice thickness. Despite

having a low resolution, real-time MR image guidance can be achieved with the

assistance of MR tracking coils [25-27]. Neurosurgery is one of the most important

applications of real-time iMRI. Apart from neurosurgical intervention, iMRI has

the potential to be applied in a wide range of stereotactic procedures on highly

deformable body parts such as the breast, prostate and liver. In all, not only MRI

can provide a continuous and clear image of soft tissue, but it is also non-invasive

in nature. With the recent advancement of iMRI, these clear advantages have put it

become one of the more promising intra-op imaging technique for various type of

intervention procedures.

12

2.2.3 Clinical applications and potential problems

The emergent of intra-op imaging techniques enables safer interventional

procedures. These intra-op images can, not only present the much-needed guidance

of anatomical structures within the regions of interest, but also provide information

that cannot be captured preoperatively. In this section, several surgical applications

will be reviewed to illustrate the importance of intra-op image guidance and their

potential problems.

2.2.3.1 Stereotactic neurosurgery

Stereotactic neurosurgeries involve placing objects or removing tissues

to/from the brain. Typical examples are stereotactic biopsy [28], stereo-

electroencephalography [29] and deep brain stimulation [30]. As the brain is

extremely important and delicate, these interventions demand the highest accuracy

and precision. Intra-op imaging is actively utilized to avoid any unintended damage,

particularly to the brain’s critical/functional regions. For example, imprecise

positioning of the instrument can result in a deviated trajectory, which can

significantly increase the risk of intracranial hemorrhage. In order to avoid

damaging any critical tissues, an acceptable error of a mere 1-2mm in any

neurosurgery is generally established [31].

However, deformation of the brain can cause significant issues

peri-operatively. Since the brain is a soft, fluid-filled organ, it is not unusual for the

brain to deform throughout the surgical process. This deformation, known as “brain

shift”, can be significant: intra-op brain deformation of 10mm after craniotomy is

not uncommon (Figure 2.3) [33]. Such deformation would undoubtedly affect the

accuracy of the preoperatively-gathered data, as well as the associated surgical plan.

As such, surgeons will have to be conservative in order not to damage any healthy

tissue near the treatment target.

13

Figure 2.3 Brain shift after craniotomy and tumor removal [32] (upper row);
image distortion in diffusion MRI (lower row). Misalignments between the images
are visualized in the image overlay at the last column.

In light of the uncertainty introduced by brain deformation, image guidance

is a fundamental part of any neurosurgical procedures. The intraoperatively

acquired images enable accurate localization of the instrument and the target. Hence,

surgeons can respond accordingly to compensate the misalignment due to brain

shift. The first reported image-guided neurosurgical procedure is supported by

intra-op CT [34]. Yet, as intra-op CT cannot provide high contrast images to

visualize the soft tissue, it is insufficient to meet the supreme accuracy requirement

in neurosurgeries. Other intra-op guidance approaches using ultrasound-based or

optical-based guidance are also undesirable, due to the increased invasiveness to

fulfill the requirement of having direct line-of-sight or contact of the dura [35].

14

To-date, iMRI-guided neurosurgeries are more prevalent as the technology

advances. The iMRI images can reveal the anatomical structure in a detailed manner,

thus allowing accurate localization of target tissue. Furthermore, iMRI also allows

the surgeons to visualize the surgical effectiveness by performing scans

peri-operatively. For example, in brain tumor resection, iMRI images can be used

to guide the surgeons to clean up any remaining tumor with a stereotactic tool, thus,

maximizing the effectiveness of the surgery. However, iMRI is susceptible to

distortion. Let aside static field inhomogeneity, chemical shift, and susceptibility

artifacts, the nonlinearity of the B1 gradient field contributes most to such distortion.

It has been reported that the spatial distortion can be as much as 25mm at the

perimeter of an uncorrected 1.5T MRI. Even after standard gradient calibration, the

error can still remain within the 1% range (typ. ~4mm). This error can be significant

due to the straight accuracy requirement in stereotactic neurosurgeries.

In all, there exist a high demand for compensating the brain deformation and

MRI distortion for neurosurgery. In order to provide a visual reference for

neuronavigation, one can overlay/augment the predefined critical regions onto the

intra-op image, provided that the deformation of the brain due to brain shift is

known. Although the general deformation of “brain shift” can be visualized using

iMRI, detailed localization of the critical tissue that requires advanced imaging

techniques cannot be performed intraoperatively. The error brought by MRI

distortion will also need to be resolved. This can be achieved by co-registering the

intra-op images and the pre-op images. As rapid and frequent scans are required to

ensure navigation accuracy, this co-registration have to be performed in a speedy

manner to cope with the highly dynamic surgical workflow.

15

2.2.3.2 Cardiac catheterization

Cardiac catheterization is another example to showcase the importance of

intra-op imaging. Particularly, cardiac electrophysiotherapy (EP), an effective

treatment to cardiac fibrillation, require frequent intra-op imaging. Cardiac EP is

performed by inserting a long (1.5m), thin (Ø2.67mm) catheter from the femoral

vein to the left atrium perform ablation on the tissue. This ablation, known as

pulmonary vein isolation, is guided by a pre-op electro-anatomical (EA) roadmap

that is collected prior to the intervention. The pre-op EA roadmap is essential as it

act as a fundamental visual reference to pinpoint the ablation targets.

Image guidance is the key to achieve a successful cardiac catheterization.

Constant use of intra-op imaging techniques, including fluoroscopy and cardiac

ultrasound, are required throughout the interventional procedure [37]. However,

fluoroscopy images lack essential image contrast; cardiac ultrasound images can

also be blurry and misleading. Furthermore, fluoroscopy and ultrasound images are

unable to visually any physiological changes in response to the interventional

procedure. For example, while scar formation around the pulmonary vein can

guarantee complete isolation, edemas formed due incomplete ablation can allow

recurrent atrial fibrillation even after the EP procedure. However, both fluoroscopy

and cardiac ultrasound are unable to visualize such scars or edema.

The emergence of iMRI has opened up a new approach to achieving image

guidance in the cardiac EP procedure. Not only MRI possesses the ability to

visualize soft tissue clearly, but such guidance can also be used to stably steer the

catheter to the lesion targets within the confined and rapidly deforming cardiac

chamber. MR tracking coils can also be used to provide reliable localization of the

tip of EP catheter [25-27]. Moreover, T2-weighted MRI can also be used to

precisely and responsively monitor the physiological changes in cardiac tissues

(Figure 2.4) [36, 38]. Such visual guidance can readily tell the surgeons whether

the ablation has been successful by visualizing the scars or edema that arise after

the ablation peri-operatively.

16

Figure 2.4 iMRI capable of visualizing scars and edema distinctively with
different imaging sequences (e.g. T2-MRI, DT-MRI). Image retrieved from [36].

Numerous research groups have already conducted many clinical trials to

demonstrate the value of iMRI guidance for cardiac EP in the clinical routine.

However, despite the ability to visualize the tissue morphologies perioperatively,

image-guided cardiac EP lacks real-time update to the roadmap according to the

intra-op image. A reliable visual reference can only be established to guide the

catheter if the EA map is able to be mapped and overlaid on the intra-op image.

However, to overlay the EA map, the pre-op and the intra-op images will have to

be co-registered. Such registration is essential to restore the deformation of the

tissues due to rapid beating motion of the myocardium. Nonetheless, this co-

registration between the pre-op and intra-op images is very challenging due to the

possibility of having a high image mismatch. Furthermore, although non-rigid

image registration algorithms are available, the major bottleneck resides in the

computation time for the registration, in which a long computation time can be

considered as clinically impractical for MRI-guided EP.

17

2.2.3.3 Intensity-modulated radiotherapy

The aim of intensity-modulated radiotherapy (IMRT) is to deliver an

effective radiation dose to the tumor while minimizing the dose to the surrounding

tissues. Current practice of IMRT acquires a detailed pre-op plan composed by

high-resolution CT/MRI images to define the clinical target volume. During the

treatment planning process, the radiation delivery sequences are optimized to make

sure the clinical target volume receive sufficient radiation dose. However, this

clinical target volume will inevitably morph over time due to tissue deformation,

tumor shrinkage, as well as weight loss. Such misalignment can be significant,

especially in radiotherapy treatments that span multiple weeks [39]. Treatment re-

planning is therefore usually required. This morphing can often lead to a mismatch

between the pre-op image and the actual tumor location, particularly the boundary

of the planned tumor volume can be affected (Figure 2.5).

Figure 2.5 Tumor contours from 5 distinct treatment days overlaid on pre-op
MRI image. Noticeable shrinkage of the tumor can lead to radiation overdose of
surrounding normal tissue, as well as radiation under-dose to the target volume.
Image retrieved from [39].

18

The change in clinical target volume due to extensive tissue deformation is

undesirable. As uncompensated misalignment between the treatment plan and real-

time anatomy can lead to radiation under-dosage to the treatment target, or over-

dosage to surrounding normal tissue or organ. With the advancement of intra-op

imaging techniques, image-guided radiotherapy (IGRT) adds another layer of

protection by allowing CBCT images to be acquired immediately prior to the

treatment [40]. Once the intra-op image is obtained, necessary adjustments to the

radiation delivery plan as well as a re-evaluation of the dosimetric deposition can

be performed accordingly [41].

However, there is a constant demand for co-registering the pre-op treatment

plan with the intra-op CBCT images for effective radiation dose delivery. Despite

IGRT can visual the deformation of the clinical target volume, the computation

required to non-rigidly aligning the two images can be time-consuming. Therefore,

IGRT is not extensively used for every patient receiving radiotherapy, but is only

adopted in a few high-risk patients.

2.3 Demands for intra-op non-rigid image registration

Advances in image-guided techniques, especially with the recently-emerged

iMRI, enable visual guidance to identify the anatomical target of interest during the

procedure. To date, recent intra-op navigation systems are also capable to virtually

augment the preoperatively segmented critical/target tissues on the intra-op image

[42, 43]. However, surgical interventions can induce large-scale tissue deformation.

Also, most images acquired by intra-op imagers are also prone to distortion. For

example, CBCT images can be susceptible to blooming effect at regions with high

radiodensity gradient [44]. iMRI images are also susceptible to nonlinear distortion

due to B-field gradient inhomogeneity (Figure 2.3) [45]. The combined effect of

both surgical interventions and intra-op image distortion can induce large

misalignment between the pre-op and intra-op images. Such misalignment can

make the surgical plan very inconsistent to the actual anatomy during the

intervention.

Many intra-op navigation systems employ rigid registration to align the pre-

and intra-op images. However, rigid registration cannot compensate for any non-

19

linear image discrepancies due to the aforementioned reasons. Besides, non-rigid

registration possesses the ability to recover the potential misalignment between the

pre-op and intra-op images. However, non-rigid registration schemes are generally

set back by their high computation requirement. As frequent intra-op scans will be

performed during operation, non-rigid registration will have to be performed in a

fast and frequent manner. In this section, a survey on different non-rigid image

registration strategies is presented. The performance of these registration schemes

on registering intra-op MR images will also be discussed based on three

fundamental aspects: accuracy, robustness and computation requirement.

2.3.1 Overview

The goal of image registration is to determine an optimal transformation (𝑇)

between the fixed image (𝐹) and the moving image (𝑀). Such transformation

represents the mapping of image features between two corresponding, misaligned

images. In geometry, the equation below depicts the transformation 𝑇 [46]:

 𝑇: 𝑀 ↦ 𝐹 ⟺ 𝑇(𝑀) = 𝐹 (1)

Of which one can perceive that, given an accurate transformation 𝑇, the transformed

moving image 𝑇(𝑀) yields an exact image as the fixed image 𝐹 . This

transformation is determined by image registration. Besides, the transformation can

be represented in different formats. For example, rigid image registration yields a

matrix that defines translation, rotation, scaling or sometimes affine transformation.

In contrast, non-rigid image registration yields a set of transformation parameters

that describe the deformation between two images. In general, rigid image

registration can be performed very quickly, despite having a poor registration

accuracy. Non-rigid image registration possesses the potential to achieve very high

registration accuracy, however, is much more computationally demanding.

This thesis focuses on non-rigid image registration, as rigid registration is

inimical to the high accuracy demand for intra-op use. In all, there are two major

approaches to non-rigidly register the images: feature-based and intensity based.

Both approaches rely on pixel intensities to register the fixed and moving images,

but the former approach performs the registration on a higher level by evaluating

20

image features using clues points, lines or even area. In contrast, intensity-based

image registration approaches make uses of the native information provided by the

image intensity, for example intensity gradient and pixel-wise intensity difference,

to register the images. Details of these approaches will be discussed in 2.3.2 and

2.3.3 .

2.3.2 Feature-based non-rigid image registration

Feature-based image registration is a common approach to non-rigidly

register two images. The basis of feature-based non-rigid image registration relies

on the identification and matching of distinctive features. There are four major steps

involved in feature-based image registration, namely feature detection, feature

matching, transformation model optimization, and image resampling [47].

Image features detected on images to be registered are often called as control

points (CP). Feature-based registration framework matches and evaluates the

correspondences between two sets of CPs extracted from the fixed and moving

images. Such image features can be points, lines, or even enclosed regions (Figure

2.6). For example, a bright/dark spot/line/area in an image can be eligible for CP

detection. The detection of CP on the image shall preferably be performed in an

automated manner. In this light, many methods are developed to automatically

detect the control points for image registration. For example, point features can be

detected by intersections [48] or local curvature discontinuities using Gabor

wavelets [49]; line features can be detected by Canny edge filters [50]; region

features can be detected using automatic segmentation methods [51].

21

Figure 2.6 Feature-based image registration framework using CPs. CPs from
the edge features (d-e) of the (a) fixed and the (b) moving image are extracted using
a Canny edge filter. (e-f) The resultant deformation field can be generated
accordingly to realign the images.

The detected CP on the fixed and moving images will have to be matched

in order to calculate the transformation between the images. Such matching can be

performed, not only using the intensity values at the corresponding pixels of CPs

but also the spatial distribution of the feature. Clustering techniques are often

employed to match the CP being connected by an abstract edge or a line [52]. Once

the features are matched, a transformation parameter can be computed to determine

the spatial transformation between the two images.

22

Figure 2.7 Free-form deformation transforming the point P to P’ defined by
re-alignment of control points (red dots). Image retrieved from [53].

The transformation model used in feature-based image registration is

parametric in nature. Free-form deformations (FFD) are often used to parameterize

the deformation. FFD define a mesh of passive grid points that govern the

deformation of the image, with the edges of each mesh cell defined using spline

lines (Figure 2.7). Such spline lines can be B-spline, thin-plate spline (TPS) or

others. In feature-based image registration using FFD, the detected CP pair on the

fixed and moving images will be aligned altering/deforming the passive

deformation grids. The iterative closest point algorithm is one of the well-known

and robust approaches to register the control points in 3D [54]. However, the

techniques to perform such re-alignment remains to be one of the most studied topic

to-date.

To facilitate the search of optimal deformation parameters, most feature-

based image registrations are usually conducted in an iterative manner. The

resultant mesh grid describing the deformation can be also used as a parametric

mapping function that depicts the transformation of the moving image and thus

registering/re-aligning two images. In the last step of feature-based image

registration, the moving image is deformed (or “warped”) by interpolating the

image according to the mapping function. This interpolation is an essential step to

transform the moving image by the mapping parameters. A wide variety of

interpolants are used in the warping process, including trilinear/tricubic functions,

23

spline functions, Gaussian functions, truncated sinc functions, along with many

others [47]. Such interpolation strategy is deterministic to the accuracy of the

transformation that describes the misalignment. Despite having a wide variety of

choice in terms of interpolants, trilinear interpolation is generally considered as a

trade-off between accuracy and computation efficiency.

2.3.3 Intensity-based non-rigid registration

Intensity-based image registration, in contrary to its feature-based

counterpart, does not require automated detection of image features to register the

image. Instead, it directly exploits the pixel/voxel intensity values to perform the

co-registration. Most intensity-based image registration schemes carry the

assumption that the pixel values contain enough information for the image

registration process, which happens to be true in most cases. Particularly, the

“demons algorithm” is one of the most renowned intensity-based image

registration schemes. In this sub-section, a comprehensive review of the demons

algorithm and its variants will be presented.

2.3.3.1 Demons algorithm

Thirion [55] first proposed the demons algorithm in 1998. The name of this

algorithm is inspired by its analogy to Maxwell’s demons in the field of

thermodynamics. The main concept of the demons algorithm resides in the optical

flow of the pixels/voxels. This concept is similar to the particle diffusion process:

concentration gradient across a membrane drives particle movement. Similarly,

intensity gradient between the mismatched images drives the intensity to “diffuse”

across the pixels/voxels boundary. Therefore, the deformation in the demons

algorithm is driven by the intensity gradient. In theory, the algorithm can register

any datasets as long as the intensities between the fixed and moving images are

conserved. The original demons algorithm is often referred to “additive demons” as

the addition operations is used to manipulate the vector fields. The pseudocode in

Algorithm 2.1 describes the general framework used in the demons algorithm [55].

Algorithm 2.1 Pseudocode showing the general framework used in the additive
demons algorithm.

24

Pseudocode: General framework for the additive demons algorithm

1 Input: Fixed image 𝐹 and moving image 𝑀

2 Do until Harmonic energy (𝐸) is minimized:

3 Compute transformation update 𝑢 based on 𝐹 and 𝑠 (𝑀)

4 Update transformation for next iteration 𝑠 ← 𝑠 + 𝑢

5 Evaluate Harmonic energy (𝐸)

6 Output: Transformation 𝑠 = 𝑠 from 𝑀 to 𝐹

The demons algorithm is an iterative framework which updates the

deformation field 𝑠 in a step-wise manner. The deformation field is updated by the

adding the update vector field 𝑢 in each iteration. Such update is driven by the

“forces” that depends on the both image gradient and pixel/voxel intensity

difference of the fixed and transformed moving image. The resultant transformation

that depicts the pixel/voxel displacement is represented by a deformation field 𝑠.

Note that this registration scheme is non-parametric in nature, as the

transformation/displacement of every pixel/voxel can be independent to each other.

As the deformation update is driven by the pixel/voxel information of the input

images, the algorithm is also considered to be stable, and it will converge

unconditionally over iterations.

To date, a couple of “demons force” variants were developed to improve the

accuracy and robustness of the algorithm [56-60]. Different “demons force”

formulation, including passive force, active force, symmetric forces, among others,

attempts to improve the registration by accelerating the convergence rate of the

registration. Despite these variants of “demon’s force” are distinguishable to each

other, the main concept of the whole registration algorithm remains unchanged.

Table 2.1 below also provides a comprehensive summary of different updating

schemes developed.

Table 2.1 Summary of different update rules under the additive demons
framework.

Name Update rule Ref.

25

Passive Force 𝑢 =
(𝑠 (𝑀) − 𝐹)∇𝐹

(𝑠 (𝑀) − 𝐹) + |∇𝐹|
 [55]

Evolved

Passive Force
𝑢 =

4(𝑠 (𝑀) − 𝐹)∇𝐹|∇𝐹||∇𝑀|

[2(𝑠 (𝑀) − 𝐹) + |∇𝐹| + |∇𝑀|](|∇𝐹| + |∇𝑀|)
 [56]

Active Force 𝑢 =
(𝑠 (𝑀) − 𝐹)∇(𝑠 (𝑀))

(𝑠 (𝑀) − 𝐹) + ∇(𝑠 (𝑀))
 [57]

Double Force 𝑢 =
(𝑠 (𝑀) − 𝐹)∇𝐹

(𝑠 (𝑀) − 𝐹) + |∇𝐹|
+

(𝑠 (𝑀) − 𝐹)∇ 𝑠 (𝑀)

(𝑠 (𝑀) − 𝐹) + (∇𝑠 (𝑀))

[57,

58]

Adjusted

double force
𝑢 =

(𝑠 (𝑀) − 𝐹)∇𝐹

𝛼 (𝑠 (𝑀) − 𝐹) + |∇𝐹|
+

(𝑠 (𝑀) − 𝐹)∇ 𝑠 (𝑀)

𝛼 (𝑠 (𝑀) − 𝐹) + (∇𝑠 (𝑀))

[57,

59]

Inverse

Consistent
𝑢 =

𝑠 (𝑀) − 𝑠 (𝐹) ∇ 𝑠 (M) + ∇ 𝑠 (𝐹)

𝑠 (𝑀) − 𝑠 (𝐹) + ∇ 𝑠 (𝐹) + ∇ 𝑠 (𝑀)
 [60]

* ∇(⋅) denotes the pixel gradient of an image.

As the demons algorithm is iterative in nature, the whole registration process

can be considered as an optimization problem. Pennic et al [59] first proposed an

optimization framework for the demons algorithm. Vercauteren et al. also showed

that the inverse consistent method [60] can be cast to the efficient second-order

minimization framework [61][62, 63], which is able to solve for the target

transformation effectively solved using gradient descent and/or variational schemes

[59, 64].

To compute the best transformation field, these optimization schemes

evaluate and minimize the cost function, known as the Harmonic Energy (𝐸). This

harmonic energy not only compare the similarity (𝑆𝑖𝑚) between the fixed image

and the transformed moving images, but also considered the likelihood (𝑅𝑒𝑔) for

such deformation to occur:

26

𝐸 =

1

𝜎
𝑆𝑖𝑚 𝐹, 𝑠 (𝑀) +

1

𝜎
𝑅𝑒𝑔(𝑠) (2)

Where 𝜎 and 𝜎 are the regulation terms for the optimization. Minimization of this

harmonic energy is achieved by optimizing the similarity term and the likelihood

term in an alternative manner [61]. Particularly, the similarity term is usually

evaluated in terms of mean squared error (MSE). The likelihood of having such a

deformation field is usually determined by the field Jacobean, which indicates the

local stretch, shear and, rotation of the field. Cachier et al. also proposed an

auxiliary correspondence term regarding to iconic features during the evaluation of

the harmonic energy [65]. This auxiliary term can stabilize the optimization process

of the regularization term throughout the registration process.

