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Recent advancement of intraoperative imaging technologies allows real-

time view of the tissue morphologies to ensure safer and efficient interventions. 

Particularly, intraoperative imaging is extensively used in surgical scenarios that 

require accurate target localization and precise movement of surgical tools. 

Stereotactic neurosurgery and cardiac catheterization are typical examples. 

However, the intraoperatively acquired image may not be aligned with the 

preoperative image used for planning, due to motion, gravity, or interventions. 

Intensity-based non-rigid image registration is able to resolve such misalignment, 

but it suffers from prolonged registration time due to its high computation 

requirement. This extended registration time makes intensity-based registration 

inadmissible to the highly dynamic surgical scenarios. 

To allow seamless application of intra-operative application without 

disrupting the surgical workflow, there is a constant demand for having a fast 

intensity-based registration. Graphics processing units (GPU) have attracted the 

most attention in the recent years due to its unmatched parallel computing power. 

However, many works of GPU-based image registration have overlooked the 

underlying memory transaction patterns, which can hamper computation efficacy if 

not appropriately managed. In view of achieving fast computation, performance-

aware programming is a specialized practice that involves repeated profiling, 

micro-benchmarking, and code optimization to ensure full device utilization. 
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In this thesis, performance-aware programming techniques were employed 

on GPU to resolve for the high computation requirement in the diffeomorphic log-

demons algorithm, which is one of the most popular intensity-based image 

registration algorithms. The GPU implementation of the algorithm was tested and 

analyzed extensively. By successfully pinpointing and optimizing for the blocking 

operations, significant (>200×) performance speed-up has been achieved as a 

promising result.  
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Chapter 1  

INTRODUCTION 

1.1 Motivation 

Intraoperative (intra-op) imaging allows perioperative visualization of any 

tissue morphological changes. By providing timely visual guidance to the surgical 

instruments, intra-op imaging enables safer and efficient interventions. Particularly, 

intra-op imaging is very useful in surgical scenarios that require precise 

manipulation and control of surgical tools, such as stereotactic neurosurgeries and 

cardiac catheterization. However, anatomical disparity can present between the 

preoperative (pre-op) image and intra-op image, due to physiological motion, 

gravity, or tool-tissue interaction. Such disparity will have to be resolved using non-

rigid image registration. Once the misalignment is resolved, accurate surgical 

guidance can be achieved by virtually augmenting the predefined treatment target/ 

critical regions onto the intra-op images.  

There are two main streams of non-rigid registration approaches: feature-

based and intensity-based registration. Feature-based registration relies on 

automatic feature detection to re-align the image. Intensity-based registration 

accesses the pixel/voxel intensity value for image co-registration. Considering 

image noise and artifacts can be prevalent in the intra-op images, intensity-based 

methods is a more preferable approach due to its higher tolerance to noise and 

artifacts. However, most intensity-based registration requires substantial 

computation to register the images, which can preclude smooth surgical workflow 

in image-guided surgeries. 
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The current trend of non-rigid image registration resides in the realization 

of these co-registration algorithms in the surgical scenario. In particular, despite a 

number of intensity-based image registration algorithms were proposed, these 

algorithms are generally set back by their high computation requirement. To this 

end, there is a need to accelerate the computation process of such registration. 

Computation enhancement can be achieved by utilizing application accelerators. 

Particularly, the graphical processing unit (GPU) is one of the most commonly used 

application accelerators with massive parallel computation power. However, many 

works on GPU image registration overlooked the importance of low-level 

optimizations in their implementations, which can lead to under-utilization of the 

device. In this regard, performance-aware programming is the key to ensure full 

device utilization. With the implementation being optimized, GPU can accelerate 

the image registration process by at least an order of magnitude for seamless 

integration with existing surgical navigation devices. 

The purpose of this thesis is to address the technological gap in the actual 

realization of recent non-rigid image registration algorithms in clinical practice. 

Performance-aware programming techniques will be implemented on GPU to 

accelerate a popular intensity-based image registration algorithm, the diffeomorphic 

log-demons. The main objectives of the thesis include: 

(1) To provide a comprehensive performance analysis of diffeomorphic log-

demons, thus pinpointing the key computation process that bottlenecks the 

computation process; 

(2) To devise proper optimization schemes to accelerate any bottlenecking 

computations pinpointed by (1) using a GPU; and 

(3) To realize high-performance diffeomorphic log-demons on a GPU to enable 

rapid co-registration between the pre-op and the intra-op images. 
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1.2 Thesis organization and main technical contributions 

In Chapter 2, an overview of current intra-op imaging technique, as well as 

the clinical demands of such image-guidance will be highlighted. Basic principles 

of non-rigid image registration, particularly intensity-based image registration, will 

also be included. The chapter concludes by introducing the programming model 

and hardware architecture of modern GPU, and a horizon scan of related work of 

using GPU to accelerate the computation of intensity-based image registration. 

In Chapter 3, extended testing and profiling on the diffeomorphic log-

demons, one of the most popular intensity-based image registration algorithm, will 

be conducted. Different memory access pattern on the GPU will be investigated. 

Moreover, time-critical computation steps of the diffeomorphic log-demons 

algorithm will also be looked into. Focusing on these time-critical operations, 

various performance-aware programming techniques are proposed to resolve the 

computation bottlenecks.  

In Chapter 4, the implementation of an optimized GPU version of 

diffeomorphic log-demons using performance-aware programming techniques will 

be presented. Focusing on the previously identified computation bottlenecks, 

extensive experiments will be conducted to quantitatively investigate the 

computation enhancement brought by performance-aware programming. In-depth 

analysis of such optimized computation will also be performed. Finally, an optimal 

implementation of diffeomorphic log-demons will be presented. 

With the working implementation of diffeomorphic log-demons on GPU, 

Chapter 5 discusses the technical considerations for this optimized GPU image 

registration scheme to be employed for extensive applications. With the ability to 

swiftly perform the registration, potential impact of this work will also be discussed. 

This implementation of this high-performance diffeomorphic log-demons on GPU 

will also be open sourced in the near future.  
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Chapter 2  

INTRAOPERATIVE NON-RIGID  

IMAGE REGISTRATION 

2.1 Introduction 

Image-guided intervention has caught constant research attention since 

1986 when the first image-guided surgery is performed [1]. It satisfies the much-

needed accuracy requirement by providing essential visual guidance to the surgeons. 

Particularly, having thorough knowledge on the locations of the critical/target tissue 

through image guidance is imperative to perform precise instrument manipulation. 

Damage to the surrounding healthy tissues, and subsequently invasiveness dealt on 

the patient can, therefore, be reduced. The advancement of image-guided surgeries 

also enables minimally invasive interventions by visualizing the patient’s anatomy 

in real-time.  

In this chapter, a brief survey on intra-op imaging techniques will be 

conducted, followed by the clinical demands of intra-op imaging in some surgical 

applications. Potential problems caused by misalignment between the pre-op image 

and the intra-op image will also be discussed. Non-rigid registration schemes are 

the clue to resolving the image misalignment, but they will have to be robust and 

fast enough to cope with the dynamic intra-op scenario. A balance between 

accuracy, reliability and computation speed will have to be made. GPU is one of 

the promising application accelerators which can be used to accelerate the 

registration. To pinpoint the current research demand to enable intra-op registration, 
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a survey of image registration techniques and related work to accelerate the 

registration process is also presented in the latter part of this chapter. 

2.2 Intraoperative imaging 

Image-guided intervention is a general term describing any surgical or 

interventional procedures where the procedure is done in conjunction with intra-op 

imaging to guide the interventional procedure. It is often used to perform operations 

that associate with high risk, for example, when the treatment target (e.g. tumor) is 

very close to critical regions or organs (e.g. brain stem, major arteries, etc.). The 

surgical instrument used in such intervention is often tracked. A wide variety of 

intra-op imaging modalities are developed for accurate tracking of the surgical 

apparatus and tissue margins, such as ultrasound-based [2], optical-based [3-5], X-

ray-based [6], and MR-based [7]. Particularly, the latter two imaging modalities are 

able to provide timely intra-op images with a fixed frame of reference, which can 

be useful to realign the image with a pre-op roadmap for accurate guidance [8, 9]. 

In this section, the general surgical workflow of image-guided intervention 

will be introduced, which depicts the current demand for frequent intra-op scans 

throughout the procedure. The basic principle, application, advantages, and 

disadvantages of some mainstream intra-op imaging modalities are also discussed.  

2.2.1 Surgical workflow in image-guided intervention 

Prior to any surgery, surgical planning is essential for the surgeons to have 

an overview. Pre-op scanning in different imaging modalities allows the 

construction of a knowledge-based model that allows surgeons to plan the operation 

procedures. For example, in image-guided radiation therapy, the planned target 

volume and other critical regions/organs are segmented during the treatment 

planning process [10]. This knowledge-based model provides invaluable guidance 

for the surgeons to select appropriate strategies to achieve the expected clinical 

outcomes. However, such pre-op model will not account for any possible 

anatomical/pathological changes that occur after the pre-op scan. Any 

misalignment between the pre-op models and the actual surgical scenario 

introduces uncertainties to the surgeons. 
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Intra-op imaging allows perioperative localization of the treatment target as 

well as the surgical instrument. Prior to any critical procedures (e.g. insertion of the 

biopsy needle, surgical resection, etc.), an intra-op image is usually acquired for the 

surgeons to make any necessary adjustments to the instruments. This image 

acquisition – instrument reposition process may iterate for several times in order to 

get the surgical tool to align with the treatment target [11]. Furthermore, treatment 

effectiveness of surgical procedure can be instantly validated using intra-op scans 

after any critical procedures (e.g. placement of electrode, removal of tumor, etc.) 

are performed. Malposition of instruments or implants can also be promptly 

visualized peri-operatively to make any necessary adjustments. 

In all, intra-op guidance mitigates the risks of unintentional damage to 

surrounding healthy tissue near the treatment area. With accurate target localization 

and precise instrument manipulation, image-guided intervention can undoubtedly 

improve surgical safety and accuracy.  

2.2.2 Medical imaging modalities for image-guided intervention 

2.2.2.1 Intra-op computed tomography 

Intra-op computed tomography (CT), alongside with other X-ray-based 

scans (e.g. radiography and fluoroscopy), are well adopted in image-guided 

interventions [12, 13]. The principle of these X-ray-based scans is based on distinct 

radiodensity between different body parts: body parts with a high radiodensity (e.g. 

bones) can attenuate incident X-ray from the detector on the other side. Such 

difference in radiodensity is measured by attenuation units that lie on the 

Hounsfield scale. Hence, the brightness of any spot on an X-ray detector represents 

the summation of the radiodensity of all materials along the line of X-ray projection.  

Intra-op CT makes use of back-projection algorithms [14] to reconstruct the 

3D tomography from multiple of radiographs imaged at different incident angles. 

To-date, intra-op Cone-beam CT (CBCT) scanners are usually adopted as they tend 

to have lower scan time. The average scan and reconstruction time required for a 

CBCT scan is typically 1 minute [15, 16]. The image resolution of CBCT scans is 

also usually quite high (typ. resolution = 0.2mm3) [17]. Intra-op CT is widely 
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adopted in numerous operations that require target localization, such as cardiac 

catheterization, neurosurgery, and radiotherapy. 

However, the major drawback of the intra-op CT is the involvement of 

potentially harmful ionizing radiation. Also, as most soft tissues (e.g. brain and 

myocardium) have similar attenuation coefficients, X-ray-based imaging 

techniques produce a high contrast images of these tissues [18]. This inability 

hinders the sensitivity of the intra-op scanners, making accurate localization of soft 

tissue margins very difficult. Although increasing X-ray intensity can increase 

image contrast, it will also inevitably increase the radiation exposure to the patient 

[15]. As a result, to avoid excessive radiation dose acumination, frequent intra-op 

scans using CT is also not desirable. Thus, intra-op CT a less useful in applications 

that require constant updates of the position of surgical instruments and tissue 

margins by frequent imaging. 

 

Figure 2.1 (a) Intra-op CBCT scanner. (b) Working principle of CBCT 
scanner. (c) Hounsfield scale used to quantify radiodensity. (d) Axial CT image of 
the brain showing the lateral ventricles. 
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2.2.2.2 Intraoperative MRI 

Magnetic resonance imaging (MRI) is one of the more important imaging 

modalities. It is a non-invasive imaging technique due to the lack of involvement 

of ionizing radiation. Being first proposed in 1971, physicists had already found 

nuclear magnetic resonance useful in body tomography scans, as well as tumor 

diagnosis [19]. The basis of MRI is to excite and detect change in rotational 

direction of protons in water, which make up of most soft tissue. As a result, MRI 

is able to produce clear images of soft tissues with excellent contrast. Moreover, 

MRI can also reveal any physiological changes inside the body, including the 

formation of scars, edema, and fluid flow [20]. As such, MRI poses significant 

contributions to the actual clinical usage. For example, surgeons are able to directly 

visualize the effect of the ablation delivered by observing the scar/edema formed 

using MRI. 

 

Figure 2.2 (a) Wide-bore iMRI scanner. (b) iMRI enables localization of 
surgical tool inserted into the deep brain region. (c) Intra-op MR thermometry 
allows visualization of the deep brain ablation progress. 

There is a large clinical demand to employ MRI intraoperatively given the 

ability of imaging soft tissues in high contrast. However, most MRI scanners have 

to be close-bored to maintain a strong magnetic field, which precludes direct access 

to the patient. The long MRI scanning and reconstruction time required is also 

prohibiting. Therefore, the demand for intra-op MRI (iMRI) has motivated the 

development of open- or wide-bore MRI imagers to allow easier patient acces. The 
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first iMRI-guided neurosurgery performed in Brigham and Woman’s Hospital  with 

a double-donut shaped intra-op imager [21]. This double donut design of the MRI 

provides a spherical imaging volume with 30cm in diameter and a relatively wide 

(50cm) area for direct patient access [22]. However, the long reconstruction time 

can be limiting; the small area-of-access is also inconvenient. 

As the technology advances, the scanning time for MRI can be drastically 

reduced. To-date, rapid MRI can be achieved under-sampling the k-space [23]; real-

time MRI with a frame rate of 3.6 frame/s is also reported [24]. Fast low angle shot 

MR imaging (also known as “FLASH” MRI) is usually used for real-time MRI with 

a typical frame rate of 5 frames per second [25]. However, as the scanning time for 

MRI is directly proportional to the number of slice acquisition, these real-time 3D 

MRI images usually have a low resolution in terms of slice thickness. Despite 

having a low resolution, real-time MR image guidance can be achieved with the 

assistance of MR tracking coils [25-27]. Neurosurgery is one of the most important 

applications of real-time iMRI. Apart from neurosurgical intervention, iMRI has 

the potential to be applied in a wide range of stereotactic procedures on highly 

deformable body parts such as the breast, prostate and liver. In all, not only MRI 

can provide a continuous and clear image of soft tissue, but it is also non-invasive 

in nature. With the recent advancement of iMRI, these clear advantages have put it 

become one of the more promising intra-op imaging technique for various type of 

intervention procedures.  
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2.2.3 Clinical applications and potential problems 

The emergent of intra-op imaging techniques enables safer interventional 

procedures. These intra-op images can, not only present the much-needed guidance 

of anatomical structures within the regions of interest, but also provide information 

that cannot be captured preoperatively. In this section, several surgical applications 

will be reviewed to illustrate the importance of intra-op image guidance and their 

potential problems. 

2.2.3.1 Stereotactic neurosurgery 

Stereotactic neurosurgeries involve placing objects or removing tissues 

to/from the brain. Typical examples are stereotactic biopsy [28], stereo-

electroencephalography [29] and deep brain stimulation [30]. As the brain is 

extremely important and delicate, these interventions demand the highest accuracy 

and precision. Intra-op imaging is actively utilized to avoid any unintended damage, 

particularly to the brain’s critical/functional regions. For example, imprecise 

positioning of the instrument can result in a deviated trajectory, which can 

significantly increase the risk of intracranial hemorrhage. In order to avoid 

damaging any critical tissues, an acceptable error of a mere 1-2mm in any 

neurosurgery is generally established [31].  

However, deformation of the brain can cause significant issues 

peri-operatively. Since the brain is a soft, fluid-filled organ, it is not unusual for the 

brain to deform throughout the surgical process. This deformation, known as “brain 

shift”, can be significant: intra-op brain deformation of 10mm after craniotomy is 

not uncommon (Figure 2.3) [33]. Such deformation would undoubtedly affect the 

accuracy of the preoperatively-gathered data, as well as the associated surgical plan. 

As such, surgeons will have to be conservative in order not to damage any healthy 

tissue near the treatment target.  
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Figure 2.3 Brain shift after craniotomy and tumor removal [32] (upper row); 
image distortion in diffusion MRI (lower row). Misalignments between the images 
are visualized in the image overlay at the last column.  

In light of the uncertainty introduced by brain deformation, image guidance 

is a fundamental part of any neurosurgical procedures. The intraoperatively 

acquired images enable accurate localization of the instrument and the target. Hence, 

surgeons can respond accordingly to compensate the misalignment due to brain 

shift. The first reported image-guided neurosurgical procedure is supported by 

intra-op CT [34]. Yet, as intra-op CT cannot provide high contrast images to 

visualize the soft tissue, it is insufficient to meet the supreme accuracy requirement 

in neurosurgeries. Other intra-op guidance approaches using ultrasound-based or 

optical-based guidance are also undesirable, due to the increased invasiveness to 

fulfill the requirement of having direct line-of-sight or contact of the dura [35].  
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To-date, iMRI-guided neurosurgeries are more prevalent as the technology 

advances. The iMRI images can reveal the anatomical structure in a detailed manner, 

thus allowing accurate localization of target tissue. Furthermore, iMRI also allows 

the surgeons to visualize the surgical effectiveness by performing scans 

peri-operatively. For example, in brain tumor resection, iMRI images can be used 

to guide the surgeons to clean up any remaining tumor with a stereotactic tool, thus, 

maximizing the effectiveness of the surgery. However, iMRI is susceptible to 

distortion. Let aside static field inhomogeneity, chemical shift, and susceptibility 

artifacts, the nonlinearity of the B1 gradient field contributes most to such distortion. 