The additive demons framework has been well established and widely

adopted. However, the additive nature of the deformation update disregards the fact

that the deformation update vector field is representing a spatial transformation.

Therefore, addition or subtraction of a vector field does not necessarily preserve the

topology of the field [66, 67]. As a result, one-to-one mapping between the pre- and

post-transformed image cannot be guaranteed. The absence of one-to-one mapping

implies that any deformation fields generated under the addictive framework are

not invertible. This incapability of inverting the deformation field is illustrated in

Figure 2.8. As such, the additive update scheme can only provide an approximation

of the field after transformation. This approximation will not hold valid upon large

deformation, or when the field is being updated in multiple instances.

27

Figure 2.8 Test of invertibility for additive spatial transformation.

(a-b) Opposite transformation yielded by vector field addition/subtraction.

(c-d) Composite of these opposite transformation cannot cancel out each other,

indicating the fields are not invertible. Image retrieved from [66].

2.3.3.2 Diffeomorphic log-demons algorithm

Ashburner et al. [66] introduced the Diffeomorphic Anatomical Registration

using Exponentiated Lie Algebra (DARTEL) algorithm, which utilizes

diffeomorphism to allow large deformation for image registration. Diffeomorphism

is the transformation of a differentiable manifold that belongs to the Lie Group [68].

It processes a lot of beneficial mathematical properties which are desirable in image

registration. The most remarkable property that makes diffeomorphism useful is

that the topology can be preserved even when there is a large deformation. Folding

of a diffeomorphic manifold is also not possible. As the diffeomorphic

transformation preserves image topology, global one-to-one mapping is guaranteed.

Thus, given any diffeomorphic transformation field, it is possible to “undo” such

transformation by providing a complementary backward transformation.

28

In all spatial transformation under the diffeomorphic framework, mapping

an image with the transformation 𝑠 is equivalent to composing the image with 𝑠.

Similarly, consecutive update to the mapping with multiple transformations

{𝑠 , 𝑠 , … , 𝑠 } is equivalent to consecutive compositions on the image. Such

composition is achieved by resampling and interpolating one field by another.

Therefore:

 𝑠(𝑥) = 𝑠 ∘ 𝑥 (3)

 𝑠 {… 𝑠 [𝑠 (𝑥)]} = 𝑠 ∘ … ∘ 𝑠 ∘ 𝑠 ∘ 𝑥 (4)

Contrast to additive updates which provide only an approximation, this compositive

update scheme provides an accurate representation of the mapping even after

multiple transformations.

In the DARTEL algorithm, the diffeomorphic deformation Φ is no longer

defined by the deformation field. Instead, the deformation is defined by a stationary

vector field (SVF), 𝑣. Such model yields the differential equation [66]:

 𝑑Φ

𝑑𝑡
= 𝑣(Φ|)

(5)

which describes the evolution of the deformation field starting with an identity

transform Φ| = 0 to the final transformation Φ| . Traditionally, simple

integration methods can be used to compute the solution. However, considering

integration will take place on every voxel, the algorithm can be very

computationally expensive. As the velocity vector field is the time divertive of the

diffeomorphic deformation field that belongs to the Lie group, the vector field itself

can be considered as a member of Lie group structure that resides within the log-

domain [68]. Therefore, Lie algebra can be applied, and the resultant deformation

field can be obtained by computing exponentiating the SVF:

 Φ() = exp(𝑣) (6)

29

This relationship between the velocity vector field 𝑣 and the deformation field Φ is

of utmost importance in the development of diffeomorphic log-demons [69]. Similar

work also exploit SVF to deal with diffeomorphic transformations [70].

With the relationship between the velocity vector field and diffeomorphic

deformation field being established, Vercauteren extended the demons algorithm

and incorporated the diffeomorphic framework into it [69]. By introducing the SVF

used in DARTEL [66], the diffeomorphic log-demons algorithm now enforces

diffeomorphism under the demons framework. Similar to the additive demons, an

update field 𝒖 is also computed according to the image intensity gradient as well as

pixel/voxel-wise intensity difference. However, diffeomorphic log-demons apply

this update on the velocity field 𝒗 , which indirectly update the deformation

transformation field under the relationship 𝒔 = exp (𝒗). By frequently updating the

velocity vector field in the algorithm, the transformation field can be ensured to be

diffeomorphic at all times. The algorithm also performs vector field regularization

to discourage excessive update, as well as prevent unrealistic deformation field.

This regularization is commonly done by applying Gaussian smoothing.

Given the diffeomorphic log-demons algorithm is under the umbrella of the

demons registration framework, it can also be considered as an optimization

problem [72]. Therefore, Newton’s method can also be used to resolve this

optimization problem [61]. The cost function for optimization used is also

unchanged. In all, the pseudocode presented in Algorithm 2.2 illustrates

diffeomorphic log-demons presented in [69, 71]:

30

Algorithm 2.2 Pseudocode showing the iterative registration process in the
diffeomorphic log-demons algorithm.

Pseudocode: diffeomorphic log-demons algorithm

1 Input: Fixed image 𝑭 and moving image 𝑴

2 In each iteration 𝑖 Do:

3 Compute update field update 𝒖 based on 𝑭 and 𝑴

4 Apply fluid-like regularization: 𝒖 ← 𝐾 ⋆ 𝒖

5 Update velocity field: 𝒗 ← 𝒗 ∘ 𝒖

6 Apply diffusion-like regularization: 𝒗 ← 𝐾 ⋆ 𝒗

7 Compute deformation field 𝒔 ≡ exp (𝒗):

8 Update the moving image 𝑴 = 𝑴 ∘ 𝒔

9 Evaluate Harmonic energy 𝑬

10 Until Harmonic energy (𝐸) is minimized

11 Output: Deformation field 𝑠 from 𝑴 to 𝑭

Figure 2.9 “Circle to C” registration for additive demons and diffeomorphic
log-demons. Additive demons failed to converge. In contrast, diffeomorphic log-
demons is able to register the images with a smooth, invertible field. Image retrieved
from [66].

31

A practical and fast approximation of the field exponentials algorithm is

developed in [72], which utilizes the “scaling-and-squaring” method to compute the

vector field exponentiation. This approximation, which will be introduced in the

chapters afterwards, enables fast computation of the field exponential. With the trait

of diffeomorphic deformation, diffeomorphic log-demons is well known for its

capability of registering large deformations. The classical “Circle-to-C” registration

demonstrated that diffeomorphic log-demons is much more reliable than traditional

additive demons registration approach (Figure 2.9).

Klein et al. also provided a comprehensive survey and comparison of

diffeomorphic log-demons with other non-rigid registration schemes [73]. The

diffeomorphic log-demons algorithm is one of the faster registration schemes with

good accuracy, compared to its feature-based counterpart. However, despite the

algorithm can produce a smooth and invertible deformation field, the update of the

velocity field in diffeomorphic log-demons relies on the local intensity gradient of

the images [74]. This “localized” update discourages correspondence search of

highly deformed or low-contrast images. These potential problems can be tackled

by employing multiresolution schemes to register a largely deformed image. A

more lenient regularization scheme can also improve the convergence of the

algorithm.

2.3.4 Application on registering intraoperative images

Registering intra-op images is a very challenging task. As most intra-op

imaging techniques sacrifice image quality for temporal resolution, intra-op images

can be noisy and rich in artifacts [12, 75]. For example, low-dose CBCT images, in

general, have lower signal-to-noise ratio [12]. The 𝐵 field in iMRI being

substantially lower than conventional high-field MRI can also induce considerable

amount of noise and artifacts [21]. Besides, reconstruction of intra-op images may

also employ empirical approximation to accelerate the process, further decreasing

the image quality [76]. Let aside all problems brought by excessive noise and

artifact in intra-op scans, the non-rigid registration process have to be performed in

a rapid and automated manner to avoid interference to the surgical workflow. In

such regard, three major qualities have to be considered in choosing the best

registration strategy: computation speed, accuracy, and reliability.

32

2.3.4.1 Feature-based registration

In feature-based registration methods utilizing FFD, the degree-of-freedom

(DoF) defines the number of parameters that the algorithm will have to optimize

for. As feature-based registration algorithms tessellate the image into a mesh of

deformation grids that define the global transformation, employing fine-grained

deformation mesh increases the DoF of the registration. With higher DoF, the

registration can become more accurate. However, the computation required for high

DoF will also increase significantly. Therefore, trade-offs between registration

accuracy and computation time will have to be made. As the co-registration have

to be computed in a timely manner in the intra-op scenario, the number of DoF used

in the feature-based image registration scheme will be limited, leading to concern

of accuracy. Further, increasing the DoF can make the optimization to become ill-

posed due to the curse of dimensionality [77]. Furthermore, the existence of local

minima upon high DoF is also unavoidable, which can be one of the robustness

concern in feature-based image registration.

Another concern of feature-based registration on the reliability of CP

detection. Although the feature-based registration schemes can utilize automated

CP detection schemes, the detection of CP is heavily influenced by the image noises

and artifacts. Most intra-op images suffer from lower image contrast, lower signal-

to-noise ratio, and lower resolution. Therefore, it is often challenging for any

algorithms to extract the CPs on the intra-op images automatically. Further, the pre-

op image may exist unmatchable “outlier” features that do not exist in the intra-op

image (e.g. tumor being extracted during surgery will not present in the intra-op

image) [78]. This outlier problem is aggregated as delicate feature landmarks

detectable on pre-op images may not be able to be easily detectable in the intra-op

images. As a result, extensive preprocessing work is often required for optimal

registration. Manual actions are therefore mandatory and critical to ensure the CPs

are detected are in good conditions. In all, the registration reliability of feature-

based image registration prone to the accuracy of the detected features.

33

2.3.4.2 Intensity-based registration

Contrast to its feature-based counterpart, the intensity-based image

registration is non-parametric in nature. The non-parametric deformation field used

in intensity-based image registration possesses a very high DoF and carry the

potential of having a very accurate registration result. The registration can also

converge unconditionally given that the deformation is driven continuously by the

image difference and intensity gradient. In particular, the diffeomorphic-log demons

algorithm provided a good framework to readily optimize the deformation field.

Despite the registration is also susceptible to local minima due to high DoF, such

local minima can be worked around by employing multi-resolution approaches and

appropriate regularization [55, 79, 80]. In multi-resolution approaches, the

algorithm registers the image in a pyramidal manner. Larger-scale deformations can

be registered with relative ease using a subsampled image, while accurate

deformation representation will then be registered subsequently after the larger-

scale deformation is found.

In general, the intensity-based image registration algorithm is more reliable

than feature-based image registration, due to the non-necessity of employing

automatic control point detections. Convergence is also guaranteed by the algorithm.

Manual tuning of the regularization parameters used in the optimization cost

function may be required, but these fine-tuning operations do not pose critical

influence on the registration process.

However, intensity-based image registration suffers from the heavy

computation required to register the images. The overall registration process is in

general slow, due to the iterative optimization nature of intensity-based image

registration. As reported in [69], the diffeomorphic log-demons require 2 minutes

and 30 seconds to briefly register a single image; more than 8 minutes is required

to completely register a high-resolution image [73] with 2.8M voxels.

34

2.3.4.3 Summary

Previous sub-sections have summarized the pros and cons of the feature-

based and intensity-based image registration. In the application for registering intra-

op images, apart from registration accuracy, other factors such as reliability and

computation speed are also concerned.

As discussed, the feature-based image registration schemes rely on

automated detection of the image features. Therefore, the robustness of the

registration depends on the intra-op image quality, feature extraction methods, and

DoF of the registration. However, as most intra-op images sacrifice image quality

in an exchange for reduced scanning and reconstruction time, such automated

feature extraction schemes may not be reliable due to the presence of considerable

noise and artifacts. This inherent disadvantage had put feature-based registration

unreliable in registering intra-op images.

In contrast, intensity-based image registration schemes do not require image

preprocessing, as the deformation is solely driven by the underlying image

difference and pixel gradient. Such advantage can make intensity-based registration

superior to its feature-based counterpart in terms of reliability. However, the

computation demand of the algorithm hinders its ability to in registering intra-op

image quickly. Nonetheless, such downsides are not inherently related to the

algorithm, but on the computation perspective. Such registration schemes may be

eligible to be accelerated using advanced application accelerators.

2.4 Current trends of high-performance intra-op registration

The importance of intra-op surgical navigation and non-rigid image

registration has been discussed in previous sections. Despite the co-registered

images can provide invaluable image guidance to the surgeons, these registered

images will have to be provided in a timely manner to avoid disrupting the surgical

workflow. Furthermore, the tissue margins updated by such co-registration can be

provided in an asynchronous manner [81, 82]. Figure 2.10 provides a general

flowchart illustrating such asynchronous loop for intra-op surgical navigation with

visual guidance using intra-op imagers.

35

Figure 2.10 Image registration and visual guidance working asynchronously
in the navigation interface. Pre-op model and the intra-op images can be swiftly
aligned by high-performance image registration (top). Intra-op scanning also
enables continual position tracking of the surgical instruments (bottom).

Intensity-based image registration schemes are more preferably adapted to

register intra-op images during surgery due to its potential high registration

accuracy and robustness. However, the intensity registration approach is set back

by its own computation requirement. Substantial pixel-wise computation is required

to retrieve the correspondence between the pre-op and intra-op images. Therefore,

these computations will need to be accelerated and optimized to enable intensity-

based registration to be used in the clinical practice. In this light, application

accelerators and/or coprocessors such as GPU can be used to optimize the

computation. In this section, the general properties of GPU will be introduced.A

horizon scan of computational acceleration for intensity-based image registration

will also be conducted.

2.4.1 Graphics processing units as application accelerator

Previous sub-sections have illustrated the underlying clinical demand of

having a fast non-rigid image registration. However, there is a clear gap between

the formulation and the application of these intensity-based image registration

algorithm. Their extensive computation time required is the main concern. With the

advancement of application accelerators such as GPU in the recent decade, there

were high hopes in leveraging the accelerator’s parallel processing power for fast

registration.

36

Amongst a variety of application accelerators, GPU is a specialized

hardware originally being developed for rendering images for display output. As

the pixel intensity values encoded in the output display signal are independent, these

output values are computed separately inside the GPU. Contrast to the central

processing unit (CPU) which optimizes for single-threaded computation latency,

the GPU is designed to have numerous computation cores for highly parallelized

computation. This architectural advantage can be exploited to perform complex

scientific calculations, such as particle simulation, image reconstruction, and

optimization. As intensity-based image registration also involves a lot of pixel-wise

operations, the GPU is a good choice to accelerate the registration.

2.4.1.1 Compute Unified Device Architecture

Even with an advantage of parallel processing a large amount of structured

data, the potential of GPU to perform general purpose computing had been

overlooked until recently. In the earlier developmental stages of GPU, these exist

no tools for scientists to exploit GPU’s capability of parallel computing. Returning

data from the GPU back to the CPU was impossible in many of the earlier GPU

models. The data paths of these earlier models are often hard-wired, thus limiting

their parallel computation potential.

In 2006, NVidia released Compute Unified Device Architecture (CUDA),

an application programming interface (API) for general purpose computing using

its CUDA-enabled GPU. Such API allow bi-directional communication between

the GPU and the host CPU. Therefore, CUDA enables the GPU to act as a

coprocessor to run customized subroutines for general applications. Since then, the

term “General Purpose GPU” is coined, and nearly all newer released GPUs are

customizable for accelerating specific computation tasks.

It should be noted that AMD also released a stream computing software

development kit (SDK) based on Brook for general purpose computing with their

GPU. In this thesis, we will only focus on NVidia’s CUDA devices, as it has been

reported that CUDA devices outperform their AMD counterparts [83]. However,

the concerned performance-aware computation enhancement techniques presented

in this thesis are largely translatable between two mainstream GPUs.

37

2.4.1.2 CUDA programming model

General-purpose computing can be achieved by programming the CUDA

GPU using the C++-alike CUDA language, which enables customized computation

kernels to be launched on the GPU by allowing access to the GPU’s memory,

instruction sets, and computation elements. Subsequently, the computation kernels

written in CUDA language will be compiled into parallel thread execution (PTX)

instruction sets, which are low-level instruction sets that are optimized for CUDA

devices.

Figure 2.11 Hierarchical illustration of the CUDA programming model. Upon
kernel execution, a grid of thread blocks which consist of numerous threads are
instantiated. Therefore, the total number of threads launched is the product of
number of blocks launched and number of threads in a block.

The CUDA programming framework is highly hierarchical. It divides the

computation kernels into a grid of thread blocks that consist of numerous threads

(Figure 2.11). Upon kernel execution, the launched thread blocks are assigned to

be executed by one of the streaming multiprocessors, which utilizes its underlying

array of CUDA cores to process the computation in parallel. All threads are able to

access the GPU’s global memory; communication and data exchange between the

threads in a block can be achieved using the on-chip shared memory space. Further,

38

most GPUs also include read-only memories known as the constant memory and

texture memory.

In the CUDA language, the GPU kernels are written as function and called

with a triple chevron (<<<…>>>) style. The two arguments inside the triple

chevron correspond to the number of thread blocks, and the number of threads per

thread block being called. Thus, the total number of threads being called by the

kernel is therefore (# of thread blocks) × (# of threads per block). Upon kernel

execution, each thread can access its unique thread ID and can then access the

unique data to perform the computation. The computation results from each thread

can then be saved and fetched back to the host memory after computation. Example

of such kernel and kernel call is given below:

Code snippet: CUDA Kernel Example

1 __global__ void gpuKernel(int *c, const int *a,. const int *b)

2 {

3
 int globalThreadId =
 (blockIdx.x * blockDim.x)+ threadIdx.x;

4
 c[globalThreadId] =
 a[globalThreadId] + b[globalThreadId];

5 }

Line 3 of gpuKernel exemplifies how the GPU threads query their unique

global thread ID. Thus, the GPU threads can access a unique member of a, b and c

as specified in line 4.

Code snippet: CUDA Kernel Call

1 unsigned int blocksPerGrid=2, threadsPerBlock = 1024;

2 gpuKernel <<<blocksPerGrid, threadsPerBlock>>> (c, a, b)

Line 1 of the kernel call example defines that 2 thread blocks containing

1024 threads will be called by gpuKernel. Therefore, a total of 2048 threads is called

in the above example. Thus, the first 2048 members of a and b will be added and

saved into the first 2048 members of c respectively.

39

It should be noted that all memory and data required for computation should

be allocated and/or initialized to the GPU’s memory prior to kernel execution. Such

action can be done using the cudaMalloc(), cudaMemset() and cudaMemcpy()

functions provided by CUDA API. This memory fetching process is slow due to

limited bandwidth between the GPU and the host device (typically through the PCI-

e slots). As such, it is more preferable to have all computation being completed in

GPU before fetching them back to the host memory to reduce the overheads.

Despite the internal memory bandwidth of GPU is much larger than the CPU-GPU

bandwidth, it is still one of the factors limiting the performance of GPU. Particularly,

the global memory one of the hot spots that can bottleneck the computation

operations.

2.4.1.3 Hardware architecture of a CUDA GPU

A CUDA GPU is designed to process any computation in parallel under the

Single Instruction, Multiple Threads (SIMT) architecture. The base computation

units of a CUDA device are the streaming multiprocessors, which possess an array

of processing elements (as known as “CUDA cores”) for parallel computation.

Multiple streaming multiprocessors are present in one GPU. Apart from the CUDA

cores, each streaming multiprocessor also possesses their own instruction fetching

unit, shared memory, as well as registers. Any memory transactions operations are

accomplished by the multiprocessor’s ability to access the graphics memory chip

through a heavily cached memory bus.

Figure 2.12 illustrates a schematic diagram of a CUDA GPU. The GPU

(device) is connected to the host PC via PCI-e channels, which allows

communication between the GPU and the PC (host). The device usually consists of

2-8GB of graphics memory, of which the memory is physically located off-chip at

close proximity to the streaming multiprocessors. The memory controller is

responsible to load/store data to/from the streaming multiprocessor through the

hardware-managed L2 and L1 caches. Both caches excel at fetching multiple data

at once. However, one have to note that The L2 and L1 cache have different

transaction characteristics. Memory transactions between the L2 cache and L1

cache are in batches of 32 bytes. Similarly, the transactions between the L1 cache

and CUDA cores are in batches of 128 bytes. These cache behavior forms an

40

integral part in later optimization and discussions concerning about coalesced

memory transaction.

Figure 2.12 Simplified schematic diagram showing the hardware
microarchitecture of a CUDA GPU. The GPU possesses numerous streaming
multiprocessors as its basic computation units. The streaming multiprocessors can
access the off-chip graphics memory via a heavily cached data bus.

On top of global memory, the GPU also possesses other types of specialized

memory. For example, the on-chip shared memory is a fast, user-managed memory

space that is capable to be utilized for effective data reuse which will be discussed

in the later part of this thesis. This shared memory is much faster than the global

memory in terms of both bandwidth and latency [84]. Besides, the texture memory

that is also located off-chip is specialized to fetch data from its 2D or 3D locality

which is not normally supported by the global memory. The texture memory forms

another integral part in later optimization strategies concerning about interpolation.

Finally, the constant memory of the GPU is responsible to pre-cache any needed

data that is needed to be broadcasted to all streaming multiprocessors globally.

41

2.4.2 Horizon scan

Despite having much potential to speed-up the intensity-based image

registration process, GPU was often overlooked by the field of image registration.

However, GPU has been used in many related applications such as tomography

reconstruction [85], Monte-Carlo simulation [86] and digital radiograph

reconstruction [87]. Besides, the current research focus of non-rigid image

registration mainly resides in the algorithmic development. There were many

research groups focusing on developing a more advanced registration method to

improve registration accuracy and robustness [88]. However, research on enhancing

the computation process of image registration, particularly intensity-based image

registration, has often been overlooked. To-date, there are a very few open-sourced

implementations of GPU demons-based registration being available. The only

available package is the GPU implementation of Thirion’s demons registration

included within the ITK package [89]. However, this implementation does not

include any kind of GPU-based optimizations. Besides, the available deformation

field update schemes provided for the GPU demons implementation in ITK [90] are

very limited, with only passive force, active force and double force [57] currently

being available.

Several research groups have attempted to implement the GPU version of

Thirion’s demons registration. Sharp et al. [91] first presented the GPU

implementation of the native demons algorithm on a NVidia GPU using the Brook

environment [92], yielding an 80× performance speedup compared to CPU. Courty

et al. [93] transferred the native demons algorithm into GPU, and re-implemented

the Gaussian smoothing step by reclusive mapping and filtering the 3D volume on

a 2D texture [94]. Muyan-Ozcelik et al. [95, 96] implemented the same demon-

based registration using CUDA, yielding additional 10% speedup compared to the

work presented by Sharp et al. [91]. Gu et al. [97] later presented a quantitative

comparison of 5 implementations of Demons variants on GPU, including passive

force, evolved passive force, active force, double force and inverse consistent

methods.

However, little work has been done on the accelerating any types of

advanced demons variants. For example, the diffeomorphic log-demons [69] and

42

spectral log-demons [74] are considered to be much more robust than Thirion’s

native demons algorithm. The only reported work is by Huang et al. [98], who

presented an implementation of 2D diffeomorphic log-demons using CUDA.

However, the computation speed-up reported is also not as satisfactory as expected,

possibly due to the fact that their implementation is not fully optimized.

2.5 Conclusion

In this chapter, an overview of the intra-op imaging technique has been

reviewed, and the clinical demands of having image-guided interventions have also

been discussed. I have also introduced the basic principle of image registration.

Particularly, intensity-based image registration is a more reliable approach in the

intra-op scenario. However, the immense computation demand of intensity-based

image registration precludes registration to be applied in the clinical practice. GPU

possesses the ability to parallelize the computation for fast registration. In this

regard, the hardware microarchitecture of CUDA GPU, which is a mainstream

general-purpose GPU, has been introduced. However, in a brief horizon scan, we

found that GPUs are often overlooked in the field intensity-based image registration.

Aiming to achieve fast intensity-based image registration, the

considerations in the implementation process of GPU-accelerated diffeomorphic

log-demons will be presented in the following chapters. The computation demand

of diffeomorphic log-demons will be analyzed in Chapter 3. The implementation

details will be presented in Chapter 4. And the consideration of the limits of GPU-

accelerated diffeomorphic log-demons, future directions, and potential impacts will

be finally outlined in Chapter 5.

43

Chapter 3

ALGORITHMIC ANALYSIS AND

PERFORMANCE-AWARE OPTIMIZATION

3.1 Introduction

As depicted in the previous section, the overwhelming amount of

computation can result in long processing time for intensity-based non-rigid

registration. Despite having satisfactory registration robustness, this prolonged

running time is the major bottleneck of putting the algorithms into clinical use. The

implementation of native demons algorithm (Thirion’s demons algorithm) on the

GPU has already been widely studied. However, there is a lack of GPU

implementations for any advanced demons algorithm, such as the diffeomorphic

log-demons. Implementing algorithms on a GPU requires a thorough understanding

of the computation process involved. To achieve the best performance gain through

the best use of GPU, identification of the limiting steps that bottleneck the

computation is crucial. Particularly, as GPU speeds up the computation by

parallelizing the workload on a large scale, the memory bandwidth requirement that

comes with this largely parallelized computation will also need to be addressed.

Given there is a large computation demand for the intensity-based

registration algorithm, performance-aware computation is the key technique to

leverage the full power of a CUDA GPU for efficient computation. In this chapter,

a brief highlight of different features on a GPU is first presented, followed by a

survey of GPU memory access patterns. A complete algorithmic analysis of

44

diffeomorphic log-demons, aiming to pinpoint the computation bottleneck, will also

be presented. Once the computation bottleneck is identified, the computation

requirement, as well as the underlying memory access patterns involved in those

operations will be investigated. In light of the computation and memory

requirement, an optimal implementation for those bottlenecking will be devised

using various performance-aware programming techniques.

3.2 GPU performance-aware programming for image registration

As presented in previous sub-sections, the GPU has an unmatched

computation throughput for processing large computation workload in parallel.

However, in order to harness the full computation power of a GPU, having

performance awareness in the programmer’s mind is the key. Performance-aware

programming is a method that involves repeated optimization and profiling of the

program. In order to achieve high-performance GPU non-rigid image registration,

one has to effectively utilize the GPU’s strength for high-performance computation.

Under-utilization of the GPU device has to be avoided. In all, the CUDA GPU

possess 3 features that are essential for high-performance computing, namely: a)

highly-parallelized computation via SIMT, b) efficient caching, and c) rapid

interpolation.

a) Parallelized SIMT computation

Highly parallelized computation is achieved by the GPU’s streaming

multiprocessors, which are designed to execute numerous threads in parallel. Under

the SIMT architecture, the CUDA cores of each streaming multiprocessor execute

warps of 32 threads simultaneously under a single instruction fetch-decode cycle.

However, execution of the warps can be bottlenecked (“stalled”) due to memory

dependency, branching, or synchronization barriers. In this regard, the instruction

scheduling unit on the streaming multiprocessor can mitigate this latency by

executing multiple warps concurrently, similar to simultaneous multithreading

(SMT) strategies on CPUs. Once a warp is stalled upon high latency operations, the

scheduler can switch to another warp for continual execution. Such warp-switching

strategies, combined with warp-level SIMT, provides streaming multiprocessors

essential computation throughput to handle the enormous thread launched under a

kernel.

45

b) Efficient Caching

Efficient caching can be achieved by the efficient usage of the on-chip

shared memory on each streaming multiprocessor manner (Figure 2.12). As

memory dependency is one of the most common reasons of bottlenecking, the much

faster (>80x) shared memory can act as an efficient, user managed cache to mitigate

any latency brought by redundant global memory accesses [84]. With the shared

memory being used as a user-managed cache, data can be initialized on the shared

memory in a highly efficient manner. For example, memory coalescence during the

global-shared memory transaction can be enforced. Besides, as threads in the same

block can access the shared memory, essential data can be exchanged between

threads through such shared memory space. Any temporary results can be also

stored and accessed with little overheads. Once the computation is completed, the

results can be efficiently written back to the global memory in a coalesced manner.

c) Rapid Interpolation

The ability of rapid interpolation in GPU is brought by its dedicated texture

hardware. Texture filtering is one of the most commonly used processes in graphics

rendering, which is considered an expensive operation due to its high arithmetic

and memory demand. To this end, the GPU possess specific hardware to perform

the underlying fetching and arithmetic computation of interpolation in an optimized

manner. By binding specific memory segment onto the texture memory/cache for

read-only access, the GPU’s texture hardware is able to automatically resolve the

potentially complicated memory access patterns. Particularly, the hardware-

managed texture cached is not only fast, but also provides unmatched spatial

locality in 2/3D for efficient data fetching. The subsequent computation process is

also optimized by the hardwired interpolation in GPU, which utilize fixed-point

interpolants to speed up the potentially expensive multiplication process.

46

3.3 Algorithmic breakdown

Diffeomorphic log-demons is an algorithm that involves an iterative

optimization process to find out the optimal transformation between two images.

Such optimization is performed by minimizing the global harmonic energy. As

introduced in equation (2) in page 26, such harmonic energy can be broken down

the “similarity term” (𝑆𝑖𝑚) and the “likelihood term” (𝑅𝑒𝑔) . Although the

computation is already simplified by the demons framework which break down the

workflow into a much simpler iterating routine, the required computation

throughput is still very demanding. In this sub-section, I will first identify the

related memory access patterns required in diffeomorphic log-demons. After that,

the computation process required in diffeomorphic log-demons will be analyzed.

These code analyses are based on of the open-sourced MATLAB code1

composed by Lombaert, the author of spectral-log demons [74] which is an

improved version of the diffeomorphic log-demons.

3.3.1 GPU memory access patterns

A thorough understanding of memory access patterns in GPU is for

implementing high-performance applications. Memory contention is one of the

major factors that contribute to computation bottleneck. To this end, identifying of

memory access patterns involved in the computation is crucial for tailoring specific

strategies to resolve any bottleneck. In this sub-section, a brief survey will be

presented to identify the key memory access patterns involved in diffeomorphic log-

demons, including map, gather/scatter, reduction, and stencil access patterns. These

memory access patterns can be identified in the operations when I start to break

down the algorithm in the next sub-section.

1 MATLAB code available on https://www.mathworks.com/matlabcentral/fileexchange/39194-
diffeomorphic-log-demons-image-registration. Accessed 8 March 2017.

47

3.3.1.1 Map

The map operation is one of the simplest memory operations in GPU. The

map access pattern depicts each thread to operate independently without any

conflicts. Therefore, the map operation producing a one-to-one mapping on the

input-output datasets. A common example of such map operation is to perform a

constant offset to the value stored in an array. As there is no external dependency,

the read/write access incurred should be made sequential if possible in order to take

advantage of the coalesced memory access by the global memory. Given the threads

are totally independent, there is also minimal communication between each running

thread inside the GPU. A schematic of the map operation is shown in Figure 3.1.

Figure 3.1 Schematic diagram showing map operation of a function 𝑓 on an
input array with a parallel processing architecture. Each computation is independent
of each other.

Every thread launched by a kernel function involving a map access shall be

independent in nature. Therefore, operations involving the map access pattern is

inherently parallelizable. The hardware design of GPU is optimized for parallel

processing of such independent computation. Thus, it is favorable for the GPU to

enhance the computation for this kind of memory operation. As the read/write

access of map operations are to be made sequential, they can also be cached in an

orderly manner, thus, enabling full utilization of the memory bandwidth on the GPU.

48

3.3.1.2 Gather/Scatter

Gather and scatter are special forms of map operations [99]. Gather

operations performs an indexed read from an array; scatter operations perform

indexed write to an array. These operations do not require communication between

the running threads within the same block, but the read/write access are indexed but

may not be coalesced. Figure 3.2 illustrates the memory access pattern of

gather/scatter operations inside a GPU.

Figure 3.2 Schematic diagram showing gather-scatter operation of a
function 𝑓 with a parallel processing architecture. The threads are still independent,
but the indexed reads/writes may induce conflicts among threads (red circles).

The memory access in gather/scatter operations is random in nature. In fact,

a random memory access pattern is defined as a combination of gather and scatter

operations. Such non-coalesced memory access patterns hinder effective memory

caches. Data read/write conflicts may also occur when multiple threads attempt to

access the same memory location. In many parallel architectures, the processor and

memory controllers usually have specific hardware to handle such gather-scatter

access patterns and resolve any potential read/write conflicts.

49

3.3.1.3 Reduction

The reduction operation combines all elements in the input array to generate

a single output. As shown in Figure 3.3, the computation is performed in a tree-

like pattern. Operations admissible to the parallel reduction are those which are

binary, associative and commutation. For example, addition, multiplication, or

Boolean operations such as AND, OR, and XOR operations. The order performed

on the inputs are unimportant [100].

Figure 3.3 Schematic diagram showing reduction operation of a function 𝑓
with a parallel processing architecture. To maximize parallelism, the dataflow is
organized in a tree-like pattern.

Implementing a parallel computation to perform reduction possess a

significant advantage over serial implementation. A reduction algorithm on a serial

processor requires the big-O complexity of 𝑂(𝑛) = 𝑛 to perform reduction of 𝑛

elements. However, based on a tree-like parallel reduction pattern, theoretically a

big-O complexity of 𝑂(𝑛) = log 𝑛 can be achieved using an idealized parallel

processor with infinite processing cores. However, as the number of processing core

in the GPU is limited, the actual time required can be depicted by the Brent’s Law

[101] stated as follow:

50

𝑇 ≤ 𝑇 +

𝑇 − 𝑇

𝑝

(7)

Where 𝑇(⋅) depicts the time required for a parallel architecture with the specified

number of processors in the (⋅) subscript to solve the problem; 𝑁 is the maximum

number of processors possible for solving the problem in parallel and 𝑝 is the

number of processor used in the practical situation.

3.3.1.4 Stencil

The stencil operation computes the output values using a set of fixed

neighboring elements (called stencil) at the corresponding position of the input

array. Typical stencil patterns are von Neumann pattern and Moore pattern.

Theoretically, this operation is parallelizable due to having no inter-dependency

between different threads in a kernel. However, the stencil access pattern is memory

exhaustive when implemented in a parallel computing architecture, due to multiple

read operations required for computation. As indicated in Figure 3.4, data members

in the input array will have to be accessed multiple times throughout the

computation process. Such recurrent access to the input array known as data

redundancy must be resolved.

Figure 3.4 (a) Schematic diagram showing stencil operation of a function 𝑓
with a parallel processing architecture. Overlapping of the stencil pattern induces
redundant read operations. The stencil access pattern can either follow (b) 3D von
Neumann stencil pattern, or (c) 3D Moore stencil pattern.

51

In addition to data redundancy, stencil operations in higher array dimensions

will also induce non-coalesced memory access when reading over across rows and

slices. As the memory is cached in a row-major manner, a cache miss is unavoidable

when the memory pointer attempts to stride through the memory lab across columns

or slices. Such memory access striding across column or slices of the memory slab

is known as non-coalesced, and the cache miss induced by non-coalesced memory

access can drastically bottleneck the computation.

3.3.2 Computation bottleneck of diffeomorphic log-demons

A MATLAB profiler is configured to monitor the execution time required

for 100 diffeomorphic log-demons iterations to run on an image with a resolution

of 0.2M voxels (64×64×64). Although the Java-based MATLAB codes are

inherently not optimized for computation performance, the results obtained by the

profiler can give reliable clue on the computation bottleneck that hinders the

computation. The profiling results are abstracted and presented in Table 3.1. Also,

the pseudocode of diffeomorphic log-demons, Algorithm 2.2 first presented on

page 23, is once again presented to facilitate the discussion in the subsequent sub-

sections.

Table 3.1 Abstract results of the MATLAB profiler report after running 100
diffeomorphic log-demons iterations on a small (60×60×60) image set.

Function
Corresponding line

in pseudocode
Number of
times called

% of time
consumed

Compute velocity field update 3 100 5.077%

Gaussian smoothing 4&6 600 40.434%

Field exponentiation 5 100 45.385%

Compute rergistration energy 7 100 6.145%

*Note that the total time consumed does not add up to 100% since this abstract report does not
account for other minor operations and overheads.

52

Algorithm 2.2 Pseudocode showing the iterative registration process in the
demons.

Pseudocode: diffeomorphic log-demons algorithm

1 Input: Fixed image 𝑭 and moving image 𝑴

2 In each iteration 𝑖 Do:

3 Compute update field update 𝒖 based on 𝑭 and 𝑴

4 Apply fluid-like regularization: 𝒖 ← 𝐾 ⋆ 𝒖

5 Update velocity field: 𝒗 ← 𝒗 ∘ 𝒖

6 Apply diffusion-like regularization: 𝒗 ← 𝐾 ⋆ 𝒗

7 Compute deformation field 𝒔 ≡ exp (𝒗):

8 Update the moving image 𝑴 = 𝑴 ∘ 𝒔

9 Evaluate Harmonic energy 𝑬

10 Until Harmonic energy (𝐸) is minimized

11 Output: Deformation field 𝑠 from 𝑴 to 𝑭

It is found that the major computation bottlenecks reside on the field

exponentiation to retrieve the diffeomorphic deformation field, and the Gaussian

regularization of the update/velocity field. Field exponentiation is the essential step

to get the updated diffeomorphic deformation field from the velocity field. Hence,

one field exponentiation computation is required per iteration. Furthermore,

Gaussian smoothing is the common strategy for the regularization of the update

field (line 4) and velocity field (line 6). As smoothing need to be done in all 𝑥, 𝑦,

and 𝑧 directions, the Gaussian smoothing function is called 6 times in each iteration,

being called three times in each regularization step. In the remaining parts of this

sub-section, I will breakdown the bottlenecking operations, namely Gaussian

smoothing and field exponentiation, and propose appropriate optimization

strategies for the best computation speed-up.

53

3.3.2.1 Gaussian smoothing

One computation bottleneck that hinders fast computation of diffeomorphic

log-demons is the Gaussian smoothing step. Gaussian smoothing (also known as

Gaussian blur) is the result of blurring an image/vector by a Gaussian function:

𝐺(𝑥, 𝑦, 𝑧) =

1

√2πσ
exp

𝑥 + 𝑦 + 𝑧

2𝜎
 (8)

Mathematically, such smoothing is equivalent to convolving the image/field with a

Gaussian function. Applying a Gaussian blur to a field can reduce any high-

frequency signal. Thus, discouraging sudden, sharp changes in the vector field.

Gaussian filtering is extensively used on vector fields as a simplified model

of deformation propagation [7] and regularization [13]. The vector field is

convoluted by a 3D array of pre-computed Gaussian values (“Gaussian kernel”)

that represents the Gaussian function. However, as the variance of the Gaussian

function (σ) increases, this array can become large. A naïve implementation of 3D

Gaussian filtering requires access to nearby (6σ) elements for each voxel.

However, such an operation involving numerous data transaction can impose heavy

memory demand, especially when σ is large. To this end, multi-pass Gaussian

filtering is commonly used to cut down the computation. Considering the 3D

Gaussian kernel is symmetrical, this memory-demanding convolution process can

be decomposed into multiple 1D convolutions. The formulation of a 1D Gaussian

kernel (𝑘[𝑑]) is shown in Dquation (9) below. The workflow of performing multi-

pass filtering by a symmetrical kernel on a vector field is presented in Algorithm

3.1.

𝑘[𝑑] =

1

𝜎√2𝜋
exp −

𝑑

𝜎
, 𝑑 = {0,1, … , nint(3𝜎)} (9)

54

Algorithm 3.1 Pseudocode showing the computation procedure of multi-pass 3D
Gaussian smoothing.

Pseudocode: 3D Gaussian smoothing

1 Input: vector field 𝒖, kernel size 𝒂, kernel values 𝒌[𝒂]

2 // Perform x-pass convolution on 𝒖 as 𝒖 :

3 For each vector 𝒖 in 𝒖 :

4 Perform discrete convolution on 𝒖 along the x-direction:

 𝑢 = ∑ 𝒌[|𝑛|] × 𝒖(, ,)
𝒂

𝒂

5 // Perform y-pass convolution on 𝒖 as 𝒖 :

6 For each vector 𝒖 in 𝒖 :

7 Perform discrete convolution on 𝒖 along the y-direction:

 𝒖 = ∑ 𝒌[|𝑛|] × 𝒖(, ,)
𝒂

𝒂

 // Perform z-pass convolution on 𝒖 as 𝒖 :

 For each vector 𝒖 in 𝒖 :

8 Perform discrete convolution on 𝒖 along the z-direction:

 𝒖 = ∑ 𝒌[|𝑛|] × 𝒖(, ,)
𝒂

𝒂

9 Output: Smoothed vector field 𝒗 = 𝒖

In the context of diffeomorphic log-demons, Gaussian smoothing is used to

both induce uncertainty to the feature correspondence [65], as well as to regulate

the likelihood of the deformation field [55]. To perform Gaussian smoothing, every

output pixel/voxel are required to read the intensity value of nearby pixel/voxels.

This intense memory fetching is followed by multiplication of such intensity value

with the corresponding Gaussian values. This memory access hence can be

classified as a 3D stencil pattern as the processor needs to read and perform the

weighted-sum computation of all elements near Moore’s neighborhood.

3.3.2.2 Vector field exponentiation

Diffeomorphic log-demons adopts a “scaling and squaring” approach [66]

which can effectively approximate the exponentiation of vector field. In the scaling

and squaring approach, Newton’s method is first used to evaluate the first step of

the integration. The resultant integral is than self-composed several times to yield

55

the complete integration of the exponentiated vector field. In fact, the first step

integration process is not computationally intensive, compared to the repeated

composing operations. In each compositive operation, each element in the output

vector is interpolated from the input vector field. As such, the nearest 8 vectors in

3D from the input vector field will have to be fetched before trilinear interpolation.

Without a doubt, such interpolation will incur a massive memory bandwidth

requirement due to extensive memory access. The access pattern will also appear

to be random due to the non-parametric nature of the vector fields. The pseudo code

for field exponential in a 3D vector field are provided:

Algorithm 3.2 Pseudocode showing the key computation procedure for fast
approximation of vector field exponentials using the “scaling and squaring”
method.

Pseudocode: Fast Vector Field Exponentials

1 Input: Velocity vector field 𝒗

2 Choose N such that 2 𝒗 is close to 0 (e.g. 2 𝒗 ≤ 0.5)

3 Perform explicit first-order integration Φ ← 2 𝒗

4 Repeat 𝑵 times:

5 Recursive scaling and squaring: Φ ← Φ ∘ Φ

6 Output: Diffeomorphic map Φ = exp(𝒗)

As illustrated Algorithm 3.2, the vector field exponentiation algorithm

requires 𝑁 compose operations to compute the diffeomorphic mapping 𝛟 from a

velocity vector field 𝒗 . The number of compose operations depends on the

magnitude of the velocity field. As the step of integration for needs to be small

enough to achieve reasonable accuracy by the Newton’s method, the velocity vector

needed to be first scaled down by a factor of 2 . The ultimate value of 𝑁 is to be

determined by the magnitude of the largest velocity vector inside 𝒗. Thus, more

field composition iterations are required to estimate the field exponentials with a

larger 𝒗 . The typical value of 𝑁 resides around 3-5. In the context of the

diffeomorphic log-demons algorithm, the computation demand will increase

exponentially as the deformations acuminate over the iterations.