It has been reported that the spatial distortion can be as much as 25mm at the 

perimeter of an uncorrected 1.5T MRI. Even after standard gradient calibration, the 

error can still remain within the 1% range (typ. ~4mm). This error can be significant 

due to the straight accuracy requirement in stereotactic neurosurgeries. 

In all, there exist a high demand for compensating the brain deformation and 

MRI distortion for neurosurgery. In order to provide a visual reference for 

neuronavigation, one can overlay/augment the predefined critical regions onto the 

intra-op image, provided that the deformation of the brain due to brain shift is 

known. Although the general deformation of “brain shift” can be visualized using 

iMRI, detailed localization of the critical tissue that requires advanced imaging 

techniques cannot be performed intraoperatively. The error brought by MRI 

distortion will also need to be resolved. This can be achieved by co-registering the 

intra-op images and the pre-op images. As rapid and frequent scans are required to 

ensure navigation accuracy, this co-registration have to be performed in a speedy 

manner to cope with the highly dynamic surgical workflow.  
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2.2.3.2 Cardiac catheterization 

Cardiac catheterization is another example to showcase the importance of 

intra-op imaging. Particularly, cardiac electrophysiotherapy (EP), an effective 

treatment to cardiac fibrillation, require frequent intra-op imaging. Cardiac EP is 

performed by inserting a long (1.5m), thin (Ø2.67mm) catheter from the femoral 

vein to the left atrium perform ablation on the tissue. This ablation, known as 

pulmonary vein isolation, is guided by a pre-op electro-anatomical (EA) roadmap 

that is collected prior to the intervention. The pre-op EA roadmap is essential as it 

act as a fundamental visual reference to pinpoint the ablation targets.  

Image guidance is the key to achieve a successful cardiac catheterization. 

Constant use of intra-op imaging techniques, including fluoroscopy and cardiac 

ultrasound, are required throughout the interventional procedure [37]. However, 

fluoroscopy images lack essential image contrast; cardiac ultrasound images can 

also be blurry and misleading. Furthermore, fluoroscopy and ultrasound images are 

unable to visually any physiological changes in response to the interventional 

procedure. For example, while scar formation around the pulmonary vein can 

guarantee complete isolation, edemas formed due incomplete ablation can allow 

recurrent atrial fibrillation even after the EP procedure. However, both fluoroscopy 

and cardiac ultrasound are unable to visualize such scars or edema. 

The emergence of iMRI has opened up a new approach to achieving image 

guidance in the cardiac EP procedure. Not only MRI possesses the ability to 

visualize soft tissue clearly, but such guidance can also be used to stably steer the 

catheter to the lesion targets within the confined and rapidly deforming cardiac 

chamber. MR tracking coils can also be used to provide reliable localization of the 

tip of EP catheter [25-27]. Moreover, T2-weighted MRI can also be used to 

precisely and responsively monitor the physiological changes in cardiac tissues 

(Figure 2.4) [36, 38]. Such visual guidance can readily tell the surgeons whether 

the ablation has been successful by visualizing the scars or edema that arise after 

the ablation peri-operatively.  
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Figure 2.4 iMRI capable of visualizing scars and edema distinctively with 
different imaging sequences (e.g. T2-MRI, DT-MRI). Image retrieved from [36]. 

Numerous research groups have already conducted many clinical trials to 

demonstrate the value of iMRI guidance for cardiac EP in the clinical routine. 

However, despite the ability to visualize the tissue morphologies perioperatively, 

image-guided cardiac EP lacks real-time update to the roadmap according to the 

intra-op image. A reliable visual reference can only be established to guide the 

catheter if the EA map is able to be mapped and overlaid on the intra-op image. 

However, to overlay the EA map, the pre-op and the intra-op images will have to 

be co-registered. Such registration is essential to restore the deformation of the 

tissues due to rapid beating motion of the myocardium. Nonetheless, this co-

registration between the pre-op and intra-op images is very challenging due to the 

possibility of having a high image mismatch. Furthermore, although non-rigid 

image registration algorithms are available, the major bottleneck resides in the 

computation time for the registration, in which a long computation time can be 

considered as clinically impractical for MRI-guided EP. 
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2.2.3.3 Intensity-modulated radiotherapy 

The aim of intensity-modulated radiotherapy (IMRT) is to deliver an 

effective radiation dose to the tumor while minimizing the dose to the surrounding 

tissues. Current practice of IMRT acquires a detailed pre-op plan composed by 

high-resolution CT/MRI images to define the clinical target volume. During the 

treatment planning process, the radiation delivery sequences are optimized to make 

sure the clinical target volume receive sufficient radiation dose. However, this 

clinical target volume will inevitably morph over time due to tissue deformation, 

tumor shrinkage, as well as weight loss. Such misalignment can be significant, 

especially in radiotherapy treatments that span multiple weeks [39]. Treatment re-

planning is therefore usually required. This morphing can often lead to a mismatch 

between the pre-op image and the actual tumor location, particularly the boundary 

of the planned tumor volume can be affected (Figure 2.5). 

 

Figure 2.5 Tumor contours from 5 distinct treatment days overlaid on pre-op 
MRI image. Noticeable shrinkage of the tumor can lead to radiation overdose of 
surrounding normal tissue, as well as radiation under-dose to the target volume. 
Image retrieved from [39]. 
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The change in clinical target volume due to extensive tissue deformation is 

undesirable. As uncompensated misalignment between the treatment plan and real-

time anatomy can lead to radiation under-dosage to the treatment target, or over-

dosage to surrounding normal tissue or organ. With the advancement of intra-op 

imaging techniques, image-guided radiotherapy (IGRT) adds another layer of 

protection by allowing CBCT images to be acquired immediately prior to the 

treatment [40]. Once the intra-op image is obtained, necessary adjustments to the 

radiation delivery plan as well as a re-evaluation of the dosimetric deposition can 

be performed accordingly [41]. 

However, there is a constant demand for co-registering the pre-op treatment 

plan with the intra-op CBCT images for effective radiation dose delivery. Despite 

IGRT can visual the deformation of the clinical target volume, the computation 

required to non-rigidly aligning the two images can be time-consuming. Therefore, 

IGRT is not extensively used for every patient receiving radiotherapy, but is only 

adopted in a few high-risk patients.  

2.3 Demands for intra-op non-rigid image registration  

Advances in image-guided techniques, especially with the recently-emerged 

iMRI, enable visual guidance to identify the anatomical target of interest during the 

procedure. To date, recent intra-op navigation systems are also capable to virtually 

augment the preoperatively segmented critical/target tissues on the intra-op image 

[42, 43]. However, surgical interventions can induce large-scale tissue deformation. 

Also, most images acquired by intra-op imagers are also prone to distortion. For 

example, CBCT images can be susceptible to blooming effect at regions with high 

radiodensity gradient [44]. iMRI images are also susceptible to nonlinear distortion 

due to B-field gradient inhomogeneity (Figure 2.3) [45]. The combined effect of 

both surgical interventions and intra-op image distortion can induce large 

misalignment between the pre-op and intra-op images. Such misalignment can 

make the surgical plan very inconsistent to the actual anatomy during the 

intervention. 

Many intra-op navigation systems employ rigid registration to align the pre- 

and intra-op images. However, rigid registration cannot compensate for any non-
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linear image discrepancies due to the aforementioned reasons. Besides, non-rigid 

registration possesses the ability to recover the potential misalignment between the 

pre-op and intra-op images. However, non-rigid registration schemes are generally 

set back by their high computation requirement. As frequent intra-op scans will be 

performed during operation, non-rigid registration will have to be performed in a 

fast and frequent manner. In this section, a survey on different non-rigid image 

registration strategies is presented. The performance of these registration schemes 

on registering intra-op MR images will also be discussed based on three 

fundamental aspects: accuracy, robustness and computation requirement. 

2.3.1 Overview 

The goal of image registration is to determine an optimal transformation ( 𝑇) 

between the fixed image (𝐹 ) and the moving image (𝑀). Such transformation 

represents the mapping of image features between two corresponding, misaligned 

images. In geometry, the equation below depicts the transformation 𝑇 [46]:  

 𝑇:  𝑀 ↦ 𝐹 ⟺ 𝑇(𝑀) = 𝐹 (1) 

Of which one can perceive that, given an accurate transformation 𝑇, the transformed 

moving image 𝑇(𝑀)  yields an exact image as the fixed image 𝐹 . This 

transformation is determined by image registration. Besides, the transformation can 

be represented in different formats. For example, rigid image registration yields a 

matrix that defines translation, rotation, scaling or sometimes affine transformation. 

In contrast, non-rigid image registration yields a set of transformation parameters 

that describe the deformation between two images. In general, rigid image 

registration can be performed very quickly, despite having a poor registration 

accuracy. Non-rigid image registration possesses the potential to achieve very high 

registration accuracy, however, is much more computationally demanding. 

This thesis focuses on non-rigid image registration, as rigid registration is 

inimical to the high accuracy demand for intra-op use. In all, there are two major 

approaches to non-rigidly register the images: feature-based and intensity based. 

Both approaches rely on pixel intensities to register the fixed and moving images, 

but the former approach performs the registration on a higher level by evaluating 
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image features using clues points, lines or even area. In contrast, intensity-based 

image registration approaches make uses of the native information provided by the 

image intensity, for example intensity gradient and pixel-wise intensity difference, 

to register the images. Details of these approaches will be discussed in 2.3.2 and 

2.3.3 . 

2.3.2 Feature-based non-rigid image registration 

Feature-based image registration is a common approach to non-rigidly 

register two images. The basis of feature-based non-rigid image registration relies 

on the identification and matching of distinctive features. There are four major steps 

involved in feature-based image registration, namely feature detection, feature 

matching, transformation model optimization, and image resampling [47].  

Image features detected on images to be registered are often called as control 

points (CP). Feature-based registration framework matches and evaluates the 

correspondences between two sets of CPs extracted from the fixed and moving 

images. Such image features can be points, lines, or even enclosed regions (Figure 

2.6). For example, a bright/dark spot/line/area in an image can be eligible for CP 

detection. The detection of CP on the image shall preferably be performed in an 

automated manner. In this light, many methods are developed to automatically 

detect the control points for image registration. For example, point features can be 

detected by intersections [48] or local curvature discontinuities using Gabor 

wavelets [49]; line features can be detected by Canny edge filters [50]; region 

features can be detected using automatic segmentation methods [51].  
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Figure 2.6 Feature-based image registration framework using CPs. CPs from 
the edge features (d-e) of the (a) fixed and the (b) moving image are extracted using 
a Canny edge filter. (e-f) The resultant deformation field can be generated 
accordingly to realign the images. 

The detected CP on the fixed and moving images will have to be matched 

in order to calculate the transformation between the images. Such matching can be 

performed, not only using the intensity values at the corresponding pixels of CPs 

but also the spatial distribution of the feature. Clustering techniques are often 

employed to match the CP being connected by an abstract edge or a line [52]. Once 

the features are matched, a transformation parameter can be computed to determine 

the spatial transformation between the two images.  
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Figure 2.7  Free-form deformation transforming the point P to P’ defined by 
re-alignment of control points (red dots). Image retrieved from [53]. 

The transformation model used in feature-based image registration is 

parametric in nature. Free-form deformations (FFD) are often used to parameterize 

the deformation. FFD define a mesh of passive grid points that govern the 

deformation of the image, with the edges of each mesh cell defined using spline 

lines (Figure 2.7). Such spline lines can be B-spline, thin-plate spline (TPS) or 

others. In feature-based image registration using FFD, the detected CP pair on the 

fixed and moving images will be aligned altering/deforming the passive 

deformation grids. The iterative closest point algorithm is one of the well-known 

and robust approaches to register the control points in 3D [54]. However, the 

techniques to perform such re-alignment remains to be one of the most studied topic 

to-date.  

To facilitate the search of optimal deformation parameters, most feature-

based image registrations are usually conducted in an iterative manner. The 

resultant mesh grid describing the deformation can be also used as a parametric 

mapping function that depicts the transformation of the moving image and thus 

registering/re-aligning two images. In the last step of feature-based image 

registration, the moving image is deformed (or “warped”) by interpolating the 

image according to the mapping function. This interpolation is an essential step to 

transform the moving image by the mapping parameters. A wide variety of 

interpolants are used in the warping process, including trilinear/tricubic functions, 
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spline functions, Gaussian functions, truncated sinc functions, along with many 

others [47]. Such interpolation strategy is deterministic to the accuracy of the 

transformation that describes the misalignment. Despite having a wide variety of 

choice in terms of interpolants, trilinear interpolation is generally considered as a 

trade-off between accuracy and computation efficiency.  

2.3.3 Intensity-based non-rigid registration 

Intensity-based image registration, in contrary to its feature-based 

counterpart, does not require automated detection of image features to register the 

image. Instead, it directly exploits the pixel/voxel intensity values to perform the 

co-registration. Most intensity-based image registration schemes carry the 

assumption that the pixel values contain enough information for the image 

registration process, which happens to be true in most cases. Particularly, the 

“demons algorithm” is one of the most renowned intensity-based image 

registration schemes. In this sub-section, a comprehensive review of the demons 

algorithm and its variants will be presented. 

2.3.3.1 Demons algorithm 

Thirion [55] first proposed the demons algorithm in 1998. The name of this 

algorithm is inspired by its analogy to Maxwell’s demons in the field of 

thermodynamics. The main concept of the demons algorithm resides in the optical 

flow of the pixels/voxels. This concept is similar to the particle diffusion process: 

concentration gradient across a membrane drives particle movement. Similarly, 

intensity gradient between the mismatched images drives the intensity to “diffuse” 

across the pixels/voxels boundary. Therefore, the deformation in the demons 

algorithm is driven by the intensity gradient. In theory, the algorithm can register 

any datasets as long as the intensities between the fixed and moving images are 

conserved. The original demons algorithm is often referred to “additive demons” as 

the addition operations is used to manipulate the vector fields. The pseudocode in 

Algorithm 2.1 describes the general framework used in the demons algorithm [55]. 

Algorithm 2.1 Pseudocode showing the general framework used in the additive 
demons algorithm.  
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Pseudocode: General framework for the additive demons algorithm 

1 Input: Fixed image 𝐹 and moving image 𝑀 

2 Do until Harmonic energy (𝐸) is minimized: 

3 Compute transformation update 𝑢  based on 𝐹 and 𝑠 (𝑀) 

4 Update transformation for next iteration 𝑠 ← 𝑠 + 𝑢  

5 Evaluate Harmonic energy (𝐸) 

6 Output: Transformation 𝑠 = 𝑠  from 𝑀 to 𝐹 

 

The demons algorithm is an iterative framework which updates the 

deformation field 𝑠 in a step-wise manner. The deformation field is updated by the 

adding the update vector field 𝑢 in each iteration. Such update is driven by the 

“forces” that depends on the both image gradient and pixel/voxel intensity 

difference of the fixed and transformed moving image. The resultant transformation 

that depicts the pixel/voxel displacement is represented by a deformation field 𝑠. 

Note that this registration scheme is non-parametric in nature, as the 

transformation/displacement of every pixel/voxel can be independent to each other. 

As the deformation update is driven by the pixel/voxel information of the input 

images, the algorithm is also considered to be stable, and it will converge 

unconditionally over iterations.  

To date, a couple of “demons force” variants were developed to improve the 

accuracy and robustness of the algorithm [56-60]. Different “demons force” 

formulation, including passive force, active force, symmetric forces, among others, 

attempts to improve the registration by accelerating the convergence rate of the 

registration. Despite these variants of “demon’s force” are distinguishable to each 

other, the main concept of the whole registration algorithm remains unchanged. 

Table 2.1 below also provides a comprehensive summary of different updating 

schemes developed. 

Table 2.1 Summary of different update rules under the additive demons 
framework. 

Name Update rule Ref. 
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Passive Force 𝑢 =
(𝑠 (𝑀) − 𝐹)∇𝐹

(𝑠 (𝑀) − 𝐹) + |∇𝐹|
 [55] 

Evolved 

Passive Force 
𝑢 =

4(𝑠 (𝑀) − 𝐹)∇𝐹|∇𝐹||∇𝑀|

[2(𝑠 (𝑀) − 𝐹) + |∇𝐹| + |∇𝑀| ](|∇𝐹| + |∇𝑀| )
 [56] 

Active Force 𝑢 =
(𝑠 (𝑀) − 𝐹)∇(𝑠 (𝑀))

(𝑠 (𝑀) − 𝐹) + ∇(𝑠 (𝑀))
 [57] 

Double Force 𝑢 =
(𝑠 (𝑀) − 𝐹)∇𝐹

(𝑠 (𝑀) − 𝐹) + |∇𝐹|
+

(𝑠 (𝑀) − 𝐹)∇ 𝑠 (𝑀)

(𝑠 (𝑀) − 𝐹) + (∇𝑠 (𝑀))
 

[57, 

58] 

Adjusted 

double force 
𝑢 =

(𝑠 (𝑀) − 𝐹)∇𝐹

𝛼 (𝑠 (𝑀) − 𝐹) + |∇𝐹|
+

(𝑠 (𝑀) − 𝐹)∇ 𝑠 (𝑀)

𝛼 (𝑠 (𝑀) − 𝐹) + (∇𝑠 (𝑀))
 

[57, 

59] 

Inverse 

Consistent 
𝑢 =

𝑠 (𝑀) − 𝑠 (𝐹) ∇ 𝑠  (M) + ∇ 𝑠 (𝐹)   

𝑠 (𝑀) − 𝑠 (𝐹) + ∇ 𝑠 (𝐹) + ∇ 𝑠  (𝑀)
 [60] 

* ∇(⋅) denotes the pixel gradient of an image. 

As the demons algorithm is iterative in nature, the whole registration process 

can be considered as an optimization problem. Pennic et al [59] first proposed an 

optimization framework for the demons algorithm. Vercauteren et al. also showed 

that the inverse consistent method [60] can be cast to the efficient second-order 

minimization framework [61][62, 63], which is able to solve for the target 

transformation effectively solved using gradient descent and/or variational schemes 

[59, 64]. 

To compute the best transformation field, these optimization schemes 

evaluate and minimize the cost function, known as the Harmonic Energy (𝐸). This 

harmonic energy not only compare the similarity (𝑆𝑖𝑚) between the fixed image 

and the transformed moving images, but also considered the likelihood (𝑅𝑒𝑔) for 

such deformation to occur: 
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𝐸 =

1

𝜎
𝑆𝑖𝑚 𝐹, 𝑠 (𝑀) +

1

𝜎
𝑅𝑒𝑔(𝑠) (2) 

Where 𝜎  and 𝜎  are the regulation terms for the optimization. Minimization of this 

harmonic energy is achieved by optimizing the similarity term and the likelihood 

term in an alternative manner [61]. Particularly, the similarity term is usually 

evaluated in terms of mean squared error (MSE). The likelihood of having such a 

deformation field is usually determined by the field Jacobean, which indicates the 

local stretch, shear and, rotation of the field. Cachier et al. also proposed an 

auxiliary correspondence term regarding to iconic features during the evaluation of 

the harmonic energy [65]. This auxiliary term can stabilize the optimization process 

of the regularization term throughout the registration process.  

The additive demons framework has been well established and widely 

adopted. However, the additive nature of the deformation update disregards the fact 

that the deformation update vector field is representing a spatial transformation. 

Therefore, addition or subtraction of a vector field does not necessarily preserve the 

topology of the field [66, 67]. As a result, one-to-one mapping between the pre- and 

post-transformed image cannot be guaranteed. The absence of one-to-one mapping 

implies that any deformation fields generated under the addictive framework are 

not invertible. This incapability of inverting the deformation field is illustrated in 

Figure 2.8. As such, the additive update scheme can only provide an approximation 

of the field after transformation. This approximation will not hold valid upon large 

deformation, or when the field is being updated in multiple instances.  
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Figure 2.8 Test of invertibility for additive spatial transformation.  

(a-b) Opposite transformation yielded by vector field addition/subtraction.  

(c-d) Composite of these opposite transformation cannot cancel out each other, 

indicating the fields are not invertible. Image retrieved from [66]. 

2.3.3.2 Diffeomorphic log-demons algorithm 

Ashburner et al. [66] introduced the Diffeomorphic Anatomical Registration 

using Exponentiated Lie Algebra (DARTEL) algorithm, which utilizes 

diffeomorphism to allow large deformation for image registration. Diffeomorphism 

is the transformation of a differentiable manifold that belongs to the Lie Group [68]. 

It processes a lot of beneficial mathematical properties which are desirable in image 

registration. The most remarkable property that makes diffeomorphism useful is 

that the topology can be preserved even when there is a large deformation. Folding 

of a diffeomorphic manifold is also not possible. As the diffeomorphic 

transformation preserves image topology, global one-to-one mapping is guaranteed. 

Thus, given any diffeomorphic transformation field, it is possible to “undo” such 

transformation by providing a complementary backward transformation.  
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In all spatial transformation under the diffeomorphic framework, mapping 

an image with the transformation 𝑠 is equivalent to composing the image with 𝑠. 

Similarly, consecutive update to the mapping with multiple transformations 

{𝑠 , 𝑠 , … , 𝑠 } is equivalent to consecutive compositions on the image. Such 

composition is achieved by resampling and interpolating one field by another. 

Therefore: 

 𝑠(𝑥) = 𝑠 ∘ 𝑥 (3) 

 𝑠 {… 𝑠 [𝑠 (𝑥)]} = 𝑠 ∘ … ∘ 𝑠 ∘ 𝑠 ∘ 𝑥 (4) 

Contrast to additive updates which provide only an approximation, this compositive 

update scheme provides an accurate representation of the mapping even after 

multiple transformations.  

In the DARTEL algorithm, the diffeomorphic deformation Φ is no longer 

defined by the deformation field. Instead, the deformation is defined by a stationary 

vector field (SVF), 𝑣. Such model yields the differential equation [66]: 

 𝑑Φ

𝑑𝑡
= 𝑣(Φ| ) 

(5) 

which describes the evolution of the deformation field starting with an identity 

transform Φ| = 0  to the final transformation Φ| . Traditionally, simple 

integration methods can be used to compute the solution. However, considering 

integration will take place on every voxel, the algorithm can be very 

computationally expensive. As the velocity vector field is the time divertive of the 

diffeomorphic deformation field that belongs to the Lie group, the vector field itself 

can be considered as a member of Lie group structure that resides within the log-

domain [68]. Therefore, Lie algebra can be applied, and the resultant deformation 

field can be obtained by computing exponentiating the SVF:  

  Φ( ) = exp(𝑣) (6) 
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This relationship between the velocity vector field 𝑣 and the deformation field Φ is 

of utmost importance in the development of diffeomorphic log-demons [69]. Similar 

work also exploit SVF to deal with diffeomorphic transformations [70].  

With the relationship between the velocity vector field and diffeomorphic 

deformation field being established, Vercauteren extended the demons algorithm 

and incorporated the diffeomorphic framework into it [69]. By introducing the SVF 

used in DARTEL [66], the diffeomorphic log-demons algorithm now enforces 

diffeomorphism under the demons framework. Similar to the additive demons, an 

update field 𝒖 is also computed according to the image intensity gradient as well as 

pixel/voxel-wise intensity difference. However, diffeomorphic log-demons apply 

this update on the velocity field 𝒗 , which indirectly update the deformation 

transformation field under the relationship 𝒔 = exp (𝒗). By frequently updating the 

velocity vector field in the algorithm, the transformation field can be ensured to be 

diffeomorphic at all times. The algorithm also performs vector field regularization 

to discourage excessive update, as well as prevent unrealistic deformation field. 

This regularization is commonly done by applying Gaussian smoothing.  

Given the diffeomorphic log-demons algorithm is under the umbrella of the 

demons registration framework, it can also be considered as an optimization 

problem [72]. Therefore, Newton’s method can also be used to resolve this 

optimization problem [61]. The cost function for optimization used is also 

unchanged. In all, the pseudocode presented in Algorithm 2.2 illustrates 

diffeomorphic log-demons presented in [69, 71]: 
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Algorithm 2.2 Pseudocode showing the iterative registration process in the 
diffeomorphic log-demons algorithm. 

Pseudocode: diffeomorphic log-demons algorithm 

1 Input: Fixed image 𝑭 and moving image 𝑴 

2 In each iteration 𝑖 Do: 

3 Compute update field update 𝒖  based on 𝑭 and 𝑴   

4 Apply fluid-like regularization: 𝒖 ← 𝐾 ⋆ 𝒖  

5 Update velocity field: 𝒗 ← 𝒗 ∘ 𝒖  

6 Apply diffusion-like regularization: 𝒗 ← 𝐾 ⋆ 𝒗  

7 Compute deformation field 𝒔 ≡ exp (𝒗): 

8 Update the moving image 𝑴 = 𝑴 ∘ 𝒔  

9 Evaluate Harmonic energy 𝑬 

10 Until Harmonic energy (𝐸) is minimized 

11 Output: Deformation field 𝑠  from 𝑴 to 𝑭 

 

 

Figure 2.9 “Circle to C” registration for additive demons and diffeomorphic 
log-demons. Additive demons failed to converge. In contrast, diffeomorphic log-
demons is able to register the images with a smooth, invertible field. Image retrieved 
from [66]. 
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A practical and fast approximation of the field exponentials algorithm is 

developed in [72], which utilizes the “scaling-and-squaring” method to compute the 

vector field exponentiation. This approximation, which will be introduced in the 

chapters afterwards, enables fast computation of the field exponential. With the trait 

of diffeomorphic deformation, diffeomorphic log-demons is well known for its 

capability of registering large deformations. The classical “Circle-to-C” registration 

demonstrated that diffeomorphic log-demons is much more reliable than traditional 

additive demons registration approach (Figure 2.9).  

Klein et al. also provided a comprehensive survey and comparison of 

diffeomorphic log-demons with other non-rigid registration schemes [73]. The 

diffeomorphic log-demons algorithm is one of the faster registration schemes with 

good accuracy, compared to its feature-based counterpart. However, despite the 

algorithm can produce a smooth and invertible deformation field, the update of the 

velocity field in diffeomorphic log-demons relies on the local intensity gradient of 

the images [74]. This “localized” update discourages correspondence search of 

highly deformed or low-contrast images. These potential problems can be tackled 

by employing multiresolution schemes to register a largely deformed image. A 

more lenient regularization scheme can also improve the convergence of the 

algorithm. 

2.3.4 Application on registering intraoperative images 

Registering intra-op images is a very challenging task. As most intra-op 

imaging techniques sacrifice image quality for temporal resolution, intra-op images 

can be noisy and rich in artifacts [12, 75]. For example, low-dose CBCT images, in 

general, have lower signal-to-noise ratio [12]. The 𝐵  field in iMRI being 

substantially lower than conventional high-field MRI can also induce considerable 

amount of noise and artifacts [21]. Besides, reconstruction of intra-op images may 

also employ empirical approximation to accelerate the process, further decreasing 

the image quality [76]. Let aside all problems brought by excessive noise and 

artifact in intra-op scans, the non-rigid registration process have to be performed in 

a rapid and automated manner to avoid interference to the surgical workflow. In 

such regard, three major qualities have to be considered in choosing the best 

registration strategy: computation speed, accuracy, and reliability. 
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2.3.4.1 Feature-based registration 

In feature-based registration methods utilizing FFD, the degree-of-freedom 

(DoF) defines the number of parameters that the algorithm will have to optimize 

for. As feature-based registration algorithms tessellate the image into a mesh of 

deformation grids that define the global transformation, employing fine-grained 

deformation mesh increases the DoF of the registration. With higher DoF, the 

registration can become more accurate. However, the computation required for high 

DoF will also increase significantly. Therefore, trade-offs between registration 

accuracy and computation time will have to be made. As the co-registration have 

to be computed in a timely manner in the intra-op scenario, the number of DoF used 

in the feature-based image registration scheme will be limited, leading to concern 

of accuracy. Further, increasing the DoF can make the optimization to become ill-

posed due to the curse of dimensionality [77]. Furthermore, the existence of local 

minima upon high DoF is also unavoidable, which can be one of the robustness 

concern in feature-based image registration.  

Another concern of feature-based registration on the reliability of CP 

detection. Although the feature-based registration schemes can utilize automated 

CP detection schemes, the detection of CP is heavily influenced by the image noises 

and artifacts. Most intra-op images suffer from lower image contrast, lower signal-

to-noise ratio, and lower resolution. Therefore, it is often challenging for any 

algorithms to extract the CPs on the intra-op images automatically. Further, the pre-

op image may exist unmatchable “outlier” features that do not exist in the intra-op 

image (e.g. tumor being extracted during surgery will not present in the intra-op 

image) [78]. This outlier problem is aggregated as delicate feature landmarks 

detectable on pre-op images may not be able to be easily detectable in the intra-op 

images. As a result, extensive preprocessing work is often required for optimal 

registration. Manual actions are therefore mandatory and critical to ensure the CPs 

are detected are in good conditions. In all, the registration reliability of feature-

based image registration prone to the accuracy of the detected features.  
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2.3.4.2 Intensity-based registration 

Contrast to its feature-based counterpart, the intensity-based image 

registration is non-parametric in nature. The non-parametric deformation field used 

in intensity-based image registration possesses a very high DoF and carry the 

potential of having a very accurate registration result. The registration can also 

converge unconditionally given that the deformation is driven continuously by the 

image difference and intensity gradient. In particular, the diffeomorphic-log demons 

algorithm provided a good framework to readily optimize the deformation field. 

Despite the registration is also susceptible to local minima due to high DoF, such 

local minima can be worked around by employing multi-resolution approaches and 

appropriate regularization [55, 79, 80]. In multi-resolution approaches, the 

algorithm registers the image in a pyramidal manner. Larger-scale deformations can 

be registered with relative ease using a subsampled image, while accurate 

deformation representation will then be registered subsequently after the larger-

scale deformation is found.  

In general, the intensity-based image registration algorithm is more reliable 

than feature-based image registration, due to the non-necessity of employing 

automatic control point detections. Convergence is also guaranteed by the algorithm. 

Manual tuning of the regularization parameters used in the optimization cost 

function may be required, but these fine-tuning operations do not pose critical 

influence on the registration process.  

However, intensity-based image registration suffers from the heavy 

computation required to register the images. The overall registration process is in 

general slow, due to the iterative optimization nature of intensity-based image 

registration. As reported in [69], the diffeomorphic log-demons require 2 minutes 

and 30 seconds to briefly register a single image; more than 8 minutes is required 

to completely register a high-resolution image [73] with 2.8M voxels.  
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2.3.4.3 Summary 

Previous sub-sections have summarized the pros and cons of the feature-

based and intensity-based image registration. In the application for registering intra-

op images, apart from registration accuracy, other factors such as reliability and 

computation speed are also concerned.  

As discussed, the feature-based image registration schemes rely on 

automated detection of the image features. Therefore, the robustness of the 

registration depends on the intra-op image quality, feature extraction methods, and 

DoF of the registration. However, as most intra-op images sacrifice image quality 

in an exchange for reduced scanning and reconstruction time, such automated 

feature extraction schemes may not be reliable due to the presence of considerable 

noise and artifacts. This inherent disadvantage had put feature-based registration 

unreliable in registering intra-op images.  

In contrast, intensity-based image registration schemes do not require image 

preprocessing, as the deformation is solely driven by the underlying image 

difference and pixel gradient. Such advantage can make intensity-based registration 

superior to its feature-based counterpart in terms of reliability. However, the 

computation demand of the algorithm hinders its ability to in registering intra-op 

image quickly. Nonetheless, such downsides are not inherently related to the 

algorithm, but on the computation perspective. Such registration schemes may be 

eligible to be accelerated using advanced application accelerators.  

2.4 Current trends of high-performance intra-op registration 

The importance of intra-op surgical navigation and non-rigid image 

registration has been discussed in previous sections. Despite the co-registered 

images can provide invaluable image guidance to the surgeons, these registered 

images will have to be provided in a timely manner to avoid disrupting the surgical 

workflow. Furthermore, the tissue margins updated by such co-registration can be 

provided in an asynchronous manner [81, 82]. Figure 2.10 provides a general 

flowchart illustrating such asynchronous loop for intra-op surgical navigation with 

visual guidance using intra-op imagers. 
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Figure 2.10 Image registration and visual guidance working asynchronously 
in the navigation interface. Pre-op model and the intra-op images can be swiftly 
aligned by high-performance image registration (top). Intra-op scanning also 
enables continual position tracking of the surgical instruments (bottom). 

Intensity-based image registration schemes are more preferably adapted to 

register intra-op images during surgery due to its potential high registration 

accuracy and robustness. However, the intensity registration approach is set back 

by its own computation requirement. Substantial pixel-wise computation is required 

to retrieve the correspondence between the pre-op and intra-op images. Therefore, 

these computations will need to be accelerated and optimized to enable intensity-

based registration to be used in the clinical practice. In this light, application 

accelerators and/or coprocessors such as GPU can be used to optimize the 

computation. In this section, the general properties of GPU will be introduced.A 

horizon scan of computational acceleration for intensity-based image registration 

will also be conducted. 

2.4.1 Graphics processing units as application accelerator 

Previous sub-sections have illustrated the underlying clinical demand of 

having a fast non-rigid image registration. However, there is a clear gap between 

the formulation and the application of these intensity-based image registration 

algorithm. Their extensive computation time required is the main concern. With the 

advancement of application accelerators such as GPU in the recent decade, there 

were high hopes in leveraging the accelerator’s parallel processing power for fast 

registration.  



 

36 

Amongst a variety of application accelerators, GPU is a specialized 

hardware originally being developed for rendering images for display output. As 

the pixel intensity values encoded in the output display signal are independent, these 

output values are computed separately inside the GPU. Contrast to the central 

processing unit (CPU) which optimizes for single-threaded computation latency, 

the GPU is designed to have numerous computation cores for highly parallelized 

computation. This architectural advantage can be exploited to perform complex 

scientific calculations, such as particle simulation, image reconstruction, and 

optimization. As intensity-based image registration also involves a lot of pixel-wise 

operations, the GPU is a good choice to accelerate the registration. 

2.4.1.1 Compute Unified Device Architecture 

Even with an advantage of parallel processing a large amount of structured 

data, the potential of GPU to perform general purpose computing had been 

overlooked until recently. In the earlier developmental stages of GPU, these exist 

no tools for scientists to exploit GPU’s capability of parallel computing. Returning 

data from the GPU back to the CPU was impossible in many of the earlier GPU 

models. The data paths of these earlier models are often hard-wired, thus limiting 

their parallel computation potential.  

In 2006, NVidia released Compute Unified Device Architecture (CUDA), 

an application programming interface (API) for general purpose computing using 

its CUDA-enabled GPU. Such API allow bi-directional communication between 

the GPU and the host CPU. Therefore, CUDA enables the GPU to act as a 

coprocessor to run customized subroutines for general applications. Since then, the 

term “General Purpose GPU” is coined, and nearly all newer released GPUs are 

customizable for accelerating specific computation tasks.  

It should be noted that AMD also released a stream computing software 

development kit (SDK) based on Brook for general purpose computing with their 

GPU. In this thesis, we will only focus on NVidia’s CUDA devices, as it has been 

reported that CUDA devices outperform their AMD counterparts [83]. However, 

the concerned performance-aware computation enhancement techniques presented 

in this thesis are largely translatable between two mainstream GPUs.  



 

37 

2.4.1.2 CUDA programming model 

General-purpose computing can be achieved by programming the CUDA 

GPU using the C++-alike CUDA language, which enables customized computation 

kernels to be launched on the GPU by allowing access to the GPU’s memory, 

instruction sets, and computation elements. Subsequently, the computation kernels 

written in CUDA language will be compiled into parallel thread execution (PTX) 

instruction sets, which are low-level instruction sets that are optimized for CUDA 

devices. 

 

Figure 2.11 Hierarchical illustration of the CUDA programming model. Upon 
kernel execution, a grid of thread blocks which consist of numerous threads are 
instantiated. Therefore, the total number of threads launched is the product of 
number of blocks launched and number of threads in a block. 

The CUDA programming framework is highly hierarchical. It divides the 

computation kernels into a grid of thread blocks that consist of numerous threads 

(Figure 2.11). Upon kernel execution, the launched thread blocks are assigned to 

be executed by one of the streaming multiprocessors, which utilizes its underlying 

array of CUDA cores to process the computation in parallel. All threads are able to 

access the GPU’s global memory; communication and data exchange between the 

threads in a block can be achieved using the on-chip shared memory space. Further, 
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most GPUs also include read-only memories known as the constant memory and 

texture memory. 