56

3.3.2.3 Vector field composition

Vector field composition is the most used operation in diffeomorphic log-

demons (denoted by the operator “∘” in the pseudocode). It operates on Lie group

structure and essentially shares the same concept of addition in linear algebra.

Interpolation is extensively used in evaluating vector field composition. Aside from

being extensively used in vector field exponential operations, the compositive

operation is also used to warp the deformation on the moving image, as well as

updating the velocity field using the update field. The pseudo code for vector field

composition and interpolation is presented:

Algorithm 3.3 Pseudocode showing the key computation procedure for vector
field composition, which is one of the essential computations inside the
diffeomorphic log-demons algorithm.

Pseudocode: Vector Field Composition (Operator “∘”)

1 Input: velocity vector field 𝒗, update vector field 𝒖

2 For each vector 𝒗 in 𝒗:

3 Add the coordinates of 𝒗𝒊 onto the components of 𝒗 respectively as 𝒗 :
 𝒗 = 𝒗 + coord(𝒗)

4 Treat each component of 𝒗 as a single image and wrap with update field 𝒖 (See
Algorithm 3)

𝒗 = 𝒗 ∘ 𝒖 𝒗 = 𝒗 ∘ 𝒖 𝒗 = 𝒗 ∘ 𝒖

5 For each vector 𝒗 in 𝒗 :

6 Subtract the coordinates of 𝒗𝒊 onto the components of 𝒗′ respectively as 𝒗 :

𝒗 = 𝒗′ + coord(𝒗′)

7 Output: composed vector field 𝒗𝒑 = 𝒖 ∘ 𝒗

The composition of two fields 𝒖 and 𝒗 combines two smooth, continuous

manifolds under Lie Algebra. However, the data stored in the computer memory

are discrete in nature. Thus, interpolation is required to find out the vector value at

an arbitrary point inside the field. As illustrated in Algorithm 3.3, field composition

first resolve for the corresponding query point depicted by 𝒖 on the vector field 𝒗.

After that, interpolation is performed at the query point depicted. This procedure is

repeated over every discrete vector that represent the field 𝒗.

57

The computation of field composition requires numerous of interpolation.

Due to the non-parametric nature of the vector field, the number of interpolation

required is equal to the resolution of the vector field. Different interpolation

approaches can be used. For example, nearest neighbor interpolation is the faster,

but it is the most inaccurate interpolation approach. Trilinear interpolation assumes

a linear correlation between the interpolants. Tri-cubic or b-spline approaches tend

to be more accurate, but require more computation. Trilinear interpolation (Figure

3.5) is well-known to be an acceptable trade-off between computation efficiency

and accuracy. The pseudocode for trilinear interpolation is presented below in

Algorithm 3.4:

Figure 3.5 Illustration of trilinear interpolation. The value of point C is
interpolated by the eight closest interpolants (C000 – C111). Images retrieved from
[102].

58

Algorithm 3.4 Pseudocode showing the key computation procedure for trilinear
interpolation, which is performed numerous times in a single compositive operation.

Pseudocode: Trilinear interpolation (interp3)

1 Input: vector field 𝒖, query point 𝒒

2 Compute 𝑥 , 𝑦 , 𝑧 which are the differences between query point 𝒒 and the closest
grid point with the least coordinate

𝑥 = 𝒒 − 𝑓𝑙𝑜𝑜𝑟(𝒒) 𝑦 = 𝒒 − 𝑓𝑙𝑜𝑜𝑟(𝒒) 𝑧 = 𝒒 − 𝑓𝑙𝑜𝑜𝑟(𝒒)

3 Get 8 closest vectors {𝒘 … 𝒘 } from 𝒒 in field 𝒖 for interpolation:

𝒘 = 𝒖

𝑓𝑙𝑜𝑜𝑟(𝒒)
𝑓𝑙𝑜𝑜𝑟(𝒒)

𝑓𝑙𝑜𝑜𝑟(𝒒)

𝒘 = 𝒖

𝑐𝑒𝑖𝑙(𝒒)

𝑐𝑒𝑖𝑙 𝒒

𝑓𝑙𝑜𝑜𝑟(𝒒)

𝒘 = 𝒖

𝑓𝑙𝑜𝑜𝑟(𝒒)
𝑐𝑒𝑖𝑙(𝒒)

𝑐𝑒𝑖𝑙(𝒒)

𝒘 = 𝒖

𝑐𝑒𝑖𝑙(𝒒)
𝑓𝑙𝑜𝑜𝑟(𝒒)

𝑓𝑙𝑜𝑜𝑟(𝒒)

𝒘 = 𝒖

𝑓𝑙𝑜𝑜𝑟(𝒒)
𝑓𝑙𝑜𝑜𝑟(𝒒)

𝑐𝑒𝑖𝑙(𝒒)

𝒘 = 𝒖

𝑐𝑒𝑖𝑙(𝒒)
𝑐𝑒𝑖𝑙(𝒒)

𝑐𝑒𝑖𝑙(𝒒)

𝒘 = 𝒖

𝑓𝑙𝑜𝑜𝑟(𝒒)

𝑐𝑒𝑖𝑙 𝒒

𝑓𝑙𝑜𝑜𝑟(𝒒)

𝒘 = 𝒖

𝑐𝑒𝑖𝑙(𝒒)
𝑓𝑙𝑜𝑜𝑟(𝒒)

𝑐𝑒𝑖𝑙(𝒒)

4 Interpolate {𝒘 … 𝒘 } along 𝑥 direction to get {𝒘 … 𝒘 }

𝒘 = 𝒘 (1 − 𝑥) + 𝒘 𝑥 𝒘 = 𝒘 (1 − 𝑥) + 𝒘 𝑥

𝒘 = 𝒘 (1 − 𝑥) + 𝒘 𝑥 𝒘 = 𝒘 (1 − 𝑥) + 𝒘 𝑥

5 Interpolate {𝒘 … 𝒘 } along 𝑦 direction to get {𝒘 , 𝒘 }

𝒘 = 𝒘 (1 − 𝑦) + 𝒘 𝑦 𝒘 = 𝒘 (1 − 𝑦) + 𝒘 𝑦

6 Interpolate {𝒘 , 𝒘 }along 𝑧 direction to get 𝒘

𝒘 = 𝒘 (1 − 𝑧) + 𝒘 𝑧

7 Output: Interpolated vector 𝒘 at point 𝒒 in the vector field u

In trilinear interpolation, the direction and magnitude the interpolated vector

at the query point 𝒒 is estimated by the 8 closest vectors. Once the data is loaded

into the memory, linear interpolation is performed in a step-by-step manner that

covers all 𝑥 , 𝑦 , and 𝑧 directions. However, as such interpolation involves 3-

dimensional interpolation of a 3-dimensional vector field, this composition

operation will have to be repeated 3 times for 3 separate vector components, each

demanding the processor to loop through the array for pixel/voxel-wise

interpolation. Such heavily looped and repeated workflow can not only demand

59

substantial computation throughput, but also require considerable memory

bandwidth between the processing units.

3.3.2.4 Velocity field update

Finally, diffeomorphic log-demons continuously updates the velocity field

until the resultant deformation field converges onto an optimal solution. The

updates are governed not only by the pixel/voxel intensity difference, but also the

intensity gradients between the fixed image and the immediate moving image.

Algorithm 3.5 Pseudocode showing the key computation procedure for vector
field update, which contains a considerable amount of branching and arithmetic
computations.

Pseudocode: Compute velocity field update

1 Input: Fixed image 𝑭, Immediate moving image 𝑴,

 Registration Parameter 𝜶

2 Compute gradient of 𝑭 and 𝑴 as ∇𝐅 and ∇𝐌

3 For each voxel 𝑭 and 𝑴 in 𝑭 and 𝑴 do

4 Compute voxel-wise difference of 𝑭 and 𝑴 as 𝑫 :

𝑫 ← 𝑭 − 𝑴

5 Compute the Hadamard product of ∇𝐅 and ∇𝐌 as 𝑸:

𝐐𝐢 ← ∇𝑭 × ∇𝑴

6 Compute the magnitude of ∇𝐌 as norm(𝛁𝑴):

norm(𝛁𝑴) ← ∇𝐌 𝐱
𝟐 + ∇𝐌 𝒚

𝟐 + ∇𝐌 𝒛
𝟐

7 Compute update magnitude 𝒑: 𝒑 ←
𝑫

(𝛁𝑴) ×

8 If norm(𝛁𝑴) = 0 and 𝑫 = 0 do:

9 Handle extremities: 𝒑 ← 0

10 If Hadamard product 𝑸 < 0 do:

11 Invert the direction of update: 𝒑 ← −𝒑

12 Compute velocity field update 𝒖: 𝒖 ← ∇𝐌 × 𝒑

13 Output: vector field update 𝒖

60

Algorithm 3.5 presents a workflow of a commonly used field update

method. As shown in the workflow, the computation for the velocity field update

can be complicated. Gradient decomposition in 3D requiring access to the intensity

values of direct adjacent pixel/voxels, which will incur strided memory access

along the y-/z-directions. Generation of the update field also involves several

branching operations that can be expensive when performed by GPU. Besides,

computing the updated velocity field involves the complicated vector field

composition as described in Section 3.3.2.3 again. As a result, despite the velocity

field update operations does not require much computation power nor computation

time, there is ample amount of optimization work that can be done to improve the

computation efficiency.

3.4 Computation optimization

With the computation bottleneck of diffeomorphic log-demons being

presented in the previous sections, this section provides an in-depth analysis of the

arithmetic and memory demand of the bottlenecking operations. With such demand

being thoroughly understood, one can resolve the computation demand by utilizing

different abilities of the GPU to achieve fast computation.

3.4.1 Gaussian smoothing

Section 3.3.2.1 has already shown that the computation of Gaussian

smoothing is inherently parallelizable, which can be enhanced by the ability of

parallel processing by GPU. However, the smoothing operation requiring stencil

memory access pattern (Section 3.3.1.4) demands data fetching from neighboring

elements. This fetching procedure can be memory intensive, and it may take up

substantial bandwidth. As a result, even with a fully-parallelized implementation of

Gaussian smoothing on the GPU, this computation process can still be memory

bound, due to simultaneous access to the memory by numerous threads. Due to

overlapping of adjacent convolution kernels, the data are often recurrently fetched

and accessed by a number of threads which can lead to extensive memory

bottleneck. Therefore, there is a need for the processor to share the data among

different threads within a thread block for more efficient computation.

61

Figure 3.6 On-chip high-bandwidth shared memory used as a user-managed
cache. To avoid unnecessary global memory transection, the required data are pre-
fetched onto the shared memory. Such data can be swiftly accessed and reused by
numerous CUDA cores. The final results are stored back to the global memory after
the computation.

In this regard, the GPU’s on-chip shared memory can allow data to be pre-

fetched onto the shared memory for data reuse. The high-bandwidth data channel

between the processing elements and the shared memory allows data to be

load/stored at a substantially faster manner. This ability of fast load/store of

memory among all threads in a thread block facilitates data reuse. Figure 3.6

outlines the basic idea of using the high-bandwidth shared memory as a user-

62

managed cache. As the result of such caching, data can be read from the shared

memory without any substantial overhead or memory contention. Any intermediate

results can also be stored for subsequent fast access by any other threads.

Given the intuitive algorithm of multi-pass Gaussian smoothing, a natural

way to perform the computation is to instantiate thread blocks with their size equal

to the x-/y-/z- dimensions of the image. With such block dimension, the neighboring

row/column/slice data can be loaded onto the shared memory at once for fast

convolution. However, such arrangement in thread blocks can set back memory

transaction efficiency when the global memory is accessed in a strided pattern. In

particular, during the y- and z-pass of the convolution. As the global memory is

optimized to perform 128-bytes coalesced memory transaction through the L1 and

L2 cache, much of the memory bandwidth will be under-utilized if there is only a

fraction of data being used by the threads.

Figure 3.7 Thread block management and memory coalescence in GPU
multi-pass convolution. In the unmanaged arrangement, the slender thread blocks
along the y- and z-directions breaks x-direction memory coalescences (red blocks).
Careful management of the thread block dimensions ensures memory coalescence
for efficient memory transaction (yellow blocks).

63

To this end, one can enforce coalesced memory access to maximize the

efficiency of memory transactions between the global and shared memory space.

This can be achieved by instantiating the thread block with appropriate x-dimension

in the y- or z- pass of the implementation (Figure 3.7). For example, if the

convolution is performed on an array of single-precision elements (i.e. 4 bytes), it

is often a good choice to instantiate thread blocks with x-dimension of 32. As such,

simultaneous fetching of 32 single-precision float elements from a warp can fulfill

128-byte L1 memory coalescence. Full utilization of the memory bandwidth can

therefore be achieved. However, as the CUDA architecture to-date supports a

maximum of 1024 threads being launched per thread block, one may encounter the

problem that the number of threads required exceeds the maximum allowable

number of threads supported by CUDA. This can be resolved by launching extra

thread blocks along the y- or z-direction, but the overlapping convolution areas

between two adjacent thread blocks requires redundant memory transactions, which

hampers efficiency. Launching extra thread blocks can also incur additional kernel

overheads.

Figure 3.8 Code snippet showing instruction-level parallelism for efficient
thread reuse. Computation for multiple voxels can be conducted by a single thread
without the need of launching additional thread blocks.

64

Instead of launching and initializing extra thread blocks for the computation,

instruction-level parallelism can be employed to allow the threads to handle

multiple pixel/voxels (Figure 3.8). By parallelizing the computation at the

instruction-level, one can avoid extra latency brought by launching any additional

thread blocks. Furthermore, as different components of the 3D vector field are

temporally coherent (i.e. they have to be fetched altogether), it is better to store such

coherent data in an array-of-structure (AoS) format instead of the conventionally

used structure-of-array (SoA) format. It is because fetching different components

stored in SoA require the memory controller to transverse across different memory

locations. Such memory access to discrete regions of the memory can upset

standard memory caching. Thus, incurring additional memory latency that

precludes fast computation. Also, because of the discrete memory address of the

data, multiple instructions will also have to be issued by the compiler to load all

required variables. As the result, the read/write efficiency will be further hampered

due to fetch/decoding overheads of these extra instruction cycles.

Figure 3.9 Multiple instruction cycles required to access data stored in SoA
(top); in contrast, accessing data stored in AoS only require a single instruction
cycle (bottom).

By reorganizing the 3-dimensional data into an array-of-structure formant,

different components can be stored in a coalesced structure which is capable be

fetched under a single instruction (Figure 3.9). In this regard, the vectorized data

65

type float4 consisting of 4 coalesced 32-bit floating point variables is ideal to

accommodate the magnitude and individual component values of a vector. In the

PTX instruction set it is observable that the compiler will automatically optimize

the fetching instruction from multiple ld.global.f32 instructions to a single

ld.global.f32.v4 instruction, which can be considerably faster.

As an added plus for storing data in AoS format, the required number of

threads in the x-direction to achieve the 128-byte memory coalescence at L1 can

also be reduced (Table 3.2). Moreover, as the memory controller is able to fetch

the all elements in a vectorized data using a single instruction, the overall

transaction request can be reduced to alleviate data contention on global memory.

Table 3.2 The required number of threads in x-direction to enforce 128 Byte
global memory transaction coalescence for various float data types in AoS format.

Data type
Size of the data

type (bytes)
Dimension of thread block in x-direction required to
achieve 128-byte memory coalescence

float 4 32

float2 8 16

float3 12 (unable to achieve 128B coalescence)

float4 16 8

In all, to achieve optimal computation efficiency for Gaussian smoothing,

one has to effectively utilize the GPU’s shared memory as a user managed cache

for data reuse. In that regard, the dimensions of the thread blocks launched for

parallel computation shall be carefully managed. Besides, vectorizing the

temporally coherent data into AoS format can also assist global memory bandwidth

utilization. As a result of these memory optimization strategies, contention on the

memory controller can be alleviated. By effectively utilizing the memory

bandwidth, it is possible to perform Gaussian smoothing in a swift manner using

the GPU.

3.4.2 Vector field composition

Regarding the large memory and computation throughput in image warping

and vector field composition, the GPU can utilize its ability of parallel processing

66

to provide the computation throughput required. As depicted in Section 3.3.2.3, the

composition process is entirely pixel-independent, of which it is capable to be

parallel processed without any data racing conditions. However, even with the

subroutine being able to be parallel processed, a large number of gather operations

(Section 3.3.1.2) during the interpolation of two non-parametric vector fields can

incur substantial latency. Moreover, as linear interpolation requires the nearest 8

nearest vectors as the input, this gather operation will also involve a stencil pattern

in 3D, thus incurring memory strides along the y- and z- directions. Such stencil

access from random locations can again result in non-sequential memory access on

the GPU memory.

As this gathering operation involves random memory address, it is

impossible to restore memory coalescence solely by resizing the thread block

dimensions. In addition, the intensive arithmetic computation involved in field

interpolation can further hamper computation efficiency. To this end, the GPU’s

texture hardware pipeline can be effectively used to efficiently handle both the

memory and the arithmetic demand of the operation. To address the non-sequential

access on memory, GPU’s texture cache on the streaming multiprocessors are

optimized for fetching memory in 3D, which can achieve fast requisition of

neighboring data values. Therefore, fast fetching from spatially-coalesced elements

for interpolation can be achieved. By binding specific regions on the global memory

to define a texture object, it is possible for the texture API to automatically manage

the complicated memory transactions involved. Once the texture fetching

instruction is called, the hardware can automatically load all essential data and

perform fast texture filtering.

The texture API requires strict memory address alignment. Contrast to the

global memory of which the memory address alignment can be resolved by L2

caching, L2 coalescing is not supported by the texture memory. Instead, the texture

memory requires data in each row to be fetched are properly aligned on the 128-

byte L2 cache lines. However, as the vectorized 3-dimensional arrays stored in a

row-major manner can be of any size, one cannot guarantee the address are properly

aligned for every set of the input image in the linear memory (Figure 3.10). Such

misalignment can be tackled by padding (append) the memory at the end of each

67

row. However, manually padding the memory to enforce alignment will result in a

non-sequential address index, which will be confusing and counterinitiative to most

programmers.

Figure 3.10 Strided access to linear memory versus managed memory.
Multiple cached memory access may be required for reading the misaligned data
stored in linear memory (left). In contrast, spatially localized elements stored in
managed memory can be efficiently cached and accessed with the automatically
aligned memory address (right).

To this end, GPU possesses the ability to manage the 3-dimensional memory

arrays using special sets of “pitched” memory pointers for fast data fetching through

an automatically managed memory array. Through the pitched memory pointer, the

device to automatically allocate and enforce memory alignment for fast access of

3D spatially localized memory elements. Such fast access to 2/3D spatially

localized memory by the graphics pipeline cannot be supported by the ordinary

linear array. Once the texture data are fetched to the graphics pipeline, the GPU’s

texture mapping unit is able to swiftly perform the interpolation (known as “texture

filtering”) through its hardwired computation units. However, the accelerated

interpolation does come at the cost of reducing interpolant precision (9-bit fixed

point), which will still be sufficient in most scenarios in intensity-based image

registration due to the limited data range (usually 12-bit unsigned integers) provided

by most medical images.

68

3.4.3 Velocity field update

Section 3.3.2.4 has presented the major computation resides in 3D gradient

decomposition of the fixed and moving image, as well as the composition of

velocity update field. Similar to Gaussian smoothing, a stencil pattern accessing the

von Neumann neighborhood is required in 3D gradient decomposition. Likewise,

the 3D vector field composition required to update the velocity field is identical to

the operations presented in Section 3.3.2.3. Besides, the heavily branched

computation required in generating the update field can also impose stall the

execution of warps on a GPU.

As the stencil memory access pattern involved in gradient decomposition

similar to Gaussian smoothing. The operation can be optimized using similar data

reusing techniques which are presented in Section 3.4.1. Similarly, the immense

computation load involved in vector field composition can also be resolved using

the GPU’s texture hardware as presented in Section 3.4.2. Additionally, any

computation bottleneck brought by instruction branching can be resolved by code

optimization. Such optimization can be achieved by decomposing a complex branch

into a simpler control flow operation, which allows the processor to access the

relevant results that are computed preemptively. As a result of the decomposed flow

operation, the compiler can automatically optimize for the thread divergence to

completely mitigate any overhead.

3.5 Conclusion

In this chapter, I have introduced different performance-aware

programming methods on GPU in Chapter 3.2. I have also presented possible

access patterns that can occur within the massively parallelized computation in the

GPU in Section 3.3.1. In fact, there are some potentially complicated access patterns

including gather/scatter, stencil or even random memory access incurred by the

diffeomorphic log-demons algorithm. In response to those potentially bottlenecking

memory transactions, the GPU possess different strategies to resolve the

transactions efficiently.

69

With such GPU memory accessing schemes in mind, we have looked into

the algorithm breakdown of diffeomorphic log-demons in an attempt to find out the

bottlenecking operations in Section 3.3.2. Particularly, we found that two of the

operations, namely Gaussian regularization and vector field composition, are

bottlenecking the whole registration process. By revisiting the hardware

microarchitecture of the GPU, I have proposed to exploit the memory access

patterns and texture hardware to resolve the demanding computations in Section 3.4.

As a result, different performance-aware optimization strategies are proposed,

which will be implemented and tested in Chapter 4.

70

Chapter 4

GPU-BASED IMPLEMENTATION OF

DIFFEOMORPHIC LOG-DEMONS

4.1 Introduction

The computation bottleneck of the diffeomorphic log-demons algorithm has

been identified in the previous chapter. As presented in Chapter 3.4, a number of

optimization strategies can be adopted on the GPU to resolve the major computation

bottleneck that precludes fast computation. This chapter evaluates the optimization

effectiveness of such strategies. To effectively visualize the enhancement by such

performance-aware computing techniques, I have performed individual testing on

each blocking operations of diffeomorphic log-demons (Section 3.3.2). Multiple

implementations of these bottlenecking operations will be presented and compared

to the run-time required by the CPU. Finally, the optimal implementations of

different computation modules are assembled into a working, optimized GPU

implementation of diffeomorphic log-demons for validation in terms of computation

enhancement.

4.2 Major performance limiter

To apply performance-aware programming techniques onto the

computation kernel, knowing which part of the GPU is bounding the computation

is essential. Indeed, there are numerous reasons that can hold back the GPU’s

computation performance. Instead of exhausting the list of bottlenecking reasons,

they are categorized into 3 major performance-bounding factor, namely compute-

71

bound, memory-bound, or latency-bound. Using the NVidia visual profiler (nvvp)

that comes with the CUDA toolkit, one can identify the performance limiter by

looking into the performance metrics. In fact, implementing performance-aware

techniques on GPU is an iterative process, which involves numerous iterations of

profiling and optimization of the GPU kernel. Once the performance-limiting factor

is identified and pinpointed, it is required to take corresponding actions to resolve

such issue.

Table 4.1 Key metrics shown in the profiler for the identification of
performance limiter in a GPU kernel.

Performance limiter Key identifying metrics Warp stall reasons

Computation-bound High arithmetic pipe utilization Execution dependency

Memory-bound High memory bandwidth usage, Memory throttle

Latency-bound
High L2 Transactions per request
Low Memory-computation overlap

Memory dependency

Table 4.1 presents the key identifying metrics of the three major types of

performance limiters shown by the CUDA profiler. As depicted by the name of the

performance limiter, the performance of compute-bound kernel is limited by the

immense workload that saturated the multiprocessors. This can be introduced by

the workload exceed the theoretical operations per second (OP/s) of the hardware,

or because the algorithm is not optimized. Similarly, memory-bound situations can

be invoked by hardware limit, when the required memory transaction exceeds the

hardware capability. Finally, latency-bound kernels are not bounded by the memory

or computation hardware capability. Instead, it is introduced by the latencies that

present in computation and/or memory transactions due to poor memory transaction

pattern, or poor overlap between the computation and memory operations.

4.2.1 Compute-bound and memory-bound kernels

Compute-bound kernels can be identified by high compute throughput with

respect to the hardware limit. A general rule-of-thumb of identifying compute-

bound kernels is the achieved compute throughput is over 60% of the hardware

limit. Similarly, memory-bound kernels can be identified if the profiler the memory

throughput is over 60% of the theoretical memory bandwidth. Compute-bound and

72

memory-bound kernels are generally caused by high utilization of the device. As

such, if the profiler indicates signs of the kernel are being bounded by compute- or

memory-related issues, the programmer can affirm that a considerable amount of

computation has been done efficiently. However, there is also the possibility that

extra computation effort was spent due to the algorithm is not optimized, or due to

unnecessary memory transactions that bottlenecked the kernel. Therefore, the first

step to resolve for compute bound kernels is to always look for ways to improve the

compute efficiency.

For example, enabling the --use_fast_math compiler option enables the

GPU device to utilize the more optimized fast math library for faster execution of

mathematical functions such as 𝑠𝑖𝑛 , 𝑠𝑞𝑟𝑡 and 𝑙𝑜𝑔𝑓 , of which they can be

computationally expensive. This compiler option enables the multiprocessors to

further off-load such expensive computation to the special function unit in each

multiprocessor for faster computation with slightly lower accuracy. While the speed

difference has not been reported in the CUDA programming guide to-date, it has

been reported that using the --use_fast_math options alone can, not only reduce the

number of instructions generated for the computation, but also reduce the latency

of performing such computation.

Furthermore, thread divergence is also another important factor to be

tackled when the kernel is bound by computation. Under the SIMT architecture,

warps of 32 threads will have to be executed together. Thread divergence will be

observed if the threads within a warp take different execution path due to

divergence in the control flow. As such, upon executing a divergent warp, both

execution paths will have to be executed, with some threads being deactivated. Thus,

resulting in a low thread execution efficiency. In such regard, it may be wise to

decompose any complex execution branch, or group such diverged threads into a

single warp for efficient execution.

73

4.2.2 Latency-bound kernels

Contrary to compute- or memory-bound kernels, latency-bound kernels can

be identified by low compute and memory throughput compared to the hardware

limit of the device. As a rule of thumb, the kernel can be classified as latency-bound

if the kernel is not bound by either compute or memory throughput using the 60%

utilization rule. Computation latency is one of the major reasons that can lead to

under-utilization of the device. Normally, the CUDA hardware can automatically

mitigate such memory/compute latency by concurrently executing multiple warps

under SIMT. However, if there is a great amount of latency in a kernel of which

they that cannot be hidden by warp concurrency, the CUDA device will be stalled

and therefore being bounded by latency.

It is often important to reemphasize fetching data from the global memory

costs hundreds of GPU cycles, which is approximately 100x costlier than

performing basic arithmetic operations [105]. This extended time required for the

SM to access the global memory incurs much latency. Given memory operations

can be ubiquitous throughout the kernel run time, it is the most common reason that

causes latency bottleneck. Thus, being bound by memory latency is one of the most

common reasons for most GPU kernels to stall. To ensure memory transactions are

performed efficiently is the key to deal with latency-bound kernels. Chapter 3.4 has

presented a number of ways to ensure full utilization of the memory bandwidth. In

all, it is of the utmost significance of ensuring coalesced memory read on the global

memory, as well as properly reusing the data by the shared memory.

However, it is not uncommon to discover the kernels are still bounded by

memory latency, even with all precautions being taken. In that sense, neither the

computation pipelines nor the memory bandwidth was bottlenecking the

computation. Such situation is usually observed in small kernels with low warp

concurrency with relative light computation. Besides, latency-bound kernels are

also commonplace when thread barriers are extensively used to prevent any data-

racing conditions within a thread block. In this light, one can manually decrease the

thread-level parallelism by reducing the block size, but increase the block-level

concurrency to allow the GPU to run more blocks at once in order to hide such

latency (Figure 4.1).

74

Figure 4.1 Concurrent execution of multiple thread blocks on a single
streaming multiprocessor. This block-level concurrency can mitigate memory
latency.

4.3 Optimization results for bottlenecking operations

As presented in Chapter 3.4, the two bottlenecking operations of

diffeomorphic log-demons are: (1) Gaussian smoothing involved in regularization

of the update field and velocity field; and (2) vector field composition required in

the scaling and squaring methods for computing the deformation field. As the

diffeomorphic log-demons algorithm is iterative in nature, these bottlenecking

operations are repeatedly called throughout the registration process. Because the

operations can incur a vast amount of different memory access patterns that

preclude fast computation, several optimization strategies have been proposed in

Chapter 3.4. Such strategies aim to resolve these computation hurdles with the aid

of different hardware features in GPU. In this section, I will present the optimization

results for the bottlenecking operations that presented previously.

4.3.1 Testing platform

To illustrate the importance of different performance-aware programming

techniques, I have conducted a series of experiments on the bottlenecking

operations. These operations, namely Gaussian smoothing and vector field

composition, are the major bottleneck in diffeomorphic log-demons. Most of the

75

computation time has been spent on these operations. In that light, one could

achieve fast registration if these computation bottlenecks are resolved. The

experiments also allow quantification of computation enhancement brought by the

performance-aware computing techniques. All experiments were conducted using

a vector field/deformation field generated by a pre-deformed 3D MRI brain imzage

using TPS. To investigate the effect of varying image dimensions on the

computation, the dataset was up/down-sampled to 7 separate sets of images with

resolution ranging from 1 × 10 to 3.6 × 10 voxels. Figure 4.2 shows the pair of

input image sets used for testing of the bottlenecking operations.

Figure 4.2 Dataset used to evaluate the optimization performance at 3
distinct slices. Pre-/post- deformed brain MRI images were used as the
fixed/moving images of the registration. The generated velocity vector field from
the fixed/moving image pair is shown on the right with warmer color indicating
higher vector magnitude.

The GPU-related experiments were conducted by a PC with an i7-4790 CPU

running at 3.6GHz equipped with an NVIDIA GTX Titan X GPU. The GTX Titan

X is a high-end GPU which features 24 streaming multiprocessors and 12GB global

memory. To avoid interference due to host-device memory transaction overhead,

all necessary data are transferred in prior to the experiments in this section.

76

4.3.2 Optimization for Gaussian smoothing

As presented in Section 3.4.1 the GPU’s shared memory is able to mitigate

much of the memory transaction latency by achieving effective caching. Using the

GPU’s shared memory to compute for Gaussian smoothing consist of a 3-phased

process: (1) pre-fetch all necessary data onto the shared memory; (2) once the data

are loaded onto the shared memory, then each thread compute the weighted sum of

all elements within the Gaussian kernel along the direction of multi-pass

convolution; and finally (3) when all the computation is completed, the threads store

back the temporarily stored results from the register to the shared memory, and

subsequently store the result back to the shared memory. To avoid data-racing

conditions, these computations have to be performed in a step-wise manner. The

data on the shared memory must be initialized prior to computation. Any temporary

results must wait for all computation in a block to finish before storing them back

to the shared memory. Step-wise computation can be assured by using

synchronization instructions (i.e. calling __syncthreads() in the kernel) at the

end/beginning of each phase to avoid indeterminstic output due to any potential

racing conditions.

To systemically observe and evaluate the effectiveness of the optimization,

the computation time on the GPU is compared against the time of a single-threaded

CPU implementing the same algorithm. In particular, multi-pass Gaussian

smoothing on a vector field stored in SoA format is performed by three

implementations on GPU, namely: (i) naïve implementation of multi-pass Gaussian

smoothing without any data reusing (global memory only); (ii) reusing the data with

shared memory but without enforcing memory coalescences (shared memory); and

(iii) reusing the data with optimized global-shared memory transaction (shared

memory /w coalesced transactions). The variance (σ) of the Gaussian kernel was

set to 3, which is a typical value used by diffeomorphic log-demons.

77

Figure 4.3 Computation time required to perform Gaussian smoothing on the
velocity fields at 7 levels of resolutions by CPU and the 3 implementations on GPU.
The GPU implementation that ensures data coalescence during shared memory
initialization significantly outperforms other implementations.

Figure 4.3 presents the computation time required to perform Gaussian

smoothing. It is obvious that the CPU struggles to provide enough computation

throughput for the operations. As shown by the black dotted line, the required time

for computation using CPU ranges from 100ms for the smallest test vector field

dimension (104×125×104) to 3500ms for the largest input vector field dimension

(313×376×313). In contrast, the GPU can perform the computation significantly

faster compared to CPU, even without any optimization. The most naïve approach

of using GPU can achieve the same computation within 5ms to 400ms depending

78

on the resolution. Such computation speed-up is achieved by the massive

computation throughput by the GPU due to SIMT. However, as discussed in

previous chapters, the computation bottlenecks do not solely reside in the

computation throughput, but also in the memory latency between the global

memory and streaming multiprocessors. With the introduction of shared memory

to alleviate the memory bandwidth demand, a further reduction of computation time

is observed. This reduction can be visualized by the blue line, which indicates the

GPU requires 0.9ms to 35ms to compute for the Gaussian smoothing. Further

computation improvements can be yielded by managing the thread block

dimensions to enforce memory read coalescence. As shown by the green line the

computation time can be further reduced to 0.5ms – 13.5ms.

Breakdown of the computation time consumed by different convolution

passes in the sub-optimal and optimal implementation of Gaussian smoothing is

presented in Figure 4.4. It has been observed that the time consumed by the z-pass

smoothing on the sub-optimal implementation takes up the majority of the

computation runtime. The time required is significantly worsened when the input

dimensions increase to 26M voxels (278×334×278 voxels). At this input image

dimension, fetching data onto the shared memory across the z-direction requires

accessing the global memory with a large stride of 278×334×sizeof(float)=363KB

which will exceed the maximum caching capacity of that an L2 cache chip can

provide. Therefore, much memory latency will be introduced as the memory

controller attempt to fetch the requested data from the neighboring L2 chips. As

such, not only the memory bus is under-utilized due to loss of memory coalescence,

but also each transaction request from/to the global memory will incur additional

latency due to cache misses. Conversely, with coalesced memory transaction in the

implementation with managed thread block size, such memory latency can be

partially mitigated due to a full utilization of the memory bus.

79

Figure 4.4 Breakdown of computation time by various passes in (a) sub-
optimal implementation; and (b) optimal implementation of multi-pass Gaussian
smoothing process. The z-pass in the sub-optimal implementation takes up
considerable computation runtime.

80

Fetching the data with the across the y-direction shares the same idea.

Despite the algorithm will only require striding through the memory with relative

small step of 278×sizeof(float) = ~1KB , the bandwidth under-utilization due to loss

of memory coalescence can still hamper data transaction efficiency. Such

inefficient memory transaction can be reflected by the run-time discrepancies

between the sub-optimal and the optimal implementation of the algorithm.

Figure 4.5(a) presents the derived computation speed-up of different

implementation on GPU compared to a single-threaded CPU, which can reveal a

clearer picture on the computational enhancement. Figure 4.5(b) indicates the

kernels are not limited memory bandwidth, as the achieved bandwidth sits well

below the maximum allowable bandwidth of the GPU (120GB/s out of 336.5 GB/s).

Instead, the performance limiter resides in memory latency. Regardless, the naïve

GPU implementation resulted in a 20× computation speed-up initially but falls off

when the input dimension increases. The sub-optimal implementation using shared

memory in general outperforms 6-10 times better than the naïve implementation. It

showed around ~140× computation speed-up but falls to ~100× upon high input

dimension like the naïve implementation. Let aside the abnormality of

computational speed-up at low input dimension, the optimal implementation, which

enforces memory coalescences, perform 1.7-2.2× better than the sub-optimal GPU

implementation. Moreover, the performance does not fall off upon high input

dimension, but instead leveling off at ~250× speed-up. A similar pattern is observed

in Figure 4.5(b), where naïve implementation that only uses the GPU’s global

memory have under-utilized the memory bandwidth due to repeated, un-coalesced

memory access. The sub-optimal implementation using shared memory utilized

5-10× more bandwidth than the naïve implementation, and the optimal

implementation further utilized 1.7× more global memory bandwidth than the sub-

optimal implementation.

81

Figure 4.5 (a) Effective computation speedup relative to CPU; and (b)
Achieved global memory bandwidth by various GPU implementations at 7 different
input resolutions.

82

Figure 4.6 Correlation between computation speed-up and achieved global
memory bandwidth. Significant correlation (R=0.9835) suggests the sub-optimal
implementations are bounded by the memory latency which causes bandwidth
underutilization.

Figure 4.6 illustrates significant correlation between the utilized memory

bandwidth and the achieved computation enhancement. Such correlation further

suggests the computation of Gaussian smoothing is bounded by the memory latency

caused by suboptimal memory access schemes. However, it is also noticeable in

Figure 4.5(a) that, for the optimal implementation, the computation speed-up is

lower when the input vector field dimension is small (~1M voxel) while the

achieved memory bandwidth utilization remains constant. This suggests that the

computation kernel has been bounded by the kernel’s computation instead of

memory latency. In fact, the memory latency can be hidden by concurrent warp

execution under SIMT. However, at low vector field dimension, there will be

insufficient number of warps eligible for the streaming multiprocessor to execute

concurrently. Thus, the lack of eligible warps stalled the device which undermined

computation efficiency. At higher vector field resolution, there will be more warps

being eligible for concurrent execution by the streaming multiprocessor which can

be used to effectively hide part of the memory latency.

83

4.3.3 Optimization for vector field composition

Similar to the experiments performed on Gaussian smoothing, I have

conducted experiments on various implementations of vector field composition to

quantify the effectiveness of computation enhancement. Again, the run-time of

single-threaded CPU will be used as the baseline of the computation. As depicted

in previous sections, the CPU will not be able to provide sufficient computation

throughput. Three different implementations will be tested: (i) manual

implementation using trilinear interpolations on the global memory (manual

interpolation); (ii) using texture hardware to perform interpolation on a vector field

stored in SoA (texture interpolation); and (iii) using texture hardware interpolate

the vector fields in AoS (vectorized texture interpolation).

Figure 4.7 presents the computation time required to perform a self-

composition on CPU and GPU. Similar to the investigations in the experiments

performed on Gaussian Smoothing, the CPU struggles to provide sufficient

computation throughput to support the vector field composition, especially at a

large input dimension. Even with the lowest vector field resolution (104×125×104),

the CPU still requires 133ms to complete the composition process. Computation

time also increases linearly with respect to the number of voxels. At highest testing

resolution (313×376×313) the CPU requires over 3500ms to complete a single

composition operation.

84

Figure 4.7 Computation time required for self-composing a velocity field on
CPU and the 3 GPU implementations at 7 levels of vector field resolution.

On the GPU, all 3 implementations achieved significant performance

enhancement compared to CPU. This suggests that the GPU can provide the much-

needed computation throughput for the operation. Contrary to the experimental

results obtained in Gaussian smoothing, the performance enhancements obtained

among different GPU implementations of vector field composition does not show

as large variations. Particularly, all of the implementations require around 1ms to

self-compose the smallest test vector field, and 9-11ms to self-compose the largest

vector field. Despite the three implementations showed similarity in terms of run-

85

time, they still show deviations in terms of achieved computation speed-up as

presented in Figure 4.8.

Figure 4.8 Achieved computation speed-up relative to CPU by the 3 GPU
implementations of vector field self-composition.

Figure 4.8 presents the achieved computation speedup by different GPU

implementation compared to CPU. As illustrated by the red line, manual

interpolation using native computation instruction on GPU struggles to achieve a

very high-performance enhancement at low resolution. However, as the input

dimension increases, the performance slowly increases until being leveled off at

around 300× speed-up. Besides, both texture memory implementations showed a

very high-performance speed-up at lower input resolution. However, the speed-up

achieved by both texture implementations falls off when the input dimension

increases. For the implementation without AoS, the computation speed-up level-off

from ~440× to ~300× at 10M voxels. Texture implementation with AoS shows

significant improvement. Despite the speed up also levels off at 10M voxel for the

86

texture implementation with AoS, the improvements fall from~470× to ~380×,

which is a 10-20% performance increase.

Although the GPU implementations of texture interpolation showed

significant (>250×) computation improvement, there are still a few questions that

are left unanswered by Figure 4.8 which have to be accounted for, namely:

1. The reason for the increased performance for both texture memory

implementations memory at low resolution;

2. The causes for the performances gain to stabilize and level off at higher

input dimensions; and

3. The increased performance of the native interpolation implementation upon

the increase of input vector field dimension.

To resolve such questions, one has to resort to micro-benchmark the

performance of GPU kernels. In performance-aware programming, it is often

important to identify the bottlenecking by micro-benchmarking the computation. In

fact, the profiler has shown that most of the kernels are indeed bounded by the

global memory bandwidth. As presented in Section 2.4.1, any memory access to the

global memory is cached by both L1 and L2 caches. Therefore, the term

“bottlenecked by global memory bandwidth” can imply bottlenecking due to

insufficient L1-L2 bandwidth, insufficient L2-GDDR bandwidth, or both. In this

light, I looked into the achieved bandwidth between the L1 and the L2 cache, as

well as the bandwidth between the L2 cache and global memories for these

implementations.

87

Figure 4.9 Bandwidth statistics obtained by NVidia profiler. (a) Achieved
L2-global memory bandwidth; (b) achieved L1-L2 memory bandwidth for the 3
implementations of vector field composition. The benchmark for distinguishing
bandwidth or latency bound kernels (200 GB/s for L2-global memory; 470 GB/s
for L1-L2) are also indicated.

88

Figure 4.9 presents the achieved memory bandwidth involved in the global

memory transaction. The L2-Global memory bandwidth shows an overall good

utilization for all 3 implementations, but there is a significant (>10%) better

utilization on the L2-global memory bandwidth for the vectorized texture

interpolation implementation (green curve).

The reason for the increased performance for both texture implementations

at low resolution can be explained by the achieved bandwidth between the L1 and

L2 caches. As shown in the L1-L2 bandwidth curve, there is a significantly higher

effective bandwidth achieved when the vector field resolution is low. This can be

accounted by the fact that the L2 cache can accommodate a larger portion of data.

Therefore, the increased L2 hit rate facilitates memory performance. Moreover,

lower input resolution also implies a smaller memory stride for any for texture

hardware-managed memory fetches.

To address the disparity between the texture implementations with and

without AoS, particularly at high input resolution, I looked into the memory

throughput of the device. The theoretical L2-Global memory throughput of the

device, defined by 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 × 𝑏𝑢𝑠 𝑤𝑖𝑑𝑡ℎ, is found to be

 7𝐺𝑏𝑖𝑡/𝑠 × 384 = 2688𝐺𝑏𝑖𝑡/𝑠 = 336 𝐺𝐵/𝑠 (10)

Therefore, the 60% utilization rule threshold can be calculated:

 336𝐺𝐵/𝑠 × 60% = 205𝐺𝐵/𝑠 (11)

As such, the benchmark for distinguishing the kernel to be bandwidth bound or

latency bound is defined. By applying such rule, one can conclude that the

vectorized texture interpolation implementation was bottlenecked by the L2-Global

memory throughput regardless of input dimension. However, for the texture

implementation without AoS, despite having identical L1-L2 bandwidth usage, the

L2-Global memory bandwidth showed under-utilization (blue curves in Figure

4.9a). As a matter of fact, due to the lack of vectorization, there will be a

significantly more transaction request on the global memory. These extra

89

transaction requests can cause contention on the memory controller, thus resulting

in the under-utilization of the global memory bandwidth.