In the CUDA language, the GPU kernels are written as function and called 

with a triple chevron (<<<…>>>) style. The two arguments inside the triple 

chevron correspond to the number of thread blocks, and the number of threads per 

thread block being called. Thus, the total number of threads being called by the 

kernel is therefore (# of thread blocks) × (# of threads per block). Upon kernel 

execution, each thread can access its unique thread ID and can then access the 

unique data to perform the computation. The computation results from each thread 

can then be saved and fetched back to the host memory after computation. Example 

of such kernel and kernel call is given below: 

Code snippet: CUDA Kernel Example 

1 __global__ void gpuKernel(int *c, const int *a,. const int *b) 

2 { 

3 
    int globalThreadId =  
  (blockIdx.x * blockDim.x)+ threadIdx.x; 

4 
    c[globalThreadId] =  
  a[globalThreadId] + b[globalThreadId]; 

5 } 

 

Line 3 of gpuKernel exemplifies how the GPU threads query their unique 

global thread ID. Thus, the GPU threads can access a unique member of a, b and c 

as specified in line 4.  

Code snippet: CUDA Kernel Call 

1 unsigned int blocksPerGrid=2, threadsPerBlock = 1024; 

2 gpuKernel <<<blocksPerGrid, threadsPerBlock>>> (c, a, b) 

 

Line 1 of the kernel call example defines that 2 thread blocks containing 

1024 threads will be called by gpuKernel. Therefore, a total of 2048 threads is called 

in the above example. Thus, the first 2048 members of a and b will be added and 

saved into the first 2048 members of c respectively.  
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It should be noted that all memory and data required for computation should 

be allocated and/or initialized to the GPU’s memory prior to kernel execution. Such 

action can be done using the cudaMalloc(), cudaMemset() and cudaMemcpy() 

functions provided by CUDA API. This memory fetching process is slow due to 

limited bandwidth between the GPU and the host device (typically through the PCI-

e slots). As such, it is more preferable to have all computation being completed in 

GPU before fetching them back to the host memory to reduce the overheads. 

Despite the internal memory bandwidth of GPU is much larger than the CPU-GPU 

bandwidth, it is still one of the factors limiting the performance of GPU. Particularly, 

the global memory one of the hot spots that can bottleneck the computation 

operations.  

2.4.1.3 Hardware architecture of a CUDA GPU 

A CUDA GPU is designed to process any computation in parallel under the 

Single Instruction, Multiple Threads (SIMT) architecture. The base computation 

units of a CUDA device are the streaming multiprocessors, which possess an array 

of processing elements (as known as “CUDA cores”) for parallel computation. 

Multiple streaming multiprocessors are present in one GPU. Apart from the CUDA 

cores, each streaming multiprocessor also possesses their own instruction fetching 

unit, shared memory, as well as registers. Any memory transactions operations are 

accomplished by the multiprocessor’s ability to access the graphics memory chip 

through a heavily cached memory bus.  

Figure 2.12 illustrates a schematic diagram of a CUDA GPU. The GPU 

(device) is connected to the host PC via PCI-e channels, which allows 

communication between the GPU and the PC (host). The device usually consists of 

2-8GB of graphics memory, of which the memory is physically located off-chip at 

close proximity to the streaming multiprocessors. The memory controller is 

responsible to load/store data to/from the streaming multiprocessor through the 

hardware-managed L2 and L1 caches. Both caches excel at fetching multiple data 

at once. However, one have to note that The L2 and L1 cache have different 

transaction characteristics. Memory transactions between the L2 cache and L1 

cache are in batches of 32 bytes. Similarly, the transactions between the L1 cache 

and CUDA cores are in batches of 128 bytes. These cache behavior forms an 
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integral part in later optimization and discussions concerning about coalesced 

memory transaction. 

 

Figure 2.12 Simplified schematic diagram showing the hardware 
microarchitecture of a CUDA GPU. The GPU possesses numerous streaming 
multiprocessors as its basic computation units. The streaming multiprocessors can 
access the off-chip graphics memory via a heavily cached data bus. 

On top of global memory, the GPU also possesses other types of specialized 

memory. For example, the on-chip shared memory is a fast, user-managed memory 

space that is capable to be utilized for effective data reuse which will be discussed 

in the later part of this thesis. This shared memory is much faster than the global 

memory in terms of both bandwidth and latency [84]. Besides, the texture memory 

that is also located off-chip is specialized to fetch data from its 2D or 3D locality 

which is not normally supported by the global memory. The texture memory forms 

another integral part in later optimization strategies concerning about interpolation. 

Finally, the constant memory of the GPU is responsible to pre-cache any needed 

data that is needed to be broadcasted to all streaming multiprocessors globally.  

  



 

41 

2.4.2 Horizon scan 

Despite having much potential to speed-up the intensity-based image 

registration process, GPU was often overlooked by the field of image registration. 

However, GPU has been used in many related applications such as tomography 

reconstruction [85], Monte-Carlo simulation [86] and digital radiograph 

reconstruction [87]. Besides, the current research focus of non-rigid image 

registration mainly resides in the algorithmic development. There were many 

research groups focusing on developing a more advanced registration method to 

improve registration accuracy and robustness [88]. However, research on enhancing 

the computation process of image registration, particularly intensity-based image 

registration, has often been overlooked. To-date, there are a very few open-sourced 

implementations of GPU demons-based registration being available. The only 

available package is the GPU implementation of Thirion’s demons registration 

included within the ITK package [89]. However, this implementation does not 

include any kind of GPU-based optimizations. Besides, the available deformation 

field update schemes provided for the GPU demons implementation in ITK [90] are 

very limited, with only passive force, active force and double force [57] currently 

being available. 

Several research groups have attempted to implement the GPU version of 

Thirion’s demons registration. Sharp et al. [91] first presented the GPU 

implementation of the native demons algorithm on a NVidia GPU using the Brook 

environment [92], yielding an 80× performance speedup compared to CPU. Courty 

et al. [93] transferred the native demons algorithm into GPU, and re-implemented 

the Gaussian smoothing step by reclusive mapping and filtering the 3D volume on 

a 2D texture [94]. Muyan-Ozcelik et al. [95, 96] implemented the same demon-

based registration using CUDA, yielding additional 10% speedup compared to the 

work presented by Sharp et al. [91]. Gu et al. [97] later presented a quantitative 

comparison of 5 implementations of Demons variants on GPU, including passive 

force, evolved passive force, active force, double force and inverse consistent 

methods. 

However, little work has been done on the accelerating any types of 

advanced demons variants. For example, the diffeomorphic log-demons [69] and 
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spectral log-demons [74] are considered to be much more robust than Thirion’s 

native demons algorithm. The only reported work is by Huang et al. [98], who 

presented an implementation of 2D diffeomorphic log-demons using CUDA. 

However, the computation speed-up reported is also not as satisfactory as expected, 

possibly due to the fact that their implementation is not fully optimized.  

 

2.5 Conclusion 

In this chapter, an overview of the intra-op imaging technique has been 

reviewed, and the clinical demands of having image-guided interventions have also 

been discussed. I have also introduced the basic principle of image registration. 

Particularly, intensity-based image registration is a more reliable approach in the 

intra-op scenario. However, the immense computation demand of intensity-based 

image registration precludes registration to be applied in the clinical practice. GPU 

possesses the ability to parallelize the computation for fast registration. In this 

regard, the hardware microarchitecture of CUDA GPU, which is a mainstream 

general-purpose GPU, has been introduced. However, in a brief horizon scan, we 

found that GPUs are often overlooked in the field intensity-based image registration.  

Aiming to achieve fast intensity-based image registration, the 

considerations in the implementation process of GPU-accelerated diffeomorphic 

log-demons will be presented in the following chapters. The computation demand 

of diffeomorphic log-demons will be analyzed in Chapter 3. The implementation 

details will be presented in Chapter 4. And the consideration of the limits of GPU-

accelerated diffeomorphic log-demons, future directions, and potential impacts will 

be finally outlined in Chapter 5.   
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Chapter 3  

ALGORITHMIC ANALYSIS AND 

PERFORMANCE-AWARE OPTIMIZATION  

3.1 Introduction 

As depicted in the previous section, the overwhelming amount of 

computation can result in long processing time for intensity-based non-rigid 

registration. Despite having satisfactory registration robustness, this prolonged 

running time is the major bottleneck of putting the algorithms into clinical use. The 

implementation of native demons algorithm (Thirion’s demons algorithm) on the 

GPU has already been widely studied. However, there is a lack of GPU 

implementations for any advanced demons algorithm, such as the diffeomorphic 

log-demons. Implementing algorithms on a GPU requires a thorough understanding 

of the computation process involved. To achieve the best performance gain through 

the best use of GPU, identification of the limiting steps that bottleneck the 

computation is crucial. Particularly, as GPU speeds up the computation by 

parallelizing the workload on a large scale, the memory bandwidth requirement that 

comes with this largely parallelized computation will also need to be addressed.  

Given there is a large computation demand for the intensity-based 

registration algorithm, performance-aware computation is the key technique to 

leverage the full power of a CUDA GPU for efficient computation. In this chapter, 

a brief highlight of different features on a GPU is first presented, followed by a 

survey of GPU memory access patterns. A complete algorithmic analysis of 
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diffeomorphic log-demons, aiming to pinpoint the computation bottleneck, will also 

be presented. Once the computation bottleneck is identified, the computation 

requirement, as well as the underlying memory access patterns involved in those 

operations will be investigated. In light of the computation and memory 

requirement, an optimal implementation for those bottlenecking will be devised 

using various performance-aware programming techniques. 

3.2 GPU performance-aware programming for image registration 

As presented in previous sub-sections, the GPU has an unmatched 

computation throughput for processing large computation workload in parallel. 

However, in order to harness the full computation power of a GPU, having 

performance awareness in the programmer’s mind is the key. Performance-aware 

programming is a method that involves repeated optimization and profiling of the 

program. In order to achieve high-performance GPU non-rigid image registration, 

one has to effectively utilize the GPU’s strength for high-performance computation. 

Under-utilization of the GPU device has to be avoided. In all, the CUDA GPU 

possess 3 features that are essential for high-performance computing, namely: a) 

highly-parallelized computation via SIMT, b) efficient caching, and c) rapid 

interpolation.  

a) Parallelized SIMT computation 

Highly parallelized computation is achieved by the GPU’s streaming 

multiprocessors, which are designed to execute numerous threads in parallel. Under 

the SIMT architecture, the CUDA cores of each streaming multiprocessor execute 

warps of 32 threads simultaneously under a single instruction fetch-decode cycle. 

However, execution of the warps can be bottlenecked (“stalled”) due to memory 

dependency, branching, or synchronization barriers. In this regard, the instruction 

scheduling unit on the streaming multiprocessor can mitigate this latency by 

executing multiple warps concurrently, similar to simultaneous multithreading 

(SMT) strategies on CPUs. Once a warp is stalled upon high latency operations, the 

scheduler can switch to another warp for continual execution. Such warp-switching 

strategies, combined with warp-level SIMT, provides streaming multiprocessors 

essential computation throughput to handle the enormous thread launched under a 

kernel. 
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b) Efficient Caching 

Efficient caching can be achieved by the efficient usage of the on-chip 

shared memory on each streaming multiprocessor manner (Figure 2.12). As 

memory dependency is one of the most common reasons of bottlenecking, the much 

faster (>80x) shared memory can act as an efficient, user managed cache to mitigate 

any latency brought by redundant global memory accesses [84]. With the shared 

memory being used as a user-managed cache, data can be initialized on the shared 

memory in a highly efficient manner. For example, memory coalescence during the 

global-shared memory transaction can be enforced. Besides, as threads in the same 

block can access the shared memory, essential data can be exchanged between 

threads through such shared memory space. Any temporary results can be also 

stored and accessed with little overheads. Once the computation is completed, the 

results can be efficiently written back to the global memory in a coalesced manner. 

c) Rapid Interpolation 

The ability of rapid interpolation in GPU is brought by its dedicated texture 

hardware. Texture filtering is one of the most commonly used processes in graphics 

rendering, which is considered an expensive operation due to its high arithmetic 

and memory demand. To this end, the GPU possess specific hardware to perform 

the underlying fetching and arithmetic computation of interpolation in an optimized 

manner. By binding specific memory segment onto the texture memory/cache for 

read-only access, the GPU’s texture hardware is able to automatically resolve the 

potentially complicated memory access patterns. Particularly, the hardware-

managed texture cached is not only fast, but also provides unmatched spatial 

locality in 2/3D for efficient data fetching. The subsequent computation process is 

also optimized by the hardwired interpolation in GPU, which utilize fixed-point 

interpolants to speed up the potentially expensive multiplication process. 
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3.3 Algorithmic breakdown 

Diffeomorphic log-demons is an algorithm that involves an iterative 

optimization process to find out the optimal transformation between two images. 

Such optimization is performed by minimizing the global harmonic energy. As 

introduced in equation (2) in page 26, such harmonic energy can be broken down 

the “similarity term” (𝑆𝑖𝑚)  and the “likelihood term” (𝑅𝑒𝑔) . Although the 

computation is already simplified by the demons framework which break down the 

workflow into a much simpler iterating routine, the required computation 

throughput is still very demanding. In this sub-section, I will first identify the 

related memory access patterns required in diffeomorphic log-demons. After that, 

the computation process required in diffeomorphic log-demons will be analyzed.  

These code analyses are based on of the open-sourced MATLAB code1 

composed by Lombaert, the author of spectral-log demons [74] which is an 

improved version of the diffeomorphic log-demons.  

3.3.1 GPU memory access patterns 

A thorough understanding of memory access patterns in GPU is for 

implementing high-performance applications. Memory contention is one of the 

major factors that contribute to computation bottleneck. To this end, identifying of 

memory access patterns involved in the computation is crucial for tailoring specific 

strategies to resolve any bottleneck. In this sub-section, a brief survey will be 

presented to identify the key memory access patterns involved in diffeomorphic log-

demons, including map, gather/scatter, reduction, and stencil access patterns. These 

memory access patterns can be identified in the operations when I start to break 

down the algorithm in the next sub-section. 

  

                                                 

1  MATLAB code available on https://www.mathworks.com/matlabcentral/fileexchange/39194-
diffeomorphic-log-demons-image-registration. Accessed 8 March 2017. 
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3.3.1.1 Map  

The map operation is one of the simplest memory operations in GPU. The 

map access pattern depicts each thread to operate independently without any 

conflicts. Therefore, the map operation producing a one-to-one mapping on the 

input-output datasets. A common example of such map operation is to perform a 

constant offset to the value stored in an array. As there is no external dependency, 

the read/write access incurred should be made sequential if possible in order to take 

advantage of the coalesced memory access by the global memory. Given the threads 

are totally independent, there is also minimal communication between each running 

thread inside the GPU. A schematic of the map operation is shown in Figure 3.1.  

 

Figure 3.1 Schematic diagram showing map operation of a function 𝑓 on an 
input array with a parallel processing architecture. Each computation is independent 
of each other. 

Every thread launched by a kernel function involving a map access shall be 

independent in nature. Therefore, operations involving the map access pattern is 

inherently parallelizable. The hardware design of GPU is optimized for parallel 

processing of such independent computation. Thus, it is favorable for the GPU to 

enhance the computation for this kind of memory operation. As the read/write 

access of map operations are to be made sequential, they can also be cached in an 

orderly manner, thus, enabling full utilization of the memory bandwidth on the GPU. 
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3.3.1.2 Gather/Scatter  

Gather and scatter are special forms of map operations [99]. Gather 

operations performs an indexed read from an array; scatter operations perform 

indexed write to an array. These operations do not require communication between 

the running threads within the same block, but the read/write access are indexed but 

may not be coalesced. Figure 3.2 illustrates the memory access pattern of 

gather/scatter operations inside a GPU.  

 

Figure 3.2 Schematic diagram showing gather-scatter operation of a 
function 𝑓 with a parallel processing architecture. The threads are still independent, 
but the indexed reads/writes may induce conflicts among threads (red circles). 

The memory access in gather/scatter operations is random in nature. In fact, 

a random memory access pattern is defined as a combination of gather and scatter 

operations. Such non-coalesced memory access patterns hinder effective memory 

caches. Data read/write conflicts may also occur when multiple threads attempt to 

access the same memory location. In many parallel architectures, the processor and 

memory controllers usually have specific hardware to handle such gather-scatter 

access patterns and resolve any potential read/write conflicts.  
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3.3.1.3 Reduction 

The reduction operation combines all elements in the input array to generate 

a single output. As shown in Figure 3.3, the computation is performed in a tree-

like pattern. Operations admissible to the parallel reduction are those which are 

binary, associative and commutation. For example, addition, multiplication, or 

Boolean operations such as AND, OR, and XOR operations. The order performed 

on the inputs are unimportant [100].  

 

Figure 3.3 Schematic diagram showing reduction operation of a function 𝑓 
with a parallel processing architecture. To maximize parallelism, the dataflow is 
organized in a tree-like pattern.  

Implementing a parallel computation to perform reduction possess a 

significant advantage over serial implementation. A reduction algorithm on a serial 

processor requires the big-O complexity of 𝑂(𝑛) = 𝑛 to perform reduction of 𝑛 

elements. However, based on a tree-like parallel reduction pattern, theoretically a 

big-O complexity of 𝑂(𝑛) = log 𝑛 can be achieved using an idealized parallel 

processor with infinite processing cores. However, as the number of processing core 

in the GPU is limited, the actual time required can be depicted by the Brent’s Law 

[101] stated as follow: 
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𝑇 ≤ 𝑇 +

𝑇 − 𝑇

𝑝
 

(7) 

Where 𝑇(⋅) depicts the time required for a parallel architecture with the specified 

number of processors in the (⋅) subscript to solve the problem; 𝑁 is the maximum 

number of processors possible for solving the problem in parallel and 𝑝  is the 

number of processor used in the practical situation. 

3.3.1.4 Stencil  

The stencil operation computes the output values using a set of fixed 

neighboring elements (called stencil) at the corresponding position of the input 

array. Typical stencil patterns are von Neumann pattern and Moore pattern. 

Theoretically, this operation is parallelizable due to having no inter-dependency 

between different threads in a kernel. However, the stencil access pattern is memory 

exhaustive when implemented in a parallel computing architecture, due to multiple 

read operations required for computation. As indicated in Figure 3.4, data members 

in the input array will have to be accessed multiple times throughout the 

computation process. Such recurrent access to the input array known as data 

redundancy must be resolved. 

 

Figure 3.4 (a) Schematic diagram showing stencil operation of a function 𝑓 
with a parallel processing architecture. Overlapping of the stencil pattern induces 
redundant read operations. The stencil access pattern can either follow (b) 3D von 
Neumann stencil pattern, or (c) 3D Moore stencil pattern. 
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In addition to data redundancy, stencil operations in higher array dimensions 

will also induce non-coalesced memory access when reading over across rows and 

slices. As the memory is cached in a row-major manner, a cache miss is unavoidable 

when the memory pointer attempts to stride through the memory lab across columns 

or slices. Such memory access striding across column or slices of the memory slab 

is known as non-coalesced, and the cache miss induced by non-coalesced memory 

access can drastically bottleneck the computation. 

3.3.2 Computation bottleneck of diffeomorphic log-demons 

A MATLAB profiler is configured to monitor the execution time required 

for 100 diffeomorphic log-demons iterations to run on an image with a resolution 

of 0.2M voxels (64×64×64). Although the Java-based MATLAB codes are 

inherently not optimized for computation performance, the results obtained by the 

profiler can give reliable clue on the computation bottleneck that hinders the 

computation. The profiling results are abstracted and presented in Table 3.1. Also, 

the pseudocode of diffeomorphic log-demons, Algorithm 2.2 first presented on 

page 23, is once again presented to facilitate the discussion in the subsequent sub-

sections. 

Table 3.1 Abstract results of the MATLAB profiler report after running 100 
diffeomorphic log-demons iterations on a small (60×60×60) image set.  

Function  
Corresponding line 

in pseudocode 
Number of 
times called 

% of time 
consumed 

Compute velocity field update 3 100 5.077% 

Gaussian smoothing 4&6 600 40.434% 

Field exponentiation   5 100 45.385% 

Compute rergistration energy 7 100 6.145% 

*Note that the total time consumed does not add up to 100% since this abstract report does not 
account for other minor operations and overheads. 
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Algorithm 2.2 Pseudocode showing the iterative registration process in the 
demons. 

Pseudocode: diffeomorphic log-demons algorithm 

1 Input: Fixed image 𝑭 and moving image 𝑴 

2 In each iteration 𝑖 Do: 

3 Compute update field update 𝒖  based on 𝑭 and 𝑴   

4 Apply fluid-like regularization: 𝒖 ← 𝐾 ⋆ 𝒖  

5 Update velocity field: 𝒗 ← 𝒗 ∘ 𝒖  

6 Apply diffusion-like regularization: 𝒗 ← 𝐾 ⋆ 𝒗  

7 Compute deformation field 𝒔 ≡ exp (𝒗): 

8 Update the moving image 𝑴 = 𝑴 ∘ 𝒔  

9 Evaluate Harmonic energy 𝑬 

10 Until Harmonic energy (𝐸) is minimized 

11 Output: Deformation field 𝑠  from 𝑴 to 𝑭 

 

It is found that the major computation bottlenecks reside on the field 

exponentiation to retrieve the diffeomorphic deformation field, and the Gaussian 

regularization of the update/velocity field. Field exponentiation is the essential step 

to get the updated diffeomorphic deformation field from the velocity field. Hence, 

one field exponentiation computation is required per iteration. Furthermore, 

Gaussian smoothing is the common strategy for the regularization of the update 

field (line 4) and velocity field (line 6). As smoothing need to be done in all 𝑥, 𝑦, 

and 𝑧 directions, the Gaussian smoothing function is called 6 times in each iteration, 

being called three times in each regularization step. In the remaining parts of this 

sub-section, I will breakdown the bottlenecking operations, namely Gaussian 

smoothing and field exponentiation, and propose appropriate optimization 

strategies for the best computation speed-up.  

  



 

53 

3.3.2.1 Gaussian smoothing 

One computation bottleneck that hinders fast computation of diffeomorphic 

log-demons is the Gaussian smoothing step. Gaussian smoothing (also known as 

Gaussian blur) is the result of blurring an image/vector by a Gaussian function:  

 
𝐺(𝑥, 𝑦, 𝑧) =

1

√2πσ
exp

𝑥 + 𝑦 + 𝑧  

2𝜎
  (8) 

Mathematically, such smoothing is equivalent to convolving the image/field with a 

Gaussian function. Applying a Gaussian blur to a field can reduce any high-

frequency signal. Thus, discouraging sudden, sharp changes in the vector field.  

Gaussian filtering is extensively used on vector fields as a simplified model 

of deformation propagation [7] and regularization [13]. The vector field is 

convoluted by a 3D array of pre-computed Gaussian values (“Gaussian kernel”) 

that represents the Gaussian function. However, as the variance of the Gaussian 

function (σ) increases, this array can become large. A naïve implementation of 3D 

Gaussian filtering requires access to nearby (6σ) elements for each voxel. 

However, such an operation involving numerous data transaction can impose heavy 

memory demand, especially when σ  is large. To this end, multi-pass Gaussian 

filtering is commonly used to cut down the computation. Considering the 3D 

Gaussian kernel is symmetrical, this memory-demanding convolution process can 

be decomposed into multiple 1D convolutions. The formulation of a 1D Gaussian 

kernel (𝑘[𝑑]) is shown in Dquation (9) below. The workflow of performing multi-

pass filtering by a symmetrical kernel on a vector field is presented in Algorithm 

3.1.  

 
𝑘[𝑑] =

1

𝜎√2𝜋
exp −

𝑑

𝜎
, 𝑑 = {0,1, … , nint(3𝜎)} (9) 
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Algorithm 3.1 Pseudocode showing the computation procedure of multi-pass 3D 
Gaussian smoothing. 

Pseudocode: 3D Gaussian smoothing 

1 Input: vector field 𝒖, kernel size 𝒂, kernel values 𝒌[𝒂] 

2 // Perform x-pass convolution on 𝒖 as 𝒖 :  

3 For each vector 𝒖  in 𝒖 : 

4  Perform discrete convolution on 𝒖 along the x-direction:  

 𝑢 = ∑ 𝒌[|𝑛|] × 𝒖( , , )
𝒂

𝒂   

5 // Perform y-pass convolution on 𝒖  as 𝒖 :  

6 For each vector 𝒖  in 𝒖 : 

7  Perform discrete convolution on 𝒖  along the y-direction: 

 𝒖 = ∑ 𝒌[|𝑛|] × 𝒖( , , )
𝒂

𝒂   

 // Perform z-pass convolution on 𝒖  as 𝒖 :  

 For each vector 𝒖  in 𝒖 : 

8  Perform discrete convolution on 𝒖 along the z-direction:  

 𝒖 = ∑ 𝒌[|𝑛|] × 𝒖( , , )
𝒂

𝒂   

9 Output: Smoothed vector field 𝒗 = 𝒖   

 

In the context of diffeomorphic log-demons, Gaussian smoothing is used to 

both induce uncertainty to the feature correspondence [65], as well as to regulate 

the likelihood of the deformation field [55]. To perform Gaussian smoothing, every 

output pixel/voxel are required to read the intensity value of nearby pixel/voxels. 

This intense memory fetching is followed by multiplication of such intensity value 

with the corresponding Gaussian values. This memory access hence can be 

classified as a 3D stencil pattern as the processor needs to read and perform the 

weighted-sum computation of all elements near Moore’s neighborhood. 

3.3.2.2 Vector field exponentiation 

Diffeomorphic log-demons adopts a “scaling and squaring” approach [66] 

which can effectively approximate the exponentiation of vector field. In the scaling 

and squaring approach, Newton’s method is first used to evaluate the first step of 

the integration. The resultant integral is than self-composed several times to yield 
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the complete integration of the exponentiated vector field. In fact, the first step 

integration process is not computationally intensive, compared to the repeated 

composing operations. In each compositive operation, each element in the output 

vector is interpolated from the input vector field. As such, the nearest 8 vectors in 

3D from the input vector field will have to be fetched before trilinear interpolation. 

Without a doubt, such interpolation will incur a massive memory bandwidth 

requirement due to extensive memory access. The access pattern will also appear 

to be random due to the non-parametric nature of the vector fields. The pseudo code 

for field exponential in a 3D vector field are provided: 

Algorithm 3.2 Pseudocode showing the key computation procedure for fast 
approximation of vector field exponentials using the “scaling and squaring” 
method. 

Pseudocode: Fast Vector Field Exponentials 

1 Input: Velocity vector field 𝒗 

2 Choose N such that 2 𝒗 is close to 0 (e.g. 2 𝒗 ≤  0.5) 

3 Perform explicit first-order integration Φ ← 2 𝒗 

4 Repeat 𝑵 times:  

5 Recursive scaling and squaring: Φ ← Φ ∘ Φ 

6 Output: Diffeomorphic map  Φ = exp(𝒗) 

 

As illustrated Algorithm 3.2, the vector field exponentiation algorithm 

requires 𝑁 compose operations to compute the diffeomorphic mapping 𝛟 from a 

velocity vector field 𝒗 . The number of compose operations depends on the 

magnitude of the velocity field. As the step of integration for needs to be small 

enough to achieve reasonable accuracy by the Newton’s method, the velocity vector 

needed to be first scaled down by a factor of 2 . The ultimate value of 𝑁 is to be 

determined by the magnitude of the largest velocity vector inside 𝒗. Thus, more 

field composition iterations are required to estimate the field exponentials with a 

larger 𝒗 . The typical value of 𝑁  resides around 3-5. In the context of the 

diffeomorphic log-demons algorithm, the computation demand will increase 

exponentially as the deformations acuminate over the iterations. 
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3.3.2.3 Vector field composition 

Vector field composition is the most used operation in diffeomorphic log-

demons (denoted by the operator “∘” in the pseudocode). It operates on Lie group 

structure and essentially shares the same concept of addition in linear algebra. 

Interpolation is extensively used in evaluating vector field composition. Aside from 

being extensively used in vector field exponential operations, the compositive 

operation is also used to warp the deformation on the moving image, as well as 

updating the velocity field using the update field. The pseudo code for vector field 

composition and interpolation is presented: 

Algorithm 3.3 Pseudocode showing the key computation procedure for vector 
field composition, which is one of the essential computations inside the 
diffeomorphic log-demons algorithm. 

Pseudocode: Vector Field Composition (Operator “∘”) 

1 Input: velocity vector field 𝒗, update vector field 𝒖 

2 For each vector 𝒗  in 𝒗: 

3 Add the coordinates of 𝒗𝒊  onto the components of 𝒗 respectively as 𝒗 : 
 𝒗 = 𝒗 + coord(𝒗 ) 

4 Treat each component of 𝒗  as a single image and wrap with update field 𝒖 (See 
Algorithm 3) 

𝒗 = 𝒗 ∘ 𝒖  𝒗 = 𝒗 ∘ 𝒖  𝒗 = 𝒗 ∘ 𝒖  
 

5 For each vector 𝒗  in 𝒗 : 

6 Subtract the coordinates of 𝒗𝒊 onto the components of 𝒗′ respectively as 𝒗 :  

𝒗 = 𝒗′ + coord(𝒗′ )  

7 Output: composed vector field 𝒗𝒑 = 𝒖 ∘ 𝒗  

 

The composition of two fields 𝒖 and 𝒗 combines two smooth, continuous 

manifolds under Lie Algebra. However, the data stored in the computer memory 

are discrete in nature. Thus, interpolation is required to find out the vector value at 

an arbitrary point inside the field. As illustrated in Algorithm 3.3, field composition 

first resolve for the corresponding query point depicted by 𝒖 on the vector field 𝒗. 

After that, interpolation is performed at the query point depicted. This procedure is 

repeated over every discrete vector that represent the field 𝒗.  
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The computation of field composition requires numerous of interpolation. 

Due to the non-parametric nature of the vector field, the number of interpolation 

required is equal to the resolution of the vector field. Different interpolation 

approaches can be used. For example, nearest neighbor interpolation is the faster, 

but it is the most inaccurate interpolation approach. Trilinear interpolation assumes 

a linear correlation between the interpolants. Tri-cubic or b-spline approaches tend 

to be more accurate, but require more computation. Trilinear interpolation (Figure 

3.5) is well-known to be an acceptable trade-off between computation efficiency 

and accuracy. The pseudocode for trilinear interpolation is presented below in 

Algorithm 3.4: 

 

 

Figure 3.5 Illustration of trilinear interpolation. The value of point C is 
interpolated by the eight closest interpolants (C000 – C111). Images retrieved from 
[102]. 
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Algorithm 3.4 Pseudocode showing the key computation procedure for trilinear 
interpolation, which is performed numerous times in a single compositive operation. 

Pseudocode: Trilinear interpolation (interp3) 

1 Input: vector field 𝒖, query point 𝒒 

2 Compute 𝑥 , 𝑦 , 𝑧  which are the differences between query point 𝒒 and the closest 
grid point with the least coordinate 

𝑥 = 𝒒 − 𝑓𝑙𝑜𝑜𝑟(𝒒 ) 𝑦 = 𝒒 − 𝑓𝑙𝑜𝑜𝑟(𝒒 ) 𝑧 = 𝒒 − 𝑓𝑙𝑜𝑜𝑟(𝒒 ) 
 

3 Get 8 closest vectors {𝒘 … 𝒘 } from 𝒒 in field 𝒖 for interpolation: 

𝒘 = 𝒖

𝑓𝑙𝑜𝑜𝑟(𝒒 )
𝑓𝑙𝑜𝑜𝑟(𝒒 )

𝑓𝑙𝑜𝑜𝑟(𝒒 )

 

𝒘 = 𝒖

𝑐𝑒𝑖𝑙(𝒒 )

𝑐𝑒𝑖𝑙 𝒒

𝑓𝑙𝑜𝑜𝑟(𝒒 )

 

𝒘 = 𝒖

𝑓𝑙𝑜𝑜𝑟(𝒒 )
𝑐𝑒𝑖𝑙(𝒒 )

𝑐𝑒𝑖𝑙(𝒒 )

 

𝒘 = 𝒖

𝑐𝑒𝑖𝑙(𝒒 )
𝑓𝑙𝑜𝑜𝑟(𝒒 )

𝑓𝑙𝑜𝑜𝑟(𝒒 )

 

𝒘 = 𝒖

𝑓𝑙𝑜𝑜𝑟(𝒒 )
𝑓𝑙𝑜𝑜𝑟(𝒒 )

𝑐𝑒𝑖𝑙(𝒒 )

 

𝒘 = 𝒖

𝑐𝑒𝑖𝑙(𝒒 )
𝑐𝑒𝑖𝑙(𝒒 )

𝑐𝑒𝑖𝑙(𝒒 )

 

𝒘 = 𝒖

𝑓𝑙𝑜𝑜𝑟(𝒒 )

𝑐𝑒𝑖𝑙 𝒒

𝑓𝑙𝑜𝑜𝑟(𝒒 )

 

𝒘 = 𝒖

𝑐𝑒𝑖𝑙(𝒒 )
𝑓𝑙𝑜𝑜𝑟(𝒒 )

𝑐𝑒𝑖𝑙(𝒒 )

 

 

4 Interpolate {𝒘 … 𝒘 } along 𝑥 direction to get {𝒘 … 𝒘 } 

𝒘 = 𝒘 (1 − 𝑥 ) + 𝒘 𝑥   𝒘 = 𝒘 (1 − 𝑥 ) + 𝒘 𝑥   

𝒘 = 𝒘 (1 − 𝑥 ) + 𝒘 𝑥   𝒘 = 𝒘 (1 − 𝑥 ) + 𝒘 𝑥   
 

5 Interpolate {𝒘 … 𝒘 } along 𝑦 direction to get {𝒘 , 𝒘 } 

𝒘 = 𝒘 (1 − 𝑦 ) + 𝒘 𝑦   𝒘 = 𝒘 (1 − 𝑦 ) + 𝒘 𝑦   
 

6 Interpolate {𝒘 , 𝒘 }along 𝑧 direction to get 𝒘 

𝒘 = 𝒘 (1 − 𝑧 ) + 𝒘 𝑧   
 

7 Output: Interpolated vector 𝒘 at point 𝒒 in the vector field u 

 

In trilinear interpolation, the direction and magnitude the interpolated vector 

at the query point 𝒒 is estimated by the 8 closest vectors. Once the data is loaded 

into the memory, linear interpolation is performed in a step-by-step manner that 

covers all 𝑥 , 𝑦 , and 𝑧  directions. However, as such interpolation involves 3-

dimensional interpolation of a 3-dimensional vector field, this composition 

operation will have to be repeated 3 times for 3 separate vector components, each 

demanding the processor to loop through the array for pixel/voxel-wise 

interpolation. Such heavily looped and repeated workflow can not only demand 
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substantial computation throughput, but also require considerable memory 

bandwidth between the processing units.  

3.3.2.4 Velocity field update 

Finally, diffeomorphic log-demons continuously updates the velocity field 

until the resultant deformation field converges onto an optimal solution. The 

updates are governed not only by the pixel/voxel intensity difference, but also the 

intensity gradients between the fixed image and the immediate moving image. 

Algorithm 3.5 Pseudocode showing the key computation procedure for vector 
field update, which contains a considerable amount of branching and arithmetic 
computations. 