Regarding the increasing performance of the native interpolation

implementation upon the increase of input vector field dimension, I have to look

into the L1-L2 memory bandwidth utilization. As depicted in Figure 4.9b, despite

the implementation of vector field composition using manual interpolation have

underutilized the L2-Global memory bandwidth, a very high L1-L2 bandwidth

utilization is observed. Such discrepancy in bandwidth utilization indicates a low

L1 hit rate with a very high L2 hit rate, which is commonplace when numerous

threads attempt to stride through the memory from indexed memory locations.

Due to the non-parametric property of the vector field, it is not possible to

employ data reuse strategies onto the implementation of vector field composition.

As the vector field defining the query points are non-parametric, one can consider

the underlying memory transaction pattern as random. As such, all memory

transactions will have to be accessed directly onto the global memory through the

L2 cache. However, the L1 cache is optimized to perform coalesced memory

transfer by reading/storing 128 bytes at once, numerous memory transaction

requests form a large number of threads for parallel computation will introduce

much traffic between the L1 and the L2 caches. To the best of our knowledge, the

theoretical bandwidth between the L1 and L2 cache are not announced by the GPU

manufacturer. However, the nvvp will consider the L1-L2 bandwidth to be

bottlenecking when the L1-L2 utilization exceeds 460GB/s. Therefore, it can be

confirmed that the latency due to insufficient L1-L2 bandwidth bottlenecks the

computation.

To recovery of computation speed-up in the implementation with manual

interpolation at higher resolution can be accounted by warp concurrency. With

sufficient block occupancy, the warp scheduler can afford operations with higher

latency, as long as there are remaining eligible warps for the underlying CUDA

cores to execute. Warp concurrency can also be facilitated by the relatively

balanced memory/computation load in manual interpolation which allows an even

distribution of workload between the memory and execution controllers.

90

4.4 Overall optimization results

Previous sub-sections presented the performance-aware programming

techniques used to optimize the two bottlenecking operations in diffeomorphic log-

demons. With those optimization strategies in mind, the whole diffeomorphic log-

demons algorithm was eventually implemented in a modular manner. For instance,

each module was iteratively profiled and carefully optimized before assembling.

The assembled registration tool can effectively register the images, as shown in

Figure 4.10, even with very large deformation.

Figure 4.10 Registration process of a highly deformed image. Misalignments
between the fixed and the moving images are iteratively resolved by our GPU
diffeomorphic log-demons implementation using a coarse-to-fine multi-resolution
registration approach.

91

In this section, I present the optimization strategies applied onto different

modules, as well as the resultant computation speedup achieved. Further to the

algorithm breakdown of diffeomorphic log-demons in Section 3.3.2, the detailed

modular breakdown of our GPU implementation, including the critical computation

modules are presented:

Table 4.2 List of optimized GPU computation modules in the
implementation of diffeomorphic log-demons.

Computation Module Used by Optimization Strategies

Gradient
decomposition

Update field generation

Registration energy evaluation

Enforce coalesced memory
transfer

Data re-use using shared memory

Use of vectorized data type

Finite image
difference

Update field generation

Registration energy evaluation

Enforce coalesced memory
transfer

Optimize occupancy

Gaussian smoothing Regularization of vector fields

Enforce coalesced memory
transfer

Data re-use using shared memory

Use of vectorized data type

Vector field
composition

Computation of deformation
field

Updating the velocity field

Make use of texture interpolation

Optimize for occupancy

Use of vectorized data type

Image warping
(composition)

Updating the moving image for
next iteration

Make use of texture interpolation

Optimize for occupancy

Computation to
generate velocity
update field

Update field generation
Ensure coalesced memory transfer

Tackle thread divergence

Sum/ maximum
reduction*

Computation of deformation
field

Registration energy evaluation

Warp shuffling

Loop unrolling

Tackle thread divergence

*An open-sourced GPU library, thrust [103], was used to implement sum/maximum reduction.

Table 4.2 presents the list of optimized GPU computation modules that are

used in our implementation of diffeomorphic log-demons. As the GPU utilizes its

highly parallelized SIMT architecture to perform high throughput computation, it

is not surprising to see that most of the optimization techniques are focusing on

efficient use of its memory. Previous investigations on the two bottlenecking

operations also illustrated most GPU kernels are indeed bounded by memory

92

latency. Such latency-bounded kernels are eligible to be optimized by allowing data

reuse, employing vectorized data structure, as well as using specialized GPU

hardware. With such regard, the optimization performance of each computation

step, for all test cases from 1M voxels to 37M voxels, in the optimized GPU-enabled

diffeomorphic log-demons is presented:

Table 4.3 Performance gain for different computation steps in an iteration
using the GPU implementation of diffeomorphic log-demons.

Computation step per iteration CPU time (ms) GPU time (ms) Speed-up (×)

Compute update field 35 – 904 0.6 – 18.7 48× – 63×

Vector field regularization 266 – 7226 1.1 – 23.2 188× – 274×

Update velocity field 133 – 3579 0.5 – 13.8 255× – 294×

Compute deformation (avg.) 359 – 15448 1.3 – 52.5 275× – 296×

Update moving image 107 – 2786 0.3 – 8.9 311× – 336×

Evaluate registration energy 54 – 1454 0.4 – 13.4 108× – 151×

Avg. time required per iteration 884 - 31146 3.9 – 140.4 216× - 234×

Table 4.3 presents the performance speedup achieved by optimized GPU

implementation of the computation steps in diffeomorphic log-demons. As almost

all computation steps in the algorithm are inherently parallelizable, the GPU is able

to achieve an impressive >200× computational speed-up for most computation.

Despite CPU have twice the clock speed compared to GPU, its inability to perform

SIMD or SIMT have heavily set back its computation throughput. As such, the CPU

will have to heavily rely on loops to perform the needed voxel-wise computation,

which will come with the cost of a significant overhead due to pointer arithmetic

and control flow. In fact, the majority of the computation time on CPU will be spent

on loop control operations when there is insignificant arithmetic computation load

[104].

Gaussian Smoothing is a typical example of which its efficiency suffers

from control and loop overheads. By launching numerous threads to independently

tackle the pixel/voxel-wise computation, much of the overheads spent on control

flow can be eliminated. However, the computation bottleneck will then shift to the

93

memory bandwidth, which can be demanding when large-scaled thread parallelism

is employed. By carefully managing and optimizing the memory transaction, a

significant 190-270× computation speed-up can be achieved depending on the

dimension of the input.

Vector field composition and image warping are relatively compute-

intensive operations. To this end, the GPU utilizes is underlying texture filtering

hardware to perform efficient interpolation. The computation speed-up brought by

the optimized hardware for specialized computation, in addition to the profound

speedup that brought up by thread parallelism, results in an impressive 255-294×

speed-up for vector field interpolation. The similar computation required for image

warping is also speed up for 311-336×. In addition to the optimized vector field

interpolation operation, the application of efficient GPU-based maximum reduction

by the thrust library [103] also assisted fast computation of the scaling-and-squaring

method. As a result, computation of the deformation field from the log-domain

velocity field have also received significant computation speed-up by 275-296×.

However, computing the update field and registration energy on GPU does

not show as large computation speed-up as other GPU kernels. Computation of

update field only achieved a relatively low speed-up of 48-63×. Evaluation of

registration energy received a moderate speed-up of 108-151×. Such regression in

terms of speed-up versus CPU can be accounted by the fact that the CPU can handle

such computation more efficiently. Due to an increased computation load compared

to the loop control overhead, the speed-up brought by mitigating such overhead by

thread parallelism has been diminished. Furthermore, the efficiency of computing

the update field on GPUs are also limited by multiple branching operations that

exist in the update field computation process.

94

Table 4.4 Registration parameters and the iterations required, and the time
required for GPU to initialize and perform the registration computation for different
test images.

Image
Dimension

Iterations
Required

Self-compositions
Required

Initialization
Overhead (ms)

Computation
Time (ms)

104 × 125 × 104 25 66 179 92

139 × 167 × 139 32 106 211 309

174 × 209 × 174 39 135 327 748

209 × 251 × 209 43 154 511 1479

244 × 293 × 244 47 181 787 2707

278 × 334 × 278 50 205 1126 4803

313 × 376 × 313 53 225 1617 7160

Registration parameters:

𝝈𝒇 = 𝟑, 𝝈𝒅 = 𝟑, 𝝈𝒊 = 𝟏, 𝝈𝒙 = 𝟏;

Registration termination condition: Gradient descent, threshold: 2.5% of initial energy

Table 4.4 presents the registration parameters and the computation time

required for our GPU implementation to complete the registration process. It is

worth mentioning that the registration time increases not only because of the

increased image dimensionality, but also because of the increased number of

iterations required for the registration. As the test images are produced by up-

/down-sampling from a pair of pre-deformed brain image, the resultant magnitude

of the vector field representing the true deformation will also scale accordingly. As

the diffeomorphic log-demons registration framework restricts the magnitude of

update field to be <0.5 pixels per iteration, more iterations will be required for the

registration upon larger deformation [55]. Furthermore, as the magnitude of the

vector field increases, computing the deformation from the velocity field in the

registration progress using the scaling-and-squaring method will also require more

self-compositions, which can lead to higher computation time.

95

Figure 4.11 Time required for CPU (black line) and GPU with optimized
kernels (red line) to complete the registration. The overhead due to memory transfer
in the initialization of GPU is also included (dotted line in purple).

Figure 4.12 Breakdown of required computation time by the major
computation steps in for diffeomorphic log-demons. These recorded run time are
obtained by to register the testing images in 7 levels of resolution with number of
voxels ranging from 1×106 to 3.6×107 voxels.

96

Figure 4.11 showed a vast acceleration can be achieved with appropriately

optimized GPU kernels. The overall time required can be reduced by two orders of

magnitude. In fact, multiresolution approaches [80] are usually adopted when

diffeomorphic log-demons is used to register such a large image. Nonetheless, as

the goal of the thesis is to compare the computation speed instead of registration

performance, we intend to directly compare the run-time on CPU and optimized

GPU using a single registration level. In the optimized GPU implementation of

diffeomorphic log-demons, it is observable that the GPU initialization takes up

substantial overheads, especially when the input image resolution is small. Our

optimized GPU implementation is able to consistently achieve computation

speedup by two orders of magnitudes, which can have to potential to complete any

registrations within seconds.

Figure 4.12 presents the breakdown of time required for the 8 major

computation steps essential for the registration algorithm. In contrast to the

profiling report presented in Section 3.3.2, Gaussian regularization as well as field

composition no longer take up most of the computation time in the GPU

implementation, which suggests the major computation bottleneck of the

diffeomorphic log-demons algorithm has been resolved.

Finally, Figure 4.13 presents the reported registration energy for the first 50

iterations from both CPU and GPU implementations when registering a test image

set with resolution of 174×209×174 voxels. There was no significant disparity

observed between the two sets of registration energy reported, which suggests the

presented GPU implementation of diffeomorphic log-demons is as accurate as the

CPU implementation.

97

Figure 4.13 Evaluated registration energy of first 50 log-demons iterations
from CPU and GPU implementations. No significant disparity between the
evaluated energy values by CPU and GPU is found. This confirms consistent
behavior among the CPU and optimized GPU implementations.

4.5 Conclusion

In this chapter, I have identified the major performance limiter of different

computation sub-modules in the GPU implementation of the diffeomorphic log-

demons algorithm. In response to the identified performance limiter, subsequent

actions were deduced and presented in Chapter 4.2. With the bottlenecking

operations being found in Section 3.3.2, I employed various performance-aware

programming techniques to iteratively optimize and improve the computation for

those computations.

For quantification of the improvement brought by the performance-aware

programming, extensive testing and profiling were performed on both the optimal

and sub-optimal implementations of the computation modules. The results were

presented in Chapter 4.3. With the performance-aware optimization strategies in

mind, I have implemented an optimized implementation for other computation

98

required in the algorithm. As a result, fully-optimized GPU implementation of the

algorithm is presented in Chapter 4.4. An average of 216-234 times computation

speed-up is achieved in the optimized implementation. In other words, the GPU is

potent to complete the computation workload within seconds, which otherwise will

take minutes to hours if performed by a single threaded CPU.

99

Chapter 5

TECHNICAL CONSIDERATIONS FOR

EXTENSIVE APPLICATIONS

5.1 Open-sourced high-performance registration tool

There are many open-sourced implementations of image registration (e.g.

SPM, NiftyReg, elastix and ANTS) publicly available, capable of registering

medical images in 3D. However, the popularity of the demons algorithm is not

appropriately complemented by enough open-sourced GPU support. Regarding on

the advanced demons algorithm, there were a few attempts on implementing the

diffeomorphic log-demons on the GPU, as presented in Section 2.4.2. However,

those implementations are neither open sourced nor optimized. The well-known

open-sourced medical image analysis toolkit, ITK, which possesses a wide variety

of image registration implementations, also lacks GPU support on newer demons

variations. To-date, the ITK toolkit only implements Thirion’s original demons

algorithm [55] on GPUs. The lack of GPU support for advance Demon’s variants

can lead to prolonged computation time. Such prolonged time not only frustrates

related research on the same area, but also preclude adoption of the algorithm in

time-critical applications.

100

Figure 5.1 Computation time required to register an image with resolution of
300×300×150. The presented diffeomorphic log-demons implementation on GPU
significantly outperforms the other 2 open-sourced image registration packages.

Figure 5.1 presented the run-time comparison to register an image with

13.5M voxels for different open-sourced image registration packages. To ensure

fairness, all registration employed multiresolution approaches by registering the

sub-sampled image in 3 levels. The presented diffeomorphic log-demons

implementation in GPU in this work completed all 3 levels of registration within

30 seconds, which significantly outperforms other open-source image registration

packages that require approximately 5 minutes to register the images.

The presented GPU implementation of the diffeomorphic log-demons

algorithm on GPU using performance-aware techniques in this thesis will be open-

sourced to the general public in the near future. With the source codes and the

optimization strategies being open to the public, this work will be expected to be

one of the cornerstones in the field of high-performance image registration. It is

also worth noting that, given the popularity of the demons algorithm, there is indeed

a lot of work that has been built based on the algorithm of diffeomorphic log-demons.

For example, spherical demons [106], LCC-demons [107], adaptive demons [108],

101

and many other improved demons approaches [109-111]. As these works may share

the same demons framework which consists of diffeomorphic deformation field

computation, vector field regularization, and so on, the optimization approaches

used and presented in this work may be able to share among these different

implementations.

5.2 Limitations of GPU image registration

In the previous chapters, the essential optimization required to achieve full

GPU utilization via different performance-aware programming techniques have

been presented. However, it has to be noted that the GPU possesses several

limitations. It is worth mentioning that these limitations are originated due to the

fact that GPUs are originally designed for video frame rendering. Although it is

viable to use GPU run intensity-based image registration algorithms in most cases,

such limitations may cause issues when one attempt to use the GPU to register very

large image datasets or require very high precisions.

5.2.1 Graphics memory consumption

As GPU specializes in rendering frame output, the processors are highly

optimized for parallel processing numerous single-precision floating point

operations. Our implementation of diffeomorphic log-demons on the GPU takes

advantages of the optimized architecture to process single-precision float variables

to ensure fast computation. As the computation of the diffeomorphic log-demons

algorithm generates a number of vector fields essential for the computation, the

resultant memory requirement can easily escalate beyond the hardware limit of

allowable graphics memory. To illustrate the intense memory size requirement, I

have listed the items used in diffeomorphic log-demons that can consume a

considerable amount of memory in Table 5.1:

102

Table 5.1 Memory requirement for accommodating different essential
variables with dimension 𝑑𝑖𝑚 for the diffeomorphic log-demons algorithm within
the GPU memory.

Item Symbol
Representation

(bytes) Stored in
Memory required

(in bytes)

Fixed image 𝐹
Single-precision
float (4 bytes)

Global memory 4 × 𝑑𝑖𝑚

Moving image 𝑀
Single-precision
float (4 bytes)

Texture memory 4 × 𝑑𝑖𝑚

Immediate moving
image 𝑀 ∘ 𝑠

Single-precision
float (4 bytes)

Global memory 4 × 𝑑𝑖𝑚

Fixed image
gradient 𝛻(𝐹)

Single-precision
float4 (16 bytes)

Global memory 16 × 𝑑𝑖𝑚

Moving image
gradient 𝛻(𝑀 ∘ 𝑠)

Single-precision
float4 (16 bytes)

Global memory 16 × 𝑑𝑖𝑚

Deformation field s Single-precision
float4 (16 bytes)

Global memory 16 × 𝑑𝑖𝑚

Update field u Single-precision
float4 (16 bytes)

Global memory 16 × 𝑑𝑖𝑚

Velocity field v Single-precision
float4 (16 bytes)

Global memory 16 × 𝑑𝑖𝑚

Texture
Memory

16 × 𝑑𝑖𝑚

 Total: 𝟏𝟎𝟖 × 𝒅𝒊𝒎 bytes

For any input image with size 𝑑𝑖𝑚 for registration, it is observable that the

GPU will need to allocate considerable memory for the input image sets for

registration. Despite the fixed and moving images only account for (8 × 𝑑𝑖𝑚) bytes

of the graphics memory utilization, the subsequent computation to register the

images will require substantial memory being allocated. Apart from the vector

fields that are required to be stored inside the graphics memory, the image gradient

of both the fixed and immediate moving image are essential to compute for the

velocity field update as well as registration energy. As a result, the memory

requirement of the diffeomorphic log-demons algorithm for different input dataset

dimensions are presented in Figure 5.2. At high image resolution, the memory

required may exceed the typical graphics memory limit that can be provided by a

GPU.

103

Figure 5.2 Memory size requirement on the GPU with respect to the input
image dimensions. The memory size demand can exceed the allowable memory
provided by mid-end GPU (e.g. NVidia GTX1050Ti), or even high-end GPUs (e.g.
NVidia GTX980) when the image dimension is large.

5.2.2 Interpolation precision

The GPU’s texture hardware is able to efficiently perform interpolation

using its texture filtering pipeline. However, such fast texture filtering comes with

a decreased precision. According to the CUDA Programming guide [105], the

texture filtering is performed with the interpolant being rounded down to 9-bit

fixed-point precision with 8-bit fractional values. Hence, with lower interpolant

precision, the interpolation will be less precise than the usual CPU implementation.

To investigate the effect of reduced precision by the hardwired texture

filtering function, Figure 5.3 presents the results of image warping using with full

float precision, as well as 9-bit interpolant precision using the texture hardware. It

is observed that despite the GPU’s graphics hardware uses reduced interpolant

precision, the resultant absolute error between the full and reduced interpolant

precision is only around 0.3%. This 0.3% error is negligible, considering the

intensity range of most medical image is often limited to 0-4095 (12-bit precision).

Even for the vector field exponentiation operations which require 4-5 self-

composition, the absolute error will not exceed 2%, which is acceptable for the

104

demons algorithm considering the registration algorithm will to converge

unconditionally.

Figure 5.3 Fixed image warped by deformation field using full and reduced
interpolant precision. Although hardwired texture filtering uses reduced interpolant
precision, the resultant difference in terms of intensity is negligible (typ. 0.25%).

5.3 Potential applications

This presented GPU implementation of diffeomorphic log-demons achieved

significant computation speed-up compared to the CPU counterparts. With this

optimized GPU registration being able to accelerate the registration process by over

two hundred times, this computation enhancement is unprecedented. As a result,

whole registration time required can be reduced from minutes to seconds. With the

promising computation speed-up provided, this presented GPU registration tool

opens up countless research and applicational opportunities. This section discusses

the potential application of the presented GPU registration tool.

105

5.3.1 Algorithmic improvements by meta-heuristic search of parameters

One of the challenges in intensity-based image registration is the inability

to determine the optimal registration parameters. Different input image sets not only

consist of different image features, but they may also have different data ranges and

dimensions. These variations in parameters can utterly alter the optimal registration

parameters. To date, there are several studies focusing on optimization-based image

registration. Klein et al. [112] looked into several optimization algorithms including

gradient descent, quasi-Newton, and evolution strategies to look for the best

parameters for registering CT images of the heart. Also, meta-heuristic based

methods were also proposed, in a bid to search for a set of optimal image

registration parameters. Later, Zheng et al. [114] have utilized and improved the

particle swarm optimization (PSO) algorithm to register multimodal images. The

clinical impact of such PSO-based search for image registration has also been

presented in [115], exemplified by performing rigid 3D registration for medical

images. However, much of these works only focus on registrations with relatively

simple algorithms. Recently, Cuckoo Search algorithm, a variant of PSO, was

employed to 2D diffeomorphic log-demons registration in an attempt to find out the

optimal registration parameters [116]. However, this Cuckoo Search algorithm will

require >11 hours to converge. Due to extensive computation demand of the demons

algorithm, employing meta-heuristic based image registration for 3D diffeomorphic

log-demons using CPU may not be practical.

With the GPU-enabled diffeomorphic log-demons tool being open-sourced,

the immense computation speed-up brought by the GPU tool can facilitate any

optimization-based method on searching the optimal parameters. With the

presented registration tool being able to accelerate the registration progress by

approximately 200 times, these PSO-like search algorithms can have their speed

and accuracy improved. Above all, the whole optimization can be accelerated due

to the decrease in registration time. As the result of the decreased registration time,

the cost of spawning a particle in PSO can be decreased. Therefore, more particles

can be spawn in each PSO iteration, facilitating a more accurate search for the

parameters.