Pseudocode: Compute velocity field update 

1 Input: Fixed image 𝑭, Immediate moving image 𝑴,  

 Registration Parameter 𝜶 

2 Compute gradient of 𝑭 and 𝑴 as ∇𝐅 and ∇𝐌 

3 For each voxel 𝑭  and 𝑴  in 𝑭 and 𝑴 do 

4 Compute voxel-wise difference of 𝑭  and 𝑴  as 𝑫 : 

𝑫 ← 𝑭 − 𝑴   

5 Compute the Hadamard product of ∇𝐅 and ∇𝐌 as 𝑸: 

𝐐𝐢 ← ∇𝑭 × ∇𝑴   

6 Compute the magnitude of ∇𝐌 as norm(𝛁𝑴): 

norm(𝛁𝑴 ) ← ∇𝐌 𝐱
𝟐 + ∇𝐌 𝒚

𝟐 + ∇𝐌 𝒛
𝟐    

7 Compute update magnitude 𝒑: 𝒑 ←
𝑫

(𝛁𝑴) ×
 

8 If  norm(𝛁𝑴) = 0 and 𝑫 = 0 do: 

9  Handle extremities: 𝒑 ← 0 

10 If  Hadamard product 𝑸 < 0 do: 

11  Invert the direction of update: 𝒑 ← −𝒑  

12 Compute velocity field update 𝒖: 𝒖 ← ∇𝐌 × 𝒑   

13 Output: vector field update 𝒖  
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Algorithm 3.5 presents a workflow of a commonly used field update 

method. As shown in the workflow, the computation for the velocity field update 

can be complicated. Gradient decomposition in 3D requiring access to the intensity 

values of direct adjacent pixel/voxels, which will incur strided memory access 

along the y-/z-directions. Generation of the update field also involves several 

branching operations that can be expensive when performed by GPU. Besides, 

computing the updated velocity field involves the complicated vector field 

composition as described in Section 3.3.2.3 again. As a result, despite the velocity 

field update operations does not require much computation power nor computation 

time, there is ample amount of optimization work that can be done to improve the 

computation efficiency.  

3.4 Computation optimization 

With the computation bottleneck of diffeomorphic log-demons being 

presented in the previous sections, this section provides an in-depth analysis of the 

arithmetic and memory demand of the bottlenecking operations. With such demand 

being thoroughly understood, one can resolve the computation demand by utilizing 

different abilities of the GPU to achieve fast computation. 

3.4.1 Gaussian smoothing 

Section 3.3.2.1 has already shown that the computation of Gaussian 

smoothing is inherently parallelizable, which can be enhanced by the ability of 

parallel processing by GPU. However, the smoothing operation requiring stencil 

memory access pattern (Section 3.3.1.4) demands data fetching from neighboring 

elements. This fetching procedure can be memory intensive, and it may take up 

substantial bandwidth. As a result, even with a fully-parallelized implementation of 

Gaussian smoothing on the GPU, this computation process can still be memory 

bound, due to simultaneous access to the memory by numerous threads. Due to 

overlapping of adjacent convolution kernels, the data are often recurrently fetched 

and accessed by a number of threads which can lead to extensive memory 

bottleneck. Therefore, there is a need for the processor to share the data among 

different threads within a thread block for more efficient computation. 
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Figure 3.6 On-chip high-bandwidth shared memory used as a user-managed 
cache. To avoid unnecessary global memory transection, the required data are pre-
fetched onto the shared memory. Such data can be swiftly accessed and reused by 
numerous CUDA cores. The final results are stored back to the global memory after 
the computation. 

In this regard, the GPU’s on-chip shared memory can allow data to be pre-

fetched onto the shared memory for data reuse. The high-bandwidth data channel 

between the processing elements and the shared memory allows data to be 

load/stored at a substantially faster manner. This ability of fast load/store of 

memory among all threads in a thread block facilitates data reuse. Figure 3.6 

outlines the basic idea of using the high-bandwidth shared memory as a user-
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managed cache. As the result of such caching, data can be read from the shared 

memory without any substantial overhead or memory contention. Any intermediate 

results can also be stored for subsequent fast access by any other threads. 

Given the intuitive algorithm of multi-pass Gaussian smoothing, a natural 

way to perform the computation is to instantiate thread blocks with their size equal 

to the x-/y-/z- dimensions of the image. With such block dimension, the neighboring 

row/column/slice data can be loaded onto the shared memory at once for fast 

convolution. However, such arrangement in thread blocks can set back memory 

transaction efficiency when the global memory is accessed in a strided pattern. In 

particular, during the y- and z-pass of the convolution. As the global memory is 

optimized to perform 128-bytes coalesced memory transaction through the L1 and 

L2 cache, much of the memory bandwidth will be under-utilized if there is only a 

fraction of data being used by the threads. 

 

Figure 3.7 Thread block management and memory coalescence in GPU 
multi-pass convolution. In the unmanaged arrangement, the slender thread blocks 
along the y- and z-directions breaks x-direction memory coalescences (red blocks). 
Careful management of the thread block dimensions ensures memory coalescence 
for efficient memory transaction (yellow blocks). 
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To this end, one can enforce coalesced memory access to maximize the 

efficiency of memory transactions between the global and shared memory space. 

This can be achieved by instantiating the thread block with appropriate x-dimension 

in the y- or z- pass of the implementation (Figure 3.7). For example, if the 

convolution is performed on an array of single-precision elements (i.e. 4 bytes), it 

is often a good choice to instantiate thread blocks with x-dimension of 32. As such, 

simultaneous fetching of 32 single-precision float elements from a warp can fulfill 

128-byte L1 memory coalescence. Full utilization of the memory bandwidth can 

therefore be achieved. However, as the CUDA architecture to-date supports a 

maximum of 1024 threads being launched per thread block, one may encounter the 

problem that the number of threads required exceeds the maximum allowable 

number of threads supported by CUDA. This can be resolved by launching extra 

thread blocks along the y- or z-direction, but the overlapping convolution areas 

between two adjacent thread blocks requires redundant memory transactions, which 

hampers efficiency. Launching extra thread blocks can also incur additional kernel 

overheads. 

 

Figure 3.8 Code snippet showing instruction-level parallelism for efficient 
thread reuse. Computation for multiple voxels can be conducted by a single thread 
without the need of launching additional thread blocks. 
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Instead of launching and initializing extra thread blocks for the computation, 

instruction-level parallelism can be employed to allow the threads to handle 

multiple pixel/voxels (Figure 3.8). By parallelizing the computation at the 

instruction-level, one can avoid extra latency brought by launching any additional 

thread blocks. Furthermore, as different components of the 3D vector field are 

temporally coherent (i.e. they have to be fetched altogether), it is better to store such 

coherent data in an array-of-structure (AoS) format instead of the conventionally 

used structure-of-array (SoA) format. It is because fetching different components 

stored in SoA require the memory controller to transverse across different memory 

locations. Such memory access to discrete regions of the memory can upset 

standard memory caching. Thus, incurring additional memory latency that 

precludes fast computation. Also, because of the discrete memory address of the 

data, multiple instructions will also have to be issued by the compiler to load all 

required variables. As the result, the read/write efficiency will be further hampered 

due to fetch/decoding overheads of these extra instruction cycles. 

 

Figure 3.9 Multiple instruction cycles required to access data stored in SoA 
(top); in contrast, accessing data stored in AoS only require a single instruction 
cycle (bottom). 

By reorganizing the 3-dimensional data into an array-of-structure formant, 

different components can be stored in a coalesced structure which is capable be 

fetched under a single instruction (Figure 3.9). In this regard, the vectorized data 
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type float4 consisting of 4 coalesced 32-bit floating point variables is ideal to 

accommodate the magnitude and individual component values of a vector. In the 

PTX instruction set it is observable that the compiler will automatically optimize 

the fetching instruction from multiple ld.global.f32 instructions to a single 

ld.global.f32.v4 instruction, which can be considerably faster. 

As an added plus for storing data in AoS format, the required number of 

threads in the x-direction to achieve the 128-byte memory coalescence at L1 can 

also be reduced (Table 3.2). Moreover, as the memory controller is able to fetch 

the all elements in a vectorized data using a single instruction, the overall 

transaction request can be reduced to alleviate data contention on global memory. 

Table 3.2 The required number of threads in x-direction to enforce 128 Byte 
global memory transaction coalescence for various float data types in AoS format. 

Data type 
Size of the data 

type (bytes) 
Dimension of thread block in x-direction required to 
achieve 128-byte memory coalescence 

float 4 32 

float2 8 16 

float3 12 (unable to achieve 128B coalescence) 

float4 16 8 

 

In all, to achieve optimal computation efficiency for Gaussian smoothing, 

one has to effectively utilize the GPU’s shared memory as a user managed cache 

for data reuse. In that regard, the dimensions of the thread blocks launched for 

parallel computation shall be carefully managed. Besides, vectorizing the 

temporally coherent data into AoS format can also assist global memory bandwidth 

utilization. As a result of these memory optimization strategies, contention on the 

memory controller can be alleviated. By effectively utilizing the memory 

bandwidth, it is possible to perform Gaussian smoothing in a swift manner using 

the GPU. 

3.4.2 Vector field composition 

Regarding the large memory and computation throughput in image warping 

and vector field composition, the GPU can utilize its ability of parallel processing 
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to provide the computation throughput required. As depicted in Section 3.3.2.3, the 

composition process is entirely pixel-independent, of which it is capable to be 

parallel processed without any data racing conditions. However, even with the 

subroutine being able to be parallel processed, a large number of gather operations 

(Section 3.3.1.2) during the interpolation of two non-parametric vector fields can 

incur substantial latency. Moreover, as linear interpolation requires the nearest 8 

nearest vectors as the input, this gather operation will also involve a stencil pattern 

in 3D, thus incurring memory strides along the y- and z- directions. Such stencil 

access from random locations can again result in non-sequential memory access on 

the GPU memory. 

As this gathering operation involves random memory address, it is 

impossible to restore memory coalescence solely by resizing the thread block 

dimensions. In addition, the intensive arithmetic computation involved in field 

interpolation can further hamper computation efficiency. To this end, the GPU’s 

texture hardware pipeline can be effectively used to efficiently handle both the 

memory and the arithmetic demand of the operation. To address the non-sequential 

access on memory, GPU’s texture cache on the streaming multiprocessors are 

optimized for fetching memory in 3D, which can achieve fast requisition of 

neighboring data values. Therefore, fast fetching from spatially-coalesced elements 

for interpolation can be achieved. By binding specific regions on the global memory 

to define a texture object, it is possible for the texture API to automatically manage 

the complicated memory transactions involved. Once the texture fetching 

instruction is called, the hardware can automatically load all essential data and 

perform fast texture filtering. 

The texture API requires strict memory address alignment. Contrast to the 

global memory of which the memory address alignment can be resolved by L2 

caching, L2 coalescing is not supported by the texture memory. Instead, the texture 

memory requires data in each row to be fetched are properly aligned on the 128-

byte L2 cache lines. However, as the vectorized 3-dimensional arrays stored in a 

row-major manner can be of any size, one cannot guarantee the address are properly 

aligned for every set of the input image in the linear memory (Figure 3.10). Such 

misalignment can be tackled by padding (append) the memory at the end of each 
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row. However, manually padding the memory to enforce alignment will result in a 

non-sequential address index, which will be confusing and counterinitiative to most 

programmers. 

 

Figure 3.10 Strided access to linear memory versus managed memory. 
Multiple cached memory access may be required for reading the misaligned data 
stored in linear memory (left). In contrast, spatially localized elements stored in 
managed memory can be efficiently cached and accessed with the automatically 
aligned memory address (right).  

To this end, GPU possesses the ability to manage the 3-dimensional memory 

arrays using special sets of “pitched” memory pointers for fast data fetching through 

an automatically managed memory array. Through the pitched memory pointer, the 

device to automatically allocate and enforce memory alignment for fast access of 

3D spatially localized memory elements. Such fast access to 2/3D spatially 

localized memory by the graphics pipeline cannot be supported by the ordinary 

linear array. Once the texture data are fetched to the graphics pipeline, the GPU’s 

texture mapping unit is able to swiftly perform the interpolation (known as “texture 

filtering”) through its hardwired computation units. However, the accelerated 

interpolation does come at the cost of reducing interpolant precision (9-bit fixed 

point), which will still be sufficient in most scenarios in intensity-based image 

registration due to the limited data range (usually 12-bit unsigned integers) provided 

by most medical images. 
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3.4.3 Velocity field update 

Section 3.3.2.4 has presented the major computation resides in 3D gradient 

decomposition of the fixed and moving image, as well as the composition of 

velocity update field. Similar to Gaussian smoothing, a stencil pattern accessing the 

von Neumann neighborhood is required in 3D gradient decomposition. Likewise, 

the 3D vector field composition required to update the velocity field is identical to 

the operations presented in Section 3.3.2.3. Besides, the heavily branched 

computation required in generating the update field can also impose stall the 

execution of warps on a GPU. 

As the stencil memory access pattern involved in gradient decomposition 

similar to Gaussian smoothing. The operation can be optimized using similar data 

reusing techniques which are presented in Section 3.4.1. Similarly, the immense 

computation load involved in vector field composition can also be resolved using 

the GPU’s texture hardware as presented in Section 3.4.2. Additionally, any 

computation bottleneck brought by instruction branching can be resolved by code 

optimization. Such optimization can be achieved by decomposing a complex branch 

into a simpler control flow operation, which allows the processor to access the 

relevant results that are computed preemptively. As a result of the decomposed flow 

operation, the compiler can automatically optimize for the thread divergence to 

completely mitigate any overhead. 

3.5 Conclusion 

In this chapter, I have introduced different performance-aware 

programming methods on GPU in Chapter 3.2. I have also presented possible 

access patterns that can occur within the massively parallelized computation in the 

GPU in Section 3.3.1. In fact, there are some potentially complicated access patterns 

including gather/scatter, stencil or even random memory access incurred by the 

diffeomorphic log-demons algorithm. In response to those potentially bottlenecking 

memory transactions, the GPU possess different strategies to resolve the 

transactions efficiently.  
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With such GPU memory accessing schemes in mind, we have looked into 

the algorithm breakdown of diffeomorphic log-demons in an attempt to find out the 

bottlenecking operations in Section 3.3.2. Particularly, we found that two of the 

operations, namely Gaussian regularization and vector field composition, are 

bottlenecking the whole registration process. By revisiting the hardware 

microarchitecture of the GPU, I have proposed to exploit the memory access 

patterns and texture hardware to resolve the demanding computations in Section 3.4. 

As a result, different performance-aware optimization strategies are proposed, 

which will be implemented and tested in Chapter 4.  
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Chapter 4  

GPU-BASED IMPLEMENTATION OF 

DIFFEOMORPHIC LOG-DEMONS 

4.1 Introduction 

The computation bottleneck of the diffeomorphic log-demons algorithm has 

been identified in the previous chapter. As presented in Chapter 3.4, a number of 

optimization strategies can be adopted on the GPU to resolve the major computation 

bottleneck that precludes fast computation. This chapter evaluates the optimization 

effectiveness of such strategies. To effectively visualize the enhancement by such 

performance-aware computing techniques, I have performed individual testing on 

each blocking operations of diffeomorphic log-demons (Section 3.3.2). Multiple 

implementations of these bottlenecking operations will be presented and compared 

to the run-time required by the CPU. Finally, the optimal implementations of 

different computation modules are assembled into a working, optimized GPU 

implementation of diffeomorphic log-demons for validation in terms of computation 

enhancement. 

4.2 Major performance limiter 

To apply performance-aware programming techniques onto the 

computation kernel, knowing which part of the GPU is bounding the computation 

is essential. Indeed, there are numerous reasons that can hold back the GPU’s 

computation performance. Instead of exhausting the list of bottlenecking reasons, 

they are categorized into 3 major performance-bounding factor, namely compute-
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bound, memory-bound, or latency-bound. Using the NVidia visual profiler (nvvp) 

that comes with the CUDA toolkit, one can identify the performance limiter by 

looking into the performance metrics. In fact, implementing performance-aware 

techniques on GPU is an iterative process, which involves numerous iterations of 

profiling and optimization of the GPU kernel. Once the performance-limiting factor 

is identified and pinpointed, it is required to take corresponding actions to resolve 

such issue.  

Table 4.1 Key metrics shown in the profiler for the identification of 
performance limiter in a GPU kernel.  

Performance limiter Key identifying metrics Warp stall reasons 

Computation-bound High arithmetic pipe utilization Execution dependency 

Memory-bound High memory bandwidth usage, Memory throttle 

Latency-bound 
High L2 Transactions per request 
Low Memory-computation overlap 

Memory dependency 

 

Table 4.1 presents the key identifying metrics of the three major types of 

performance limiters shown by the CUDA profiler. As depicted by the name of the 

performance limiter, the performance of compute-bound kernel is limited by the 

immense workload that saturated the multiprocessors. This can be introduced by 

the workload exceed the theoretical operations per second (OP/s) of the hardware, 

or because the algorithm is not optimized. Similarly, memory-bound situations can 

be invoked by hardware limit, when the required memory transaction exceeds the 

hardware capability. Finally, latency-bound kernels are not bounded by the memory 

or computation hardware capability. Instead, it is introduced by the latencies that 

present in computation and/or memory transactions due to poor memory transaction 

pattern, or poor overlap between the computation and memory operations.  

4.2.1 Compute-bound and memory-bound kernels 

Compute-bound kernels can be identified by high compute throughput with 

respect to the hardware limit. A general rule-of-thumb of identifying compute-

bound kernels is the achieved compute throughput is over 60% of the hardware 

limit. Similarly, memory-bound kernels can be identified if the profiler the memory 

throughput is over 60% of the theoretical memory bandwidth. Compute-bound and 



 

72 

memory-bound kernels are generally caused by high utilization of the device. As 

such, if the profiler indicates signs of the kernel are being bounded by compute- or 

memory-related issues, the programmer can affirm that a considerable amount of 

computation has been done efficiently. However, there is also the possibility that 

extra computation effort was spent due to the algorithm is not optimized, or due to 

unnecessary memory transactions that bottlenecked the kernel. Therefore, the first 

step to resolve for compute bound kernels is to always look for ways to improve the 

compute efficiency.  

For example, enabling the --use_fast_math compiler option enables the 

GPU device to utilize the more optimized fast math library for faster execution of 

mathematical functions such as 𝑠𝑖𝑛 , 𝑠𝑞𝑟𝑡  and 𝑙𝑜𝑔𝑓 , of which they can be 

computationally expensive. This compiler option enables the multiprocessors to 

further off-load such expensive computation to the special function unit in each 

multiprocessor for faster computation with slightly lower accuracy. While the speed 

difference has not been reported in the CUDA programming guide to-date, it has 

been reported that using the --use_fast_math options alone can, not only reduce the 

number of instructions generated for the computation, but also reduce the latency 

of performing such computation.  