106

5.3.2 Clinical applications

Having a rapid non-rigid image registration is beneficial to many

interventional procedures. For example, the MRI-guided EP process aiming to treat

cardiac arrhythmia by electrically isolating specific cardiac tissue can be benefited

by rapidly realigning the pre-op roadmap. Besides, intensity-modulated

radiotherapy is also another potential clinical application which can be benefited by

fast nonlinear re-alignment during radiation dosage evaluation.

5.3.2.1 Accelerated mapping of electro-anatomical map

In the EP procedure, the construction of the cardiac roadmap heavily relies

on EA map acquired using a mapping catheter. Such electro-anatomical map

reveals the cardiac electrophysiologic activity throughout the cardiac cycle [117].

Any tissue with abnormal electrical signals can be revealed. Thus, such cardiac-

phase-dependent EA map can assist surgeons to pinpoint the cardiac tissue that

needs to be isolated, thereby improving treatment accuracy and effectiveness.

The major technical challenge resides in the re-alignment of the

intraoperatively acquired EA mapping data on the preoperatively constructed

cardiac image. To construct a cardiac roadmap, these EA mapping data gathered by

numerous contact points (Figure 5.4a) needed to be promptly registered back to the

pre-op cardiac model (Figure 5.4b). However, the distribution of these EA contact

points may not align with the pre-op model, due to the physiological movement of

the cardiac chambers, as well as respiratory motion.

Non-rigid image registration can be used to find out the spatial

misalignment between the images. Once the misalignment is found, the EA data

can be re-aligned back to the pre-op cardiac atlas (Figure 5.4c). However, such

registration needs to be repeated for numerous times to register every single contact

points back to the anatomically correct pre-op model. As such, this repeated

registration demands considerable computation. The currently available clinical

system can only provide an approximate alignment using rigid image registration

[121], thus it relies heavily on the surgeons’ experience to estimate the

correspondence between the EA map and the pre-op atlas.

107

Therefore, having a fast, reliable non-rigid image registration scheme can

facilitate the EA mapping process. By promptly realigning the EA mapping data

back to the anatomically-correct cardiac atlas, a reliable EA map can be produced.

With our implementation of diffeomorphic log-demons being capable to accelerate

the registration computation by ~220 times, it is possible for the registration to be

completed within a couple of seconds for accurate visualization.

Figure 5.4 (a) EA map of the left atrium obtained prior to the EP process.
The mapping gathered by EA contact points may not be anatomically correct. (b)
Anatomically correct left atrium model obtained by segmentation of an MR image.
(c) Image registration used to realign the EA mapping data back to the anatomically
correct left atrium model. Images retrieved from [118-120].

5.3.2.2 Intra-op registration of EP target

iMRI possesses the ability to visualize scars and edema created by during

the EP procedure. However, due to large-scale tissue deformation of the rapidly

moving cardiac chamber, the left atrium on the iMRI image may not be aligned

with the pre-op image, as well as the EA roadmap. Similar to the EA mapping

procedure, the major challenge resides in having a proper realignment between the

lesion registered back to the cardiac roadmap [122]. Due to the rapid pumping

motion of the heart, the iMRI image can exhibit misalignment between cardiac

cycles, even if the image is gated. Therefore, it is essential to have prior knowledge

of the tissue deformation between the pre-op and the intra-op images. In this light,

108

non-rigid registration can be used to realign the lesion on the intra-op images back

to the pre-op roadmap augmented with the EA mapping.

Figure 5.5 demonstrates the workflow of integrating non-rigid image

registration on the cardiac EP procedure. Non-rigid image registration is essential

to resolve the large misalignment between the pre-op cardiac roadmap and the iMRI

image. Once the misalignment is found, the lesion spots on the intra-op image can

be accurately realigned back on the pre-op model. With the presented non-rigid

image registration tool in this thesis, it is believed that such image realignment can

be performed in fast and frequent manner. As such, the number of iMRI scanning

can be further increased to ensure favorable post-operative outcome.

Figure 5.5 (a) EP roadmap of left atrium rendered based on pre-op MR
images. (b) Significant mismatch indicated by orange arrows between the roadmap
and intra-op images. (c) Ablation landmarks selected on a slice of 2-D intra-op MR
images. Yellow arrows illustrate the deformation. (d) Ablation landmarks realigned
appropriately on the 3-D roadmap based on the deformation field.

109

5.3.2.3 Towards extensive use of IGRT

Radiotherapy is one of the areas that extensively adopt intra-op imaging.

However, current use of intra-op imaging to adjust radiotherapy treatment plan is

limited. Instead, the onboard CBCT imagers are mostly used in patient localization

and position calibration [123]. As presented in Figure 5.6, tissue deformation can

be observed when the patient undergoes the month-long radiotherapy treatment,

which can lead to discrepancies between the treatment plan and the actual anatomy.

Figure 5.6 CT image showing significant tissue deformation at the thorax
after receiving 50Gy of radiation in radiotherapy. This large-scale deformation may
lead to damage to critical organs if not compensated. Image retrieved from [124].

To mitigate any unintended damage to the healthy tissues or critical organs

due to tissue shrinkage and deformation throughout the radiotherapy treatment,

IGRT possesses the ability to perioperatively localize the treatment target. Non-

rigid image registration is the key and to quantify the misalignments between the

pre-op image and the intra-op CBCT images. Such knowledge on the misalignment

is for essential treatment plan adjustment. However, most non-rigid image

registration schemes are slow, and can be bottlenecking. As the image registration

require perioperatively acquired CBCT image, the required registration time will

occupy significant timeslots of the radiotherapy machine, thus, precluding any

extensive use of IGRT [125]. As such timeslots are limited, a common practice is

110

to employ IGRT only to the high risks patients. For example, only the patients

suffering from recurrent cancer [126], or patients with the tumors located near

critical organs [127]. With the presented work in this thesis which is capable to

accelerate the registration process, it is expected the operations of IGRT can be

streamlined, resulting in a more widespread and extensive use of IGRT.

111

Chapter 6

CONCLUSION AND FUTURE WORK

6.1.1 Achievement of this thesis

Non-rigid image registration has long been validated as an effective strategy

to co-register misaligned image sets. Such realignment is decisive towards safer and

precise image-guided interventions, but suffers from prolonged registration time.

The recent advancement in high-performance computation devices, enabled fast

computation for different applications. However, to effectively utilize the

computation device for image registration, one has to obtain a solid knowledge of

both the algorithm and the hardware microarchitecture. This thesis attempted to

bridge the technological gap between the registration algorithm and its potential

application in the clinical scenario.

In this thesis, I have introduced several performance-aware techniques on

GPU which is essential to achieve the near-real-time image registration, which will

also be applicable to numerous other time-critical applications. By thoroughly

analyzing the algorithm, it is found that most of the operations in diffeomorphic log-

demons are not bottlenecked by computation, contrary to the popular belief. Instead,

the major bottleneck resides in the memory latency during data transactions. By

appropriately resolving the memory bottleneck, we confirm the ability achieve

impressive acceleration of the intensity-based image registration process with a

GPU. The achievements are summarized below:

112

In Chapter 2, an overview of current intra-op imaging technique, as well as

the clinical demand for image-guided intervention is highlighted. We have pointed

out the demands of fast non-rigid image registration, as well as the necessity of

using high-performance application accelerators for time-critical applications.

In Chapter 3, the basis of performance-aware programming on GPU have

been introduced. Besides, testing and profiling have been conducted on the

diffeomorphic log-demons. I have also presented the underlying computation

bottleneck operations, as well as proposed the essential performance-aware

programming techniques to work around with such bottleneck.

The optimized implementations of these bottlenecking operations are

extensively tested and analyzed in Chapter 4. Following the in-depth analysis of

the computation demand and improvements, I have presented a working, optimized

GPU implementation of diffeomorphic log-demons which will be open-sourced in

the near future.

Finally, a brief comparison between our open-sourced GPU diffeomorphic

log-demons registration tool and other open-source image registration toolkits was

conducted earlier in Chapter 5. Also, I have briefly discussed the limitation of

using GPU in intensity-based image registration, as well as the potential

applications of the presented high-performance registration implementation on

GPU.

113

6.1.2 Ongoing research and future work

The diffeomorphic log-demons algorithm possesses a lot of potential in

terms of translational research, due to its ability to reliably realign mismatched

images. However, the high computation requirement precludes the usage of the

algorithm in a lot of time-critical applications. With significant computation speed-

up being achieved in the GPU implementation in as presented in this thesis, it is

expected that a lot of research opportunities can be opened up. For example,

integrating the registration into intra-op navigation systems can undoubtedly

increase surgical safety and accuracy. Ongoing research as an extension of this

work includes the integration of the registration framework onto the various

surgical robotic systems enabled with intra-op scans. For example, the MR-safe

robotic system [128] capable of providing intra-op MRI guidance, or the hydraulic

driving robot capable of performing MRI-guided stereotactic neurosurgery [129].

The work presented in this thesis further confirmed the potent ability to

accelerate various intensity-based image registration schemes using GPU. Future

work includes the integration of this optimized GPU implementation into the ITK

framework. Also, this work can be extended by investigating the possibility of using

GPU to accelerate the computation of another variant of the demons algorithm,

including LCC-Demons [107], Spectral demons [74], and other approaches.

114

REFERENCE

[1] D. W. Roberts, J. W. Strohbehn, J. F. Hatch, W. Murray, and H.
Kettenberger, "A frameless stereotaxic integration of computerized
tomographic imaging and the operating microscope," Journal of
neurosurgery, vol. 65, no. 4, pp. 545-549, 1986.

[2] A. Polo, C. Salembier, J. Venselaar, and P. Hoskin, "Review of
intraoperative imaging and planning techniques in permanent seed prostate
brachytherapy," Radiotherapy and Oncology, vol. 94, no. 1, pp. 12-23, 2010.

[3] S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R.
Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, "The
FLARE™ intraoperative near-infrared fluorescence imaging system: a first-
in-human clinical trial in breast cancer sentinel lymph node mapping,"
Annals of surgical oncology, vol. 16, no. 10, pp. 2943-2952, 2009.

[4] M. I. Miga, T. K. Sinha, D. M. Cash, R. L. Galloway, and R. J. Weil,
"Cortical surface registration for image-guided neurosurgery using laser-
range scanning," IEEE Transactions on Medical Imaging, vol. 22, no. 8, pp.
973-985, 2003.

[5] S. Nakajima, H. Atsumi, R. Kikinis, T. M. Moriarty, D. C. Metcalf, F. A.
Jolesz, and P. M. Black, "Use of cortical surface vessel registration for
image-guided neurosurgery," Neurosurgery, vol. 40, no. 6, pp. 1201-1210,
1997.

[6] R. Hammerstingl, A. Huppertz, J. Breuer, T. Balzer, A. Blakeborough, R.
Carter, L. C. Fusté, G. Heinz-Peer, W. Judmaier, and M. Laniado,
"Diagnostic efficacy of gadoxetic acid (Primovist)-enhanced MRI and spiral
CT for a therapeutic strategy: comparison with intraoperative and
histopathologic findings in focal liver lesions," European radiology, vol. 18,
no. 3, pp. 457-467, 2008.

[7] M. Knauth, C. R. Wirtz, V. M. Tronnier, N. Aras, S. Kunze, and K. Sartor,
"Intraoperative MR imaging increases the extent of tumor resection in
patients with high-grade gliomas," American journal of neuroradiology, vol.
20, no. 9, pp. 1642-1646, 1999.

[8] R. Gennari, V. Galimberti, C. De Cicco, S. Zurrida, F. Zerwes, F. Pigatto,
A. Luini, G. Paganelli, and U. Veronesi, "Use of technetium-99m–labeled
colloid albumin for preoperative and intraoperative localization of
nonpalpable breast lesions," Journal of the American College of Surgeons,
vol. 190, no. 6, pp. 692-698, 2000.

115

[9] A. Nabavi, P. M. Black, D. T. Gering, C.-F. Westin, V. Mehta, R. S.
Pergolizzi Jr, M. Ferrant, S. K. Warfield, N. Hata, and R. B. Schwartz,
"Serial intraoperative magnetic resonance imaging of brain shift,"
Neurosurgery, vol. 48, no. 4, pp. 787-798, 2001.

[10] U. Veronesi, R. Orecchia, A. Luini, G. Gatti, M. Intra, S. Zurrida, G. Ivaldi,
G. Tosi, M. Ciocca, and A. Tosoni, "A preliminary report of intraoperative
radiotherapy (IORT) in limited-stage breast cancers that are conservatively
treated," European journal of cancer, vol. 37, no. 17, pp. 2178-2183, 2001.

[11] R. M. Comeau, A. F. Sadikot, A. Fenster, and T. M. Peters, "Intraoperative
ultrasound for guidance and tissue shift correction in image‐guided
neurosurgery," Medical physics, vol. 27, no. 4, pp. 787-800, 2000.

[12] R. Schulze, U. Heil, D. Groβ, D. Bruellmann, E. Dranischnikow, U.
Schwanecke, and E. Schoemer, "Artefacts in CBCT: a review,"
Dentomaxillofacial Radiology, vol. 40, no. 5, pp. 265-273, 2011.

[13] I. D. Gelalis, N. K. Paschos, E. E. Pakos, A. N. Politis, C. M. Arnaoutoglou,
A. C. Karageorgos, A. Ploumis, and T. A. Xenakis, "Accuracy of pedicle
screw placement: a systematic review of prospective in vivo studies
comparing free hand, fluoroscopy guidance and navigation techniques,"
European Spine Journal, vol. 21, no. 2, pp. 247-255, 2012.

[14] M. Goitein, M. Abrams, D. Rowell, H. Pollari, and J. Wiles, "Multi-
dimensional treatment planning: II. Beam's eye-view, back projection, and
projection through CT sections," International Journal of Radiation
Oncology* Biology* Physics, vol. 9, no. 6, pp. 789-797, 1983.

[15] T. Grünheid, J. R. K. Schieck, B. T. Pliska, M. Ahmad, and B. E. Larson,
"Dosimetry of a cone-beam computed tomography machine compared with
a digital x-ray machine in orthodontic imaging," American Journal of
Orthodontics and Dentofacial Orthopedics, vol. 141, no. 4, pp. 436-443,
2012.

[16] J. Kottoor, N. Velmurugan, R. Sudha, and S. Hemamalathi, "Maxillary first
molar with seven root canals diagnosed with cone-beam computed
tomography scanning: a case report," Journal of endodontics, vol. 36, no. 5,
pp. 915-921, 2010.

[17] F. Haiter-Neto, A. Wenzel, and E. Gotfredsen, "Diagnostic accuracy of cone
beam computed tomography scans compared with intraoral image
modalities for detection of caries lesions," Dentomaxillofacial Radiology,
2014.

[18] M. S. Mizel, N. D. Steinmetz, and E. Trepman, "Detection of wooden
foreign bodies in muscle tissue: experimental comparison of computed

116

tomography, magnetic resonance imaging, and ultrasonography," Foot &
ankle international, vol. 15, no. 8, pp. 437-443, 1994.

[19] R. Damadian, "Tumor detection by nuclear magnetic resonance," 1971.

[20] S. Fratz, M. Hauser, F. M. Bengel, A. Hager, H. Kaemmerer, M. Schwaiger,
J. Hess, and H. C. Stern, "Myocardial scars determined by delayed-
enhancement magnetic resonance imaging and positron emission
tomography are not common in right ventricles with systemic function in
long-term follow up," Heart, vol. 92, no. 11, pp. 1673-1677, 2006.

[21] J. M. Mislow, A. J. Golby, and P. M. Black, "Origins of intraoperative
MRI," Magnetic resonance imaging clinics of North America, vol. 18, no.
1, pp. 1-10, 2010.

[22] J. F. Schenck, F. A. Jolesz, P. B. Roemer, H. E. Cline, W. E. Lorensen, R.
Kikinis, S. G. Silverman, C. J. Hardy, W. D. Barber, and E. T. Laskaris,
"Superconducting open-configuration MR imaging system for image-
guided therapy," Radiology, vol. 195, no. 3, pp. 805-814, 1995.

[23] M. Lustig, D. Donoho, and J. M. Pauly, "Sparse MRI: The application of
compressed sensing for rapid MR imaging," Magnetic resonance in
medicine, vol. 58, no. 6, pp. 1182-1195, 2007.

[24] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, "Compressed
sensing MRI," IEEE signal processing magazine, vol. 25, no. 2, pp. 72-82,
2008.

[25] R. Ranjan, E. G. Kholmovski, J. Blauer, S. Vijayakumar, N. A. Volland, M.
E. Salama, D. L. Parker, R. MacLeod, and N. F. Marrouche, "Identification
and Acute Targeting of Gaps in Atrial Ablation Lesion Sets Using a Real-
Time Magnetic Resonance Imaging SystemClinical Perspective,"
Circulation: Arrhythmia and Electrophysiology, vol. 5, no. 6, pp. 1130-
1135, 2012.

[26] K.-W. Kwok, K.-H. Lee, Y. Chen, W. Wang, Y. Hu, G. C. Chow, H. S.
Zhang, W. G. Stevenson, R. Y. Kwong, and W. Luk, "Interfacing fast multi-
phase cardiac image registration with MRI-based catheter tracking for MRI-
guided electrophysiological ablative procedures," Circulation, vol. 130, no.
Suppl 2, pp. A18568-A18568, 2014.

[27] Y. Chen, W. Wang, E. J. Schmidt, K.-W. Kwok, A. N. Viswanathan, R.
Cormack, and Z. T. H. Tse, "Design and Fabrication of MR-Tracked
Metallic Stylet for Gynecologic Brachytherapy," IEEE/ASME Transactions
on Mechatronics, vol. 21, no. 2, pp. 956-962, 2016.

117

[28] G. Minchev, G. Kronreif, M. Martínez-Moreno, C. Dorfer, A. Micko, A.
Mert, B. Kiesel, G. Widhalm, E. Knosp, and S. Wolfsberger, "A novel
miniature robotic guidance device for stereotactic neurosurgical
interventions: preliminary experience with the iSYS1 robot," Journal of
Neurosurgery, pp. 1-12, 2016.

[29] J. González-Martínez, J. Bulacio, S. Thompson, J. Gale, S. Smithason, I.
Najm, and W. Bingaman, "Technique, results, and complications related to
robot-assisted stereoelectroencephalography," Neurosurgery, vol. 78, no. 2,
pp. 169-180, 2016.

[30] P. A. Starr, A. J. Martin, J. L. Ostrem, P. Talke, N. Levesque, and P. S.
Larson, "Subthalamic nucleus deep brain stimulator placement using high-
field interventional magnetic resonance imaging and a skull-mounted
aiming device: technique and application accuracy," Journal of
neurosurgery, vol. 112, no. 3, p. 479, 2010.

[31] G. Widmann, R. Stoffner, M. Sieb, and R. Bale, "Target registration and
target positioning errors in computer‐assisted neurosurgery: proposal for a
standardized reporting of error assessment," The International Journal of
Medical Robotics and Computer Assisted Surgery, vol. 5, no. 4, pp. 355-
365, 2009.

[32] N. Archip, O. Clatz, S. Whalen, D. Kacher, A. Fedorov, A. Kot, N.
Chrisochoides, F. Jolesz, A. Golby, and P. M. Black, "Non-rigid alignment
of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for
enhanced visualization and navigation in image-guided neurosurgery,"
Neuroimage, vol. 35, no. 2, pp. 609-624, 2007.

[33] C. R. Maurer Jr, D. L. Hill, R. J. Maciunas, J. A. Barwise, J. M. Fitzpatrick,
and M. Y. Wang, "Measurement of intraoperative brain surface deformation
under a craniotomy," in International Conference on Medical Image
Computing and Computer-Assisted Intervention, 1998, pp. 51-62: Springer.

[34] J. Wadley, N. Kitchen, and D. Thomas, "Image-guided neurosurgery,"
Hospital medicine (London, England: 1998), vol. 60, no. 1, pp. 34-38, 1999.

[35] P. Francesco, S. Luigi, M. Alberto, and D. Francesco, Intraoperative
ultrasound (ious) in neurosurgery : from standard b-mode to
elastosonography. New York, NY: Springer Berlin Heidelberg, 2016, p.
pages cm.

[36] E. Kholmovski, R. Ranjan, J. Silvernagel, J. Blauer, and N. Marrouche,
"Assessment of Acute Cryo and RF Ablation Lesions by Non-contrast and
Contrast Enhanced MRI Techniques: Similarities and Differences," ed: Am
Heart Assoc, 2014.

118

[37] C. Pappone, S. Rosanio, G. Oreto, M. Tocchi, F. Gugliotta, G. Vicedomini,
A. Salvati, C. Dicandia, P. Mazzone, and V. Santinelli, "Circumferential
radiofrequency ablation of pulmonary vein ostia a new anatomic approach
for curing atrial fibrillation," Circulation, vol. 102, no. 21, pp. 2619-2628,
2000.

[38] J. L. Duerk, J. S. Lewin, M. Wendt, and C. Petersilge, "Invited. Remember
true FISP? a high SNR, near 1‐second imaging method for T2‐like contrast
in interventional MRI at. 2 T," Journal of Magnetic Resonance Imaging, vol.
8, no. 1, pp. 203-208, 1998.

[39] C. Lu, S. Chelikani, X. Papademetris, J. P. Knisely, M. F. Milosevic, Z.
Chen, D. A. Jaffray, L. H. Staib, and J. S. Duncan, "An integrated approach
to segmentation and nonrigid registration for application in image-guided
pelvic radiotherapy," Medical Image Analysis, vol. 15, no. 5, pp. 772-785,
2011.

[40] M. Guckenberger, J. Meyer, J. Wilbert, K. Baier, O. Sauer, and M. Flentje,
"Precision of image-guided radiotherapy (IGRT) in six degrees of freedom
and limitations in clinical practice," Strahlentherapie und Onkologie, vol.
183, no. 6, pp. 307-313, 2007.

[41] M. Foskey, B. Davis, L. Goyal, S. Chang, E. Chaney, N. Strehl, S. Tomei,
J. Rosenman, and S. Joshi, "Large deformation three-dimensional image
registration in image-guided radiation therapy," Physics in Medicine &
Biology, vol. 50, no. 24, p. 5869, 2005.

[42] S. Hassfeld, J. Zöller, F. K. Albert, C. R. Wirtz, M. Knauth, and J. Mühling,
"Preoperative planning and intraoperative navigation in skull base surgery,"
Journal of cranio-maxillo-facial surgery, vol. 26, no. 4, pp. 220-225, 1998.

[43] D. T. Gering, A. Nabavi, R. Kikinis, W. E. L. Grimson, N. Hata, P. Everett,
F. Jolesz, and W. M. Wells, "An integrated visualization system for surgical
planning and guidance using image fusion and interventional imaging," in
International Conference on Medical Image Computing and Computer-
Assisted Intervention, 1999, pp. 809-819: Springer.

[44] A. Shoamanesh, C. Kwok, and O. Benavente, "Cerebral microbleeds:
histopathological correlation of neuroimaging," Cerebrovascular Diseases,
vol. 32, no. 6, pp. 528-534, 2011.

[45] J. R. Reichenbach, R. Venkatesan, D. A. Yablonskiy, M. R. Thompson, S.
Lai, and E. M. Haacke, "Theory and application of static field
inhomogeneity effects in gradient‐echo imaging," Journal of Magnetic
Resonance Imaging, vol. 7, no. 2, pp. 266-279, 1997.

119

[46] D. L. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, "Medical image
registration," Physics in medicine and biology, vol. 46, no. 3, p. R1, 2001.

[47] B. Zitova and J. Flusser, "Image registration methods: a survey," Image and
vision computing, vol. 21, no. 11, pp. 977-1000, 2003.

[48] A. Vasileisky, B. Zhukov, and M. Berger, "Automated image coregistration
based on linear feature recognition," in Proceedings of the Second
Conference Fusion of Earth Data, Sophia Antipolis, France, 1998, pp. 59-
66.

[49] B. Manjunath, C. Shekhar, and R. Chellappa, "A new approach to image
feature detection with applications," Pattern Recognition, vol. 29, no. 4, pp.
627-640, 1996.

[50] J. Canny, "A computational approach to edge detection," IEEE
Transactions on pattern analysis and machine intelligence, no. 6, pp. 679-
698, 1986.

[51] N. R. Pal and S. K. Pal, "A review on image segmentation techniques,"
Pattern recognition, vol. 26, no. 9, pp. 1277-1294, 1993.

[52] G. Stockman, S. Kopstein, and S. Benett, "Matching images to models for
registration and object detection via clustering," IEEE Transactions on
Pattern Analysis and Machine Intelligence, no. 3, pp. 229-241, 1982.

[53] W. Liu and E. Ribeiro, "A survey on image-based continuum-body motion
estimation," Image and Vision Computing, vol. 29, no. 8, pp. 509-523, 2011.

[54] P. J. Besl and N. D. McKay, "Method for registration of 3-D shapes," in
Robotics-DL tentative, 1992, pp. 586-606: International Society for Optics
and Photonics.

[55] J.-P. Thirion, "Image matching as a diffusion process: an analogy with
Maxwell's demons," Medical image analysis, vol. 2, no. 3, pp. 243-260,
1998.

[56] J.-P. Thirion, "Fast non-rigid matching of 3D medical images," INRIA,
1995.

[57] H. Wang, L. Dong, J. O'Daniel, R. Mohan, A. S. Garden, K. K. Ang, D. A.
Kuban, M. Bonnen, J. Y. Chang, and R. Cheung, "Validation of an
accelerated ‘demons’ algorithm for deformable image registration in
radiation therapy," Physics in medicine and biology, vol. 50, no. 12, p. 2887,
2005.

120

[58] P. Rogelj and S. Kovačič, "Symmetric image registration," Medical image
analysis, vol. 10, no. 3, pp. 484-493, 2006.

[59] X. Pennec, P. Cachier, and N. Ayache, "Understanding the “demon’s
algorithm”: 3D non-rigid registration by gradient descent," in International
Conference on Medical Image Computing and Computer-Assisted
Intervention, 1999, pp. 597-605: Springer.

[60] D. Yang, H. Li, D. A. Low, J. O. Deasy, and I. El Naqa, "A fast inverse
consistent deformable image registration method based on symmetric
optical flow computation," Physics in medicine and biology, vol. 53, no. 21,
p. 6143, 2008.

[61] T. Vercauteren, X. Pennec, E. Malis, A. Perchant, and N. Ayache, "Insight
into efficient image registration techniques and the demons algorithm," in
Biennial International Conference on Information Processing in Medical
Imaging, 2007, pp. 495-506: Springer.

[62] S. Benhimane and E. Malis, "Real-time image-based tracking of planes
using efficient second-order minimization," in Intelligent Robots and
Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International
Conference on, 2004, vol. 1, pp. 943-948: IEEE.

[63] E. Malis, "Improving vision-based control using efficient second-order
minimization techniques," in Robotics and Automation, 2004. Proceedings.
ICRA'04. 2004 IEEE International Conference on, 2004, vol. 2, pp. 1843-
1848: IEEE.

[64] E. Haber and J. Modersitzki, "Numerical methods for image registration,"
2004.

[65] P. Cachier, E. Bardinet, D. Dormont, X. Pennec, and N. Ayache, "Iconic
feature based nonrigid registration: the PASHA algorithm," Computer
vision and image understanding, vol. 89, no. 2, pp. 272-298, 2003.

[66] J. Ashburner, "A fast diffeomorphic image registration algorithm,"
Neuroimage, vol. 38, no. 1, pp. 95-113, 2007.

[67] G. E. Christensen, R. D. Rabbitt, M. I. Miller, S. C. Joshi, U. Grenander, T.
A. Coogan, and D. C. Van Essen, "Topological properties of smooth
anatomic maps," 1995.

[68] V. Arsigny, O. Commowick, X. Pennec, and N. Ayache, "A log-euclidean
framework for statistics on diffeomorphisms," in International Conference
on Medical Image Computing and Computer-Assisted Intervention, 2006,
pp. 924-931: Springer.

121

[69] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, "Diffeomorphic
demons: Efficient non-parametric image registration," Neuroimage, vol. 45,
no. 1, pp. S61-S72, 2009.

[70] M. Hernandez, M. N. Bossa, and S. Olmos, "Registration of anatomical
images using paths of diffeomorphisms parameterized with stationary
vector field flows," International Journal of Computer Vision, vol. 85, no.
3, pp. 291-306, 2009.

[71] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, "Symmetric log-
domain diffeomorphic registration: A demons-based approach," in
International conference on medical image computing and computer-
assisted intervention, 2008, pp. 754-761: Springer.

[72] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, "Non-parametric
diffeomorphic image registration with the demons algorithm," in
International Conference on Medical Image Computing and Computer-
Assisted Intervention, 2007, pp. 319-326: Springer.

[73] A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C.
Chiang, G. E. Christensen, D. L. Collins, J. Gee, and P. Hellier, "Evaluation
of 14 nonlinear deformation algorithms applied to human brain MRI
registration," Neuroimage, vol. 46, no. 3, pp. 786-802, 2009.

[74] H. Lombaert, L. Grady, X. Pennec, N. Ayache, and F. Cheriet, "Spectral
log-demons: diffeomorphic image registration with very large
deformations," International journal of computer vision, vol. 107, no. 3, pp.
254-271, 2014.

[75] S. Oguro, J. Tokuda, H. Elhawary, S. Haker, R. Kikinis, C. Tempany, and
N. Hata, "MRI signal intensity based B‐Spline nonrigid registration for pre‐
and intraoperative imaging during prostate brachytherapy," Journal of
magnetic resonance imaging, vol. 30, no. 5, pp. 1052-1058, 2009.

[76] J. C. Park, B. Song, J. S. Kim, S. H. Park, H. K. Kim, Z. Liu, T. S. Suh, and
W. Y. Song, "Fast compressed sensing‐based CBCT reconstruction using
Barzilai‐Borwein formulation for application to on‐line IGRT," Medical
physics, vol. 39, no. 3, pp. 1207-1217, 2012.

[77] W. R. Crum, T. Hartkens, and D. L. Hill, "Non-rigid image registration:
theory and practice," (in eng), Br J Radiol, vol. 77 Spec No 2, pp. S140-53,
2004.

[78] Z. Gu and B. Qin, "Nonrigid registration of brain tumor resection mr images
based on joint saliency map and keypoint clustering," Sensors, vol. 9, no.
12, pp. 10270-10290, 2009.

122

[79] P. Thevenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to
subpixel registration based on intensity," IEEE transactions on image
processing, vol. 7, no. 1, pp. 27-41, 1998.

[80] M. Tan and A. Qiu, "Large Deformation Multiresolution Diffeomorphic
Metric Mapping for Multiresolution Cortical Surfaces: A Coarse-to-Fine
Approach," IEEE Transactions on Image Processing, vol. 25, no. 9, pp.
4061-4074, 2016.

[81] X. Huang, J. Moore, G. Guiraudon, D. L. Jones, D. Bainbridge, J. Ren, and
T. M. Peters, "Dynamic 2D ultrasound and 3D CT image registration of the
beating heart," IEEE transactions on medical imaging, vol. 28, no. 8, pp.
1179-1189, 2009.

[82] G. H. Glover, T. Q. Li, and D. Ress, "Image‐based method for retrospective
correction of physiological motion effects in fMRI: RETROICOR,"
Magnetic resonance in medicine, vol. 44, no. 1, pp. 162-167, 2000.

[83] J. Fang, A. L. Varbanescu, and H. Sips, "A comprehensive performance
comparison of CUDA and OpenCL," in Parallel Processing (ICPP), 2011
International Conference on, 2011, pp. 216-225: IEEE.

[84] D. Kirk, "NVIDIA CUDA software and GPU parallel computing
architecture," in ISMM, 2007, vol. 7, pp. 103-104.

[85] W. Palenstijn, K. Batenburg, and J. Sijbers, "Performance improvements for
iterative electron tomography reconstruction using graphics processing
units (GPUs)," Journal of structural biology, vol. 176, no. 2, pp. 250-253,
2011.

[86] D. Rogers, "Fifty years of Monte Carlo simulations for medical physics,"
Physics in medicine and biology, vol. 51, no. 13, p. R287, 2006.

[87] C. Sadowsky, J. D. Cohen, and R. H. Taylor, "Rendering tetrahedral meshes
with higher-order attenuation functions for digital radiograph
reconstruction," in Visualization, 2005. VIS 05. IEEE, 2005, pp. 303-310:
IEEE.

[88] F. P. Oliveira and J. M. R. Tavares, "Medical image registration: a review,"
Computer methods in biomechanics and biomedical engineering, vol. 17,
no. 2, pp. 73-93, 2014.

[89] B. B. Avants, N. J. Tustison, M. Stauffer, G. Song, B. Wu, and J. C. Gee,
"The Insight ToolKit image registration framework," (in eng), Front
Neuroinform, vol. 8, 2014.

123

[90] H. J. Johnson, M. McCormick, and L. Ibanez, "The ITK software guide,"
Kitware, Inc., 2013.

[91] G. Sharp, N. Kandasamy, H. Singh, and M. Folkert, "GPU-based streaming
architectures for fast cone-beam CT image reconstruction and demons
deformable registration," Physics in medicine and biology, vol. 52, no. 19,
p. 5771, 2007.

[92] C. Dittamo and A. Cisternino, "GPU White paper," 2008.

[93] N. Courty and P. Hellier, "Accelerating 3D non-rigid registration using
graphics hardware," International Journal of Image and Graphics, vol. 8,
no. 01, pp. 81-98, 2008.

[94] M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra, "Simulation of
cloud dynamics on graphics hardware," in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, 2003,
pp. 92-101: Eurographics Association.

[95] P. Muyan-Ozcelik, J. D. Owens, J. Xia, and S. S. Samant, "Fast deformable
registration on the GPU: A CUDA implementation of demons," in
Computational Sciences and Its Applications, 2008. ICCSA'08.
International Conference on, 2008, pp. 223-233: IEEE.

[96] S. S. Samant, J. Xia, P. Muyan‐Özçelik, and J. D. Owens, "High
performance computing for deformable image registration: Towards a new
paradigm in adaptive radiotherapy," Medical physics, vol. 35, no. 8, pp.
3546-3553, 2008.

[97] X. Gu, H. Pan, Y. Liang, R. Castillo, D. Yang, D. Choi, E. Castillo, A.
Majumdar, T. Guerrero, and S. B. Jiang, "Implementation and evaluation of
various demons deformable image registration algorithms on a GPU,"
Physics in Medicine and Biology, vol. 55, no. 1, p. 207, 2010.

[98] Y. Huang, T. Tong, W. Liu, Y. Fan, H. Feng, and C. Li, "Accelerated
diffeomorphic non-rigid image registration with CUDA based on demons
algorithm," in Bioinformatics and Biomedical Engineering (iCBBE), 2010
4th International Conference on, 2010, pp. 1-4: IEEE.

[99] M. D. McCool, A. D. Robison, and J. Reinders, Structured parallel
programming: patterns for efficient computation. Elsevier, 2012.

[100] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, "Paraprox: Pattern-based
approximation for data parallel applications," in ACM SIGARCH Computer
Architecture News, 2014, vol. 42, no. 1, pp. 35-50: ACM.

124

[101] H. Casanova, A. Legrand, and Y. Robert, Parallel algorithms. CRC Press,
2008.

[102] Y. Bai, N. Guo, and G. Agbegha, "Fuzzy Interpolation and Other
Interpolation Methods Used in Robot Calibrations," Journal of Robotics,
vol. 2012, 2012.

[103] N. Bell and J. Hoberock, "Thrust: A productivity-oriented library for
CUDA," in GPU computing gems Jade edition: Elsevier, 2011, pp. 359-371.

[104] J. A. Stratton, V. Grover, J. Marathe, B. Aarts, M. Murphy, Z. Hu, and W.-
m. W. Hwu, "Efficient compilation of fine-grained SPMD-threaded
programs for multicore CPUs," in Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimization, 2010, pp.
111-119: ACM.

[105] C. Nvidia, "Compute unified device architecture programming guide," 2007.

[106] B. T. Yeo, M. R. Sabuncu, T. Vercauteren, N. Ayache, B. Fischl, and P.
Golland, "Spherical demons: fast diffeomorphic landmark-free surface
registration," IEEE transactions on medical imaging, vol. 29, no. 3, pp. 650-
668, 2010.

[107] M. Lorenzi, N. Ayache, G. B. Frisoni, X. Pennec, and A. s. D. N. Initiative,
"LCC-Demons: a robust and accurate symmetric diffeomorphic registration
algorithm," NeuroImage, vol. 81, pp. 470-483, 2013.

[108] L. Zhao and K. Jia, "Deep adaptive log-Demons: Diffeomorphic image
registration with very large deformations," Computational and
mathematical methods in medicine, vol. 2015, 2015.

[109] L. Zhang and Y. Wen, "Log-Demons with driving force for large
deformation image registration," in Neural Networks (IJCNN), 2016
International Joint Conference on, 2016, pp. 3052-3059: IEEE.

[110] H. Lu, M. Reyes, A. Šerifović, A. Šerifović, S. Weber, Y. Sakurai, H.
Yamagata, and P. C. Cattin, "Multi-modal diffeomorphic demons
registration based on point-wise mutual information," in Biomedical
Imaging: From Nano to Macro, 2010 IEEE International Symposium on,
2010, pp. 372-375: IEEE.

[111] S. Nithiananthan, S. Schafer, D. J. Mirota, J. W. Stayman, W. Zbijewski, D.
D. Reh, G. L. Gallia, and J. H. Siewerdsen, "Extra‐dimensional Demons: A
method for incorporating missing tissue in deformable image registration,"
Medical physics, vol. 39, no. 9, pp. 5718-5731, 2012.

125

[112] S. Klein, M. Staring, and J. P. Pluim, "Evaluation of optimization methods
for nonrigid medical image registration using mutual information and B-
splines," IEEE transactions on image processing, vol. 16, no. 12, pp. 2879-
2890, 2007.

[113] H. Talbi and M. Batouche, "Particle swam optimization for image
registration," in Information and Communication Technologies: From
Theory to Applications, 2004. Proceedings. 2004 International Conference
on, 2004, pp. 397-398: IEEE.

[114] L.-t. Zheng and R.-f. Tong, "Image registration algorithm using an
improved PSO algorithm," in International Conference on Information and
Management Engineering, 2011, pp. 198-203: Springer.

[115] C.-L. Lin, A. Mimori, and Y.-W. Chen, "Hybrid particle swarm
optimization and its application to multimodal 3d medical image
registration," Computational intelligence and neuroscience, vol. 2012, p. 6,
2012.

[116] S. Chakraborty, N. Dey, S. Samanta, A. S. Ashour, C. Barna, and M. Balas,
"Optimization of non-rigid Demons registration using cuckoo search
algorithm," Cognitive Computation, vol. 9, no. 6, pp. 817-826, 2017.

[117] L. Gepstein and S. J. Evans, "Electroanatomical mapping of the heart: basic
concepts and implications for the treatment of cardiac arrhythmias," Pacing
and clinical electrophysiology, vol. 21, no. 6, pp. 1268-1278, 1998.

[118] (06-Mar-2017). The Future of Cardiac Mapping (Electrophysiology Study
of the Heart: Mapping Procedure) (Cardiac Arrhythmias) Available:
http://what-when-how.com/cardiac-arrhythmias-new-considerations/the-
future-of-cardiac-mapping-electrophysiology-study-of-the-heart-mapping-
procedure-cardiac-arrhythmias-part-2/

[119] B. Benito and M. E. Josephson, "Ventricular Tachycardia in Coronary
Artery Disease," Revista Española de Cardiología (English Edition),
10.1016/j.rec.2012.03.022 vol. 65, no. 10, pp. 939-955, 2012.

[120] J. Dong, T. Dickfeld, D. Dalal, A. Cheema, C. R. Vasamreddy, C. A.
Henrikson, J. E. Marine, H. R. Halperin, R. D. Berger, and J. A. Lima,
"Initial Experience in the Use of Integrated Electroanatomic Mapping with
Three‐Dimensional MR/CT Images to Guide Catheter Ablation of Atrial
Fibrillation," Journal of cardiovascular electrophysiology, vol. 17, no. 5, pp.
459-466, 2006.

[121] J. Dong, H. Calkins, S. B. Solomon, S. Lai, D. Dalal, A. Lardo, E. Brem, A.
Preiss, R. D. Berger, and H. Halperin, "Integrated electroanatomic mapping

126

with three-dimensional computed tomographic images for real-time guided
ablations," Circulation, vol. 113, no. 2, pp. 186-194, 2006.

[122] K.-W. Kwok, K.-H. Lee, Y. Chen, W. Wang, Y. Hu, G. C. Chow, H. S.
Zhang, W. G. Stevenson, R. Y. Kwong, and W. Luk, "Interfacing fast multi-
phase cardiac image registration with MRI-based catheter tracking for MRI-
guided electrophysiological ablative procedures," ed: Am Heart Assoc,
2014.

[123] J. Pouliot, A. Bani-Hashemi, J. Chen, M. Svatos, F. Ghelmansarai, M.
Mitschke, M. Aubin, P. Xia, O. Morin, and K. Bucci, "Low-dose
megavoltage cone-beam CT for radiation therapy," International Journal of
Radiation Oncology• Biology• Physics, vol. 61, no. 2, pp. 552-560, 2005.

[124] H. Tachibana and T. Akimoto, "IGRT for IMRT," in Intensity-Modulated
Radiation Therapy: Clinical Evidence and Techniques, Y. Nishimura and
R. Komaki, Eds. Tokyo: Springer Japan, 2015, pp. 85-112.

[125] C. C. Ling, E. Yorke, and Z. Fuks, "From IMRT to IGRT: frontierland or
neverland?," Radiotherapy and oncology, vol. 78, no. 2, pp. 119-122, 2006.

[126] K. Brock, M. Lee, C. Eccles, M. Velec, J. Moseley, and L. Dawson,
"Deformable registration and dose accumulation to investigate marginal
liver cancer recurrences," International Journal of Radiation Oncology•
Biology• Physics, vol. 72, no. 1, p. S538, 2008.

[127] B. Sorcini and A. Tilikidis, "Clinical application of image-guided
radiotherapy, IGRT (on the Varian OBI platform)," Cancer/Radiothérapie,
vol. 10, no. 5, pp. 252-257, 2006.

[128] K.-H. Lee, K. C. D. Fu, Z. Guo, Z. Dong, M. C. Leong, C.-L. Cheung, A.
P.-W. Lee, W. Luk, and K.-W. Kwok, "MR Safe Robotic Manipulator for
MRI-Guided Intracardiac Catheterization," IEEE/ASME Transactions on
Mechatronics, vol. 23, no. 2, pp. 586-595, 2018.

[129] Z. Guo, Z. Dong, K.-H. Lee, C. L. Cheung, H.-C. Fu, J. D. Ho, H. He, W.-
S. Poon, D. T.-M. Chan, and K.-W. Kwok, "Compact Design of a Hydraulic
Driving Robot for Intra-operative MRI-guided Bilateral Stereotactic
Neurosurgery," IEEE Robotics and Automation Letters, vol. 3, no. 3, pp.
2515-2522, 2018.