Furthermore, thread divergence is also another important factor to be 

tackled when the kernel is bound by computation. Under the SIMT architecture, 

warps of 32 threads will have to be executed together. Thread divergence will be 

observed if the threads within a warp take different execution path due to 

divergence in the control flow. As such, upon executing a divergent warp, both 

execution paths will have to be executed, with some threads being deactivated. Thus, 

resulting in a low thread execution efficiency. In such regard, it may be wise to 

decompose any complex execution branch, or group such diverged threads into a 

single warp for efficient execution. 
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4.2.2 Latency-bound kernels 

Contrary to compute- or memory-bound kernels, latency-bound kernels can 

be identified by low compute and memory throughput compared to the hardware 

limit of the device. As a rule of thumb, the kernel can be classified as latency-bound 

if the kernel is not bound by either compute or memory throughput using the 60% 

utilization rule. Computation latency is one of the major reasons that can lead to 

under-utilization of the device. Normally, the CUDA hardware can automatically 

mitigate such memory/compute latency by concurrently executing multiple warps 

under SIMT. However, if there is a great amount of latency in a kernel of which 

they that cannot be hidden by warp concurrency, the CUDA device will be stalled 

and therefore being bounded by latency. 

It is often important to reemphasize fetching data from the global memory 

costs hundreds of GPU cycles, which is approximately 100x costlier than 

performing basic arithmetic operations [105]. This extended time required for the 

SM to access the global memory incurs much latency. Given memory operations 

can be ubiquitous throughout the kernel run time, it is the most common reason that 

causes latency bottleneck. Thus, being bound by memory latency is one of the most 

common reasons for most GPU kernels to stall. To ensure memory transactions are 

performed efficiently is the key to deal with latency-bound kernels. Chapter 3.4 has 

presented a number of ways to ensure full utilization of the memory bandwidth. In 

all, it is of the utmost significance of ensuring coalesced memory read on the global 

memory, as well as properly reusing the data by the shared memory.  

However, it is not uncommon to discover the kernels are still bounded by 

memory latency, even with all precautions being taken. In that sense, neither the 

computation pipelines nor the memory bandwidth was bottlenecking the 

computation. Such situation is usually observed in small kernels with low warp 

concurrency with relative light computation. Besides, latency-bound kernels are 

also commonplace when thread barriers are extensively used to prevent any data-

racing conditions within a thread block. In this light, one can manually decrease the 

thread-level parallelism by reducing the block size, but increase the block-level 

concurrency to allow the GPU to run more blocks at once in order to hide such 

latency (Figure 4.1). 
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Figure 4.1 Concurrent execution of multiple thread blocks on a single 
streaming multiprocessor. This block-level concurrency can mitigate memory 
latency. 

4.3 Optimization results for bottlenecking operations 

As presented in Chapter 3.4, the two bottlenecking operations of 

diffeomorphic log-demons are: (1) Gaussian smoothing involved in regularization 

of the update field and velocity field; and (2) vector field composition required in 

the scaling and squaring methods for computing the deformation field. As the 

diffeomorphic log-demons algorithm is iterative in nature, these bottlenecking 

operations are repeatedly called throughout the registration process. Because the 

operations can incur a vast amount of different memory access patterns that 

preclude fast computation, several optimization strategies have been proposed in 

Chapter 3.4. Such strategies aim to resolve these computation hurdles with the aid 

of different hardware features in GPU. In this section, I will present the optimization 

results for the bottlenecking operations that presented previously.  

4.3.1 Testing platform 

To illustrate the importance of different performance-aware programming 

techniques, I have conducted a series of experiments on the bottlenecking 

operations. These operations, namely Gaussian smoothing and vector field 

composition, are the major bottleneck in diffeomorphic log-demons. Most of the 
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computation time has been spent on these operations. In that light, one could 

achieve fast registration if these computation bottlenecks are resolved. The 

experiments also allow quantification of computation enhancement brought by the 

performance-aware computing techniques. All experiments were conducted using 

a vector field/deformation field generated by a pre-deformed 3D MRI brain imzage 

using TPS. To investigate the effect of varying image dimensions on the 

computation, the dataset was up/down-sampled to 7 separate sets of images with 

resolution ranging from 1 × 10  to 3.6 × 10  voxels. Figure 4.2 shows the pair of 

input image sets used for testing of the bottlenecking operations. 

 

Figure 4.2 Dataset used to evaluate the optimization performance at 3 
distinct slices. Pre-/post- deformed brain MRI images were used as the 
fixed/moving images of the registration. The generated velocity vector field from 
the fixed/moving image pair is shown on the right with warmer color indicating  
higher vector magnitude. 

The GPU-related experiments were conducted by a PC with an i7-4790 CPU 

running at 3.6GHz equipped with an NVIDIA GTX Titan X GPU. The GTX Titan 

X is a high-end GPU which features 24 streaming multiprocessors and 12GB global 

memory. To avoid interference due to host-device memory transaction overhead, 

all necessary data are transferred in prior to the experiments in this section.  
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4.3.2 Optimization for Gaussian smoothing 

As presented in Section 3.4.1 the GPU’s shared memory is able to mitigate 

much of the memory transaction latency by achieving effective caching. Using the 

GPU’s shared memory to compute for Gaussian smoothing consist of a 3-phased 

process: (1) pre-fetch all necessary data onto the shared memory; (2) once the data 

are loaded onto the shared memory, then each thread compute the weighted sum of 

all elements within the Gaussian kernel along the direction of multi-pass 

convolution; and finally (3) when all the computation is completed, the threads store 

back the temporarily stored results from the register to the shared memory, and 

subsequently store the result back to the shared memory. To avoid data-racing 

conditions, these computations have to be performed in a step-wise manner. The 

data on the shared memory must be initialized prior to computation. Any temporary 

results must wait for all computation in a block to finish before storing them back 

to the shared memory. Step-wise computation can be assured by using 

synchronization instructions (i.e. calling __syncthreads() in the kernel) at the 

end/beginning of each phase to avoid indeterminstic output due to any potential 

racing conditions.  

To systemically observe and evaluate the effectiveness of the optimization, 

the computation time on the GPU is compared against the time of a single-threaded 

CPU implementing the same algorithm. In particular, multi-pass Gaussian 

smoothing on a vector field stored in SoA format is performed by three 

implementations on GPU, namely: (i) naïve implementation of multi-pass Gaussian 

smoothing without any data reusing (global memory only); (ii) reusing the data with 

shared memory but without enforcing memory coalescences (shared memory); and 

(iii) reusing the data with optimized global-shared memory transaction (shared 

memory /w coalesced transactions). The variance (σ) of the Gaussian kernel was 

set to 3, which is a typical value used by diffeomorphic log-demons.  
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Figure 4.3 Computation time required to perform Gaussian smoothing on the 
velocity fields at 7 levels of resolutions by CPU and the 3 implementations on GPU. 
The GPU implementation that ensures data coalescence during shared memory 
initialization significantly outperforms other implementations. 

Figure 4.3 presents the computation time required to perform Gaussian 

smoothing. It is obvious that the CPU struggles to provide enough computation 

throughput for the operations. As shown by the black dotted line, the required time 

for computation using CPU ranges from 100ms for the smallest test vector field 

dimension (104×125×104) to 3500ms for the largest input vector field dimension 

(313×376×313). In contrast, the GPU can perform the computation significantly 

faster compared to CPU, even without any optimization. The most naïve approach 

of using GPU can achieve the same computation within 5ms to 400ms depending 
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on the resolution. Such computation speed-up is achieved by the massive 

computation throughput by the GPU due to SIMT. However, as discussed in 

previous chapters, the computation bottlenecks do not solely reside in the 

computation throughput, but also in the memory latency between the global 

memory and streaming multiprocessors. With the introduction of shared memory 

to alleviate the memory bandwidth demand, a further reduction of computation time 

is observed. This reduction can be visualized by the blue line, which indicates the 

GPU requires 0.9ms to 35ms to compute for the Gaussian smoothing. Further 

computation improvements can be yielded by managing the thread block 

dimensions to enforce memory read coalescence. As shown by the green line the 

computation time can be further reduced to 0.5ms – 13.5ms. 

Breakdown of the computation time consumed by different convolution 

passes in the sub-optimal and optimal implementation of Gaussian smoothing is 

presented in Figure 4.4. It has been observed that the time consumed by the z-pass 

smoothing on the sub-optimal implementation takes up the majority of the 

computation runtime. The time required is significantly worsened when the input 

dimensions increase to 26M voxels (278×334×278 voxels). At this input image 

dimension, fetching data onto the shared memory across the z-direction requires 

accessing the global memory with a large stride of 278×334×sizeof(float)=363KB 

which will exceed the maximum caching capacity of that an L2 cache chip can 

provide. Therefore, much memory latency will be introduced as the memory 

controller attempt to fetch the requested data from the neighboring L2 chips. As 

such, not only the memory bus is under-utilized due to loss of memory coalescence, 

but also each transaction request from/to the global memory will incur additional 

latency due to cache misses. Conversely, with coalesced memory transaction in the 

implementation with managed thread block size, such memory latency can be 

partially mitigated due to a full utilization of the memory bus.  

 



 

79 

 

Figure 4.4 Breakdown of computation time by various passes in (a) sub-
optimal implementation; and (b) optimal implementation of multi-pass Gaussian 
smoothing process. The z-pass in the sub-optimal implementation takes up 
considerable computation runtime.  
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Fetching the data with the across the y-direction shares the same idea. 

Despite the algorithm will only require striding through the memory with relative 

small step of 278×sizeof(float) = ~1KB , the bandwidth under-utilization due to loss 

of memory coalescence can still hamper data transaction efficiency. Such 

inefficient memory transaction can be reflected by the run-time discrepancies 

between the sub-optimal and the optimal implementation of the algorithm. 

Figure 4.5(a) presents the derived computation speed-up of different 

implementation on GPU compared to a single-threaded CPU, which can reveal a 

clearer picture on the computational enhancement. Figure 4.5(b) indicates the 

kernels are not limited memory bandwidth, as the achieved bandwidth sits well 

below the maximum allowable bandwidth of the GPU (120GB/s out of 336.5 GB/s). 

Instead, the performance limiter resides in memory latency. Regardless, the naïve 

GPU implementation resulted in a 20× computation speed-up initially but falls off 

when the input dimension increases. The sub-optimal implementation using shared 

memory in general outperforms 6-10 times better than the naïve implementation. It 

showed around ~140× computation speed-up but falls to ~100× upon high input 

dimension like the naïve implementation. Let aside the abnormality of 

computational speed-up at low input dimension, the optimal implementation, which 

enforces memory coalescences, perform 1.7-2.2× better than the sub-optimal GPU 

implementation. Moreover, the performance does not fall off upon high input 

dimension, but instead leveling off at ~250× speed-up. A similar pattern is observed 

in Figure 4.5(b), where naïve implementation that only uses the GPU’s global 

memory have under-utilized the memory bandwidth due to repeated, un-coalesced 

memory access. The sub-optimal implementation using shared memory utilized  

5-10× more bandwidth than the naïve implementation, and the optimal 

implementation further utilized 1.7× more global memory bandwidth than the sub-

optimal implementation. 
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Figure 4.5 (a) Effective computation speedup relative to CPU; and (b) 
Achieved global memory bandwidth by various GPU implementations at 7 different 
input resolutions.   
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Figure 4.6 Correlation between computation speed-up and achieved global 
memory bandwidth. Significant correlation (R=0.9835) suggests the sub-optimal 
implementations are bounded by the memory latency which causes bandwidth 
underutilization. 

Figure 4.6 illustrates significant correlation between the utilized memory 

bandwidth and the achieved computation enhancement. Such correlation further 

suggests the computation of Gaussian smoothing is bounded by the memory latency 

caused by suboptimal memory access schemes.  However, it is also noticeable in 

Figure 4.5(a) that, for the optimal implementation, the computation speed-up is 

lower when the input vector field dimension is small (~1M voxel) while the 

achieved memory bandwidth utilization remains constant. This suggests that the 

computation kernel has been bounded by the kernel’s computation instead of 

memory latency. In fact, the memory latency can be hidden by concurrent warp 

execution under SIMT. However, at low vector field dimension, there will be 

insufficient number of warps eligible for the streaming multiprocessor to execute 

concurrently. Thus, the lack of eligible warps stalled the device which undermined 

computation efficiency. At higher vector field resolution, there will be more warps 

being eligible for concurrent execution by the streaming multiprocessor which can 

be used to effectively hide part of the memory latency.   
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4.3.3 Optimization for vector field composition 

Similar to the experiments performed on Gaussian smoothing, I have 

conducted experiments on various implementations of vector field composition to 

quantify the effectiveness of computation enhancement. Again, the run-time of 

single-threaded CPU will be used as the baseline of the computation. As depicted 

in previous sections, the CPU will not be able to provide sufficient computation 

throughput. Three different implementations will be tested: (i) manual 

implementation using trilinear interpolations on the global memory (manual 

interpolation); (ii) using texture hardware to perform interpolation on a vector field 

stored in SoA (texture interpolation); and (iii) using texture hardware interpolate 

the vector fields in AoS (vectorized texture interpolation). 

Figure 4.7 presents the computation time required to perform a self-

composition on CPU and GPU. Similar to the investigations in the experiments 

performed on Gaussian Smoothing, the CPU struggles to provide sufficient 

computation throughput to support the vector field composition, especially at a 

large input dimension. Even with the lowest vector field resolution (104×125×104), 

the CPU still requires 133ms to complete the composition process. Computation 

time also increases linearly with respect to the number of voxels. At highest testing 

resolution (313×376×313) the CPU requires over 3500ms to complete a single 

composition operation.  
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Figure 4.7 Computation time required for self-composing a velocity field on 
CPU and the 3 GPU implementations at 7 levels of vector field resolution. 

On the GPU, all 3 implementations achieved significant performance 

enhancement compared to CPU. This suggests that the GPU can provide the much-

needed computation throughput for the operation. Contrary to the experimental 

results obtained in Gaussian smoothing, the performance enhancements obtained 

among different GPU implementations of vector field composition does not show 

as large variations. Particularly, all of the implementations require around 1ms to 

self-compose the smallest test vector field, and 9-11ms to self-compose the largest 

vector field. Despite the three implementations showed similarity in terms of run-
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time, they still show deviations in terms of achieved computation speed-up as 

presented in Figure 4.8. 

 

Figure 4.8 Achieved computation speed-up relative to CPU by the 3 GPU 
implementations of vector field self-composition. 

Figure 4.8 presents the achieved computation speedup by different GPU 

implementation compared to CPU. As illustrated by the red line, manual 

interpolation using native computation instruction on GPU struggles to achieve a 

very high-performance enhancement at low resolution. However, as the input 

dimension increases, the performance slowly increases until being leveled off at 

around 300× speed-up. Besides, both texture memory implementations showed a 

very high-performance speed-up at lower input resolution. However, the speed-up 

achieved by both texture implementations falls off when the input dimension 

increases. For the implementation without AoS, the computation speed-up level-off 

from ~440× to ~300× at 10M voxels. Texture implementation with AoS shows 

significant improvement. Despite the speed up also levels off at 10M voxel for the 
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texture implementation with AoS, the improvements fall from~470× to ~380×, 

which is a 10-20% performance increase. 

Although the GPU implementations of texture interpolation showed 

significant (>250×) computation improvement, there are still a few questions that 

are left unanswered by Figure 4.8 which have to be accounted for, namely: 

1. The reason for the increased performance for both texture memory 

implementations memory at low resolution;  

2. The causes for the performances gain to stabilize and level off at higher 

input dimensions; and 

3. The increased performance of the native interpolation implementation upon 

the increase of input vector field dimension. 

To resolve such questions, one has to resort to micro-benchmark the 

performance of GPU kernels. In performance-aware programming, it is often 

important to identify the bottlenecking by micro-benchmarking the computation. In 

fact, the profiler has shown that most of the kernels are indeed bounded by the 

global memory bandwidth. As presented in Section 2.4.1, any memory access to the 

global memory is cached by both L1 and L2 caches. Therefore, the term 

“bottlenecked by global memory bandwidth” can imply bottlenecking due to 

insufficient L1-L2 bandwidth, insufficient L2-GDDR bandwidth, or both. In this 

light, I looked into the achieved bandwidth between the L1 and the L2 cache, as 

well as the bandwidth between the L2 cache and global memories for these 

implementations.  
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Figure 4.9 Bandwidth statistics obtained by NVidia profiler. (a) Achieved 
L2-global memory bandwidth; (b) achieved L1-L2 memory bandwidth for the 3 
implementations of vector field composition. The benchmark for distinguishing 
bandwidth or latency bound kernels (200 GB/s for L2-global memory; 470 GB/s 
for L1-L2) are also indicated.   
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Figure 4.9 presents the achieved memory bandwidth involved in the global 

memory transaction. The L2-Global memory bandwidth shows an overall good 

utilization for all 3 implementations, but there is a significant (>10%) better 

utilization on the L2-global memory bandwidth for the vectorized texture 

interpolation implementation (green curve). 

The reason for the increased performance for both texture implementations 

at low resolution can be explained by the achieved bandwidth between the L1 and 

L2 caches. As shown in the L1-L2 bandwidth curve, there is a significantly higher 

effective bandwidth achieved when the vector field resolution is low. This can be 

accounted by the fact that the L2 cache can accommodate a larger portion of data. 

Therefore, the increased L2 hit rate facilitates memory performance. Moreover, 

lower input resolution also implies a smaller memory stride for any for texture 

hardware-managed memory fetches.  

To address the disparity between the texture implementations with and 

without AoS, particularly at high input resolution, I looked into the memory 

throughput of the device. The theoretical L2-Global memory throughput of the 

device, defined by 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 × 𝑏𝑢𝑠 𝑤𝑖𝑑𝑡ℎ, is found to be 

 7𝐺𝑏𝑖𝑡/𝑠 × 384 = 2688𝐺𝑏𝑖𝑡/𝑠 = 336 𝐺𝐵/𝑠 (10) 

Therefore, the 60% utilization rule threshold can be calculated: 

 336𝐺𝐵/𝑠 × 60% = 205𝐺𝐵/𝑠  (11) 

As such, the benchmark for distinguishing the kernel to be bandwidth bound or 

latency bound is defined. By applying such rule, one can conclude that the 

vectorized texture interpolation implementation was bottlenecked by the L2-Global 

memory throughput regardless of input dimension. However, for the texture 

implementation without AoS, despite having identical L1-L2 bandwidth usage, the 

L2-Global memory bandwidth showed under-utilization (blue curves in Figure 

4.9a). As a matter of fact, due to the lack of vectorization, there will be a 

significantly more transaction request on the global memory. These extra 
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transaction requests can cause contention on the memory controller, thus resulting 

in the under-utilization of the global memory bandwidth. 

Regarding the increasing performance of the native interpolation 

implementation upon the increase of input vector field dimension, I have to look 

into the L1-L2 memory bandwidth utilization. As depicted in Figure 4.9b, despite 

the implementation of vector field composition using manual interpolation have 

underutilized the L2-Global memory bandwidth, a very high L1-L2 bandwidth 

utilization is observed. Such discrepancy in bandwidth utilization indicates a low 

L1 hit rate with a very high L2 hit rate, which is commonplace when numerous 

threads attempt to stride through the memory from indexed memory locations. 

Due to the non-parametric property of the vector field, it is not possible to 

employ data reuse strategies onto the implementation of vector field composition. 

As the vector field defining the query points are non-parametric, one can consider 

the underlying memory transaction pattern as random. As such, all memory 

transactions will have to be accessed directly onto the global memory through the 

L2 cache. However, the L1 cache is optimized to perform coalesced memory 

transfer by reading/storing 128 bytes at once, numerous memory transaction 

requests form a large number of threads for parallel computation will introduce 

much traffic between the L1 and the L2 caches. To the best of our knowledge, the 

theoretical bandwidth between the L1 and L2 cache are not announced by the GPU 

manufacturer. However, the nvvp will consider the L1-L2 bandwidth to be 

bottlenecking when the L1-L2 utilization exceeds 460GB/s. Therefore, it can be 

confirmed that the latency due to insufficient L1-L2 bandwidth bottlenecks the 

computation. 

To recovery of computation speed-up in the implementation with manual 

interpolation at higher resolution can be accounted by warp concurrency. With 

sufficient block occupancy, the warp scheduler can afford operations with higher 

latency, as long as there are remaining eligible warps for the underlying CUDA 

cores to execute. Warp concurrency can also be facilitated by the relatively 

balanced memory/computation load in manual interpolation which allows an even 

distribution of workload between the memory and execution controllers. 
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4.4 Overall optimization results 

Previous sub-sections presented the performance-aware programming 

techniques used to optimize the two bottlenecking operations in diffeomorphic log-

demons. With those optimization strategies in mind, the whole diffeomorphic log-

demons algorithm was eventually implemented in a modular manner. For instance, 

each module was iteratively profiled and carefully optimized before assembling. 

The assembled registration tool can effectively register the images, as shown in 

Figure 4.10, even with very large deformation. 

 

Figure 4.10 Registration process of a highly deformed image. Misalignments 
between the fixed and the moving images are iteratively resolved by our GPU 
diffeomorphic log-demons implementation using a coarse-to-fine multi-resolution 
registration approach. 
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In this section, I present the optimization strategies applied onto different 

modules, as well as the resultant computation speedup achieved. Further to the 

algorithm breakdown of diffeomorphic log-demons in Section 3.3.2, the detailed 

modular breakdown of our GPU implementation, including the critical computation 

modules are presented: 

Table 4.2 List of optimized GPU computation modules in the 
implementation of diffeomorphic log-demons.  

Computation Module Used by Optimization Strategies 

Gradient 
decomposition 

Update field generation 

Registration energy evaluation 

Enforce coalesced memory 
transfer 

Data re-use using shared memory 

Use of vectorized data type 

Finite image 
difference 

Update field generation 

Registration energy evaluation 

Enforce coalesced memory 
transfer 

Optimize occupancy 

Gaussian smoothing Regularization of vector fields 

Enforce coalesced memory 
transfer 

Data re-use using shared memory 

Use of vectorized data type 

Vector field 
composition 

Computation of deformation 
field 

Updating the velocity field 

Make use of texture interpolation  

Optimize for occupancy 

Use of vectorized data type 

Image warping 
(composition) 

Updating the moving image for 
next iteration 

Make use of texture interpolation  

Optimize for occupancy 

Computation to 
generate velocity 
update field 

Update field generation 
Ensure coalesced memory transfer 

Tackle thread divergence 

Sum/ maximum 
reduction* 

Computation of deformation 
field 

Registration energy evaluation 

Warp shuffling  

Loop unrolling 

Tackle thread divergence 

*An open-sourced GPU library, thrust [103], was used to implement sum/maximum reduction. 

 

Table 4.2 presents the list of optimized GPU computation modules that are 

used in our implementation of diffeomorphic log-demons. As the GPU utilizes its 

highly parallelized SIMT architecture to perform high throughput computation, it 

is not surprising to see that most of the optimization techniques are focusing on 

efficient use of its memory. Previous investigations on the two bottlenecking 

operations also illustrated most GPU kernels are indeed bounded by memory 
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latency. Such latency-bounded kernels are eligible to be optimized by allowing data 

reuse, employing vectorized data structure, as well as using specialized GPU 

hardware. With such regard, the optimization performance of each computation 

step, for all test cases from 1M voxels to 37M voxels, in the optimized GPU-enabled 

diffeomorphic log-demons is presented: 

Table 4.3 Performance gain for different computation steps in an iteration 
using the GPU implementation of diffeomorphic log-demons.  

Computation step per iteration CPU time (ms) GPU time (ms) Speed-up (×) 

Compute update field 35 – 904 0.6 – 18.7 48× – 63× 

Vector field regularization 266 – 7226 1.1 – 23.2 188× – 274× 

Update velocity field 133 – 3579 0.5 – 13.8 255× – 294× 

Compute deformation (avg.) 359 – 15448 1.3 – 52.5 275× – 296× 

Update moving image 107 – 2786 0.3 – 8.9 311× – 336× 

Evaluate registration energy 54 – 1454 0.4 – 13.4 108× – 151× 

Avg. time required per iteration 884 - 31146 3.9 – 140.4 216× - 234× 

 

Table 4.3 presents the performance speedup achieved by optimized GPU 

implementation of the computation steps in diffeomorphic log-demons. As almost 

all computation steps in the algorithm are inherently parallelizable, the GPU is able 

to achieve an impressive >200× computational speed-up for most computation. 

Despite CPU have twice the clock speed compared to GPU, its inability to perform 

SIMD or SIMT have heavily set back its computation throughput. As such, the CPU 

will have to heavily rely on loops to perform the needed voxel-wise computation, 

which will come with the cost of a significant overhead due to pointer arithmetic 

and control flow. In fact, the majority of the computation time on CPU will be spent 

on loop control operations when there is insignificant arithmetic computation load 

[104]. 

Gaussian Smoothing is a typical example of which its efficiency suffers 

from control and loop overheads. By launching numerous threads to independently 

tackle the pixel/voxel-wise computation, much of the overheads spent on control 

flow can be eliminated. However, the computation bottleneck will then shift to the 
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memory bandwidth, which can be demanding when large-scaled thread parallelism 

is employed. By carefully managing and optimizing the memory transaction, a 

significant 190-270× computation speed-up can be achieved depending on the 

dimension of the input.  

Vector field composition and image warping are relatively compute-

intensive operations. To this end, the GPU utilizes is underlying texture filtering 

hardware to perform efficient interpolation. The computation speed-up brought by 

the optimized hardware for specialized computation, in addition to the profound 

speedup that brought up by thread parallelism, results in an impressive 255-294× 

speed-up for vector field interpolation. The similar computation required for image 

warping is also speed up for 311-336×. In addition to the optimized vector field 

interpolation operation, the application of efficient GPU-based maximum reduction 

by the thrust library [103] also assisted fast computation of the scaling-and-squaring 

method. As a result, computation of the deformation field from the log-domain 

velocity field have also received significant computation speed-up by 275-296×. 

However, computing the update field and registration energy on GPU does 

not show as large computation speed-up as other GPU kernels. Computation of 

update field only achieved a relatively low speed-up of 48-63×. Evaluation of 

registration energy received a moderate speed-up of 108-151×. Such regression in 

terms of speed-up versus CPU can be accounted by the fact that the CPU can handle 

such computation more efficiently. Due to an increased computation load compared 

to the loop control overhead, the speed-up brought by mitigating such overhead by 

thread parallelism has been diminished. Furthermore, the efficiency of computing 

the update field on GPUs are also limited by multiple branching operations that 

exist in the update field computation process.   
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Table 4.4 Registration parameters and the iterations required, and the time 
required for GPU to initialize and perform the registration computation for different 
test images. 

Image 
Dimension 

Iterations 
Required 

Self-compositions 
Required 

Initialization 
Overhead (ms) 

Computation 
Time (ms) 

104 × 125 × 104 25 66 179 92 

139 × 167 × 139 32 106 211 309 

174 × 209 × 174 39 135 327 748 

209 × 251 × 209 43 154 511 1479 

244 × 293 × 244 47 181 787 2707 

278 × 334 × 278 50 205 1126 4803 

313 × 376 × 313 53 225 1617 7160 

Registration parameters: 

𝝈𝒇 = 𝟑,  𝝈𝒅 = 𝟑, 𝝈𝒊 = 𝟏,  𝝈𝒙 = 𝟏; 

Registration termination condition: Gradient descent, threshold: 2.5% of initial energy 

 

Table 4.4 presents the registration parameters and the computation time 

required for our GPU implementation to complete the registration process. It is 

worth mentioning that the registration time increases not only because of the 

increased image dimensionality, but also because of the increased number of 

iterations required for the registration. As the test images are produced by up-

/down-sampling from a pair of pre-deformed brain image, the resultant magnitude 

of the vector field representing the true deformation will also scale accordingly. As 

the diffeomorphic log-demons registration framework restricts the magnitude of 

update field to be <0.5 pixels per iteration, more iterations will be required for the 

registration upon larger deformation [55]. Furthermore, as the magnitude of the 

vector field increases, computing the deformation from the velocity field in the 

registration progress using the scaling-and-squaring method will also require more 

self-compositions, which can lead to higher computation time. 

  



 

95 

 

Figure 4.11 Time required for CPU (black line) and GPU with optimized 
kernels (red line) to complete the registration. The overhead due to memory transfer 
in the initialization of GPU is also included (dotted line in purple). 

 

Figure 4.12 Breakdown of required computation time by the major 
computation steps in for diffeomorphic log-demons. These recorded run time are 
obtained by to register the testing images in 7 levels of resolution with number of 
voxels ranging from 1×106 to 3.6×107 voxels. 
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Figure 4.11 showed a vast acceleration can be achieved with appropriately 

optimized GPU kernels. The overall time required can be reduced by two orders of 

magnitude. In fact, multiresolution approaches [80] are usually adopted when 

diffeomorphic log-demons is used to register such a large image. Nonetheless, as 

the goal of the thesis is to compare the computation speed instead of registration 

performance, we intend to directly compare the run-time on CPU and optimized 

GPU using a single registration level. In the optimized GPU implementation of 

diffeomorphic log-demons, it is observable that the GPU initialization takes up 

substantial overheads, especially when the input image resolution is small. Our 

optimized GPU implementation is able to consistently achieve computation 

speedup by two orders of magnitudes, which can have to potential to complete any 

registrations within seconds.  

Figure 4.12 presents the breakdown of time required for the 8 major 

computation steps essential for the registration algorithm. In contrast to the 

profiling report presented in Section 3.3.2, Gaussian regularization as well as field 

composition no longer take up most of the computation time in the GPU 

implementation, which suggests the major computation bottleneck of the 

diffeomorphic log-demons algorithm has been resolved. 

Finally, Figure 4.13 presents the reported registration energy for the first 50 

iterations from both CPU and GPU implementations when registering a test image 

set with resolution of 174×209×174 voxels. There was no significant disparity 

observed between the two sets of registration energy reported, which suggests the 

presented GPU implementation of diffeomorphic log-demons is as accurate as the 

CPU implementation.  
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Figure 4.13 Evaluated registration energy of first 50 log-demons iterations 
from CPU and GPU implementations. No significant disparity between the 
evaluated energy values by CPU and GPU is found. This confirms consistent 
behavior among the CPU and optimized GPU implementations. 

4.5 Conclusion 

In this chapter, I have identified the major performance limiter of different 

computation sub-modules in the GPU implementation of the diffeomorphic log-

demons algorithm. In response to the identified performance limiter, subsequent 

actions were deduced and presented in Chapter 4.2. With the bottlenecking 

operations being found in Section 3.3.2, I employed various performance-aware 

programming techniques to iteratively optimize and improve the computation for 

those computations.  

For quantification of the improvement brought by the performance-aware 

programming, extensive testing and profiling were performed on both the optimal 

and sub-optimal implementations of the computation modules. The results were 

presented in Chapter 4.3. With the performance-aware optimization strategies in 

mind, I have implemented an optimized implementation for other computation 
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required in the algorithm. As a result, fully-optimized GPU implementation of the 

algorithm is presented in Chapter 4.4. An average of 216-234 times computation 

speed-up is achieved in the optimized implementation. In other words, the GPU is 

potent to complete the computation workload within seconds, which otherwise will 

take minutes to hours if performed by a single threaded CPU. 
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Chapter 5  

TECHNICAL CONSIDERATIONS FOR 

EXTENSIVE APPLICATIONS  

5.1 Open-sourced high-performance registration tool 

There are many open-sourced implementations of image registration (e.g. 

SPM, NiftyReg, elastix and ANTS) publicly available, capable of registering 

medical images in 3D. However, the popularity of the demons algorithm is not 

appropriately complemented by enough open-sourced GPU support. Regarding on 

the advanced demons algorithm, there were a few attempts on implementing the 

diffeomorphic log-demons on the GPU, as presented in Section 2.4.2. However, 

those implementations are neither open sourced nor optimized. The well-known 

open-sourced medical image analysis toolkit, ITK, which possesses a wide variety 

of image registration implementations, also lacks GPU support on newer demons 

variations. To-date, the ITK toolkit only implements Thirion’s original demons 

algorithm [55] on GPUs. The lack of GPU support for advance Demon’s variants 

can lead to prolonged computation time. Such prolonged time not only frustrates 

related research on the same area, but also preclude adoption of the algorithm in 

time-critical applications.  
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Figure 5.1 Computation time required to register an image with resolution of 
300×300×150. The presented diffeomorphic log-demons implementation on GPU 
significantly outperforms the other 2 open-sourced image registration packages.  

Figure 5.1 presented the run-time comparison to register an image with 

13.5M voxels for different open-sourced image registration packages. To ensure 

fairness, all registration employed multiresolution approaches by registering the 

sub-sampled image in 3 levels. The presented diffeomorphic log-demons 

implementation in GPU in this work completed all 3 levels of registration within 

30 seconds, which significantly outperforms other open-source image registration 

packages that require approximately 5 minutes to register the images.  

The presented GPU implementation of the diffeomorphic log-demons 

algorithm on GPU using performance-aware techniques in this thesis will be open-

sourced to the general public in the near future. With the source codes and the 

optimization strategies being open to the public, this work will be expected to be 

one of the cornerstones in the field of high-performance image registration. It is 

also worth noting that, given the popularity of the demons algorithm, there is indeed 

a lot of work that has been built based on the algorithm of diffeomorphic log-demons. 

For example, spherical demons [106], LCC-demons [107], adaptive demons [108], 
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and many other improved demons approaches [109-111]. As these works may share 

the same demons framework which consists of diffeomorphic deformation field 

computation, vector field regularization, and so on, the optimization approaches 

used and presented in this work may be able to share among these different 

implementations. 

5.2 Limitations of GPU image registration  

In the previous chapters, the essential optimization required to achieve full 

GPU utilization via different performance-aware programming techniques have 

been presented. However, it has to be noted that the GPU possesses several 

limitations. It is worth mentioning that these limitations are originated due to the 

fact that GPUs are originally designed for video frame rendering. Although it is 

viable to use GPU run intensity-based image registration algorithms in most cases, 

such limitations may cause issues when one attempt to use the GPU to register very 

large image datasets or require very high precisions.  

5.2.1 Graphics memory consumption 

As GPU specializes in rendering frame output, the processors are highly 

optimized for parallel processing numerous single-precision floating point 

operations. Our implementation of diffeomorphic log-demons on the GPU takes 

advantages of the optimized architecture to process single-precision float variables 

to ensure fast computation. As the computation of the diffeomorphic log-demons 

algorithm generates a number of vector fields essential for the computation, the 

resultant memory requirement can easily escalate beyond the hardware limit of 

allowable graphics memory. To illustrate the intense memory size requirement, I 

have listed the items used in diffeomorphic log-demons that can consume a 

considerable amount of memory in Table 5.1: 
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Table 5.1 Memory requirement for accommodating different essential 
variables with dimension 𝑑𝑖𝑚 for the diffeomorphic log-demons algorithm within 
the GPU memory. 

Item Symbol 
Representation 

(bytes) Stored in 
Memory required 

(in bytes) 

Fixed image 𝐹 
Single-precision 
float (4 bytes) 

Global memory 4 × 𝑑𝑖𝑚 

Moving image 𝑀 
Single-precision 
float (4 bytes) 

Texture memory 4 × 𝑑𝑖𝑚 

Immediate moving 
image 𝑀 ∘ 𝑠 

Single-precision 
float (4 bytes) 

Global memory 4 × 𝑑𝑖𝑚 

Fixed image 
gradient 𝛻(𝐹) 

Single-precision 
float4 (16 bytes) 

Global memory 16 × 𝑑𝑖𝑚 

Moving image 
gradient 𝛻(𝑀 ∘ 𝑠) 

Single-precision 
float4 (16 bytes) 

Global memory 16 × 𝑑𝑖𝑚 

Deformation field s Single-precision 
float4 (16 bytes) 

Global memory 16 × 𝑑𝑖𝑚 

Update field u Single-precision 
float4 (16 bytes) 

Global memory 16 × 𝑑𝑖𝑚 

Velocity field v Single-precision 
float4 (16 bytes) 

Global memory 16 × 𝑑𝑖𝑚 

Texture 
Memory 

16 × 𝑑𝑖𝑚 

   Total: 𝟏𝟎𝟖 × 𝒅𝒊𝒎 bytes 

 

For any input image with size 𝑑𝑖𝑚 for registration, it is observable that the 

GPU will need to allocate considerable memory for the input image sets for 

registration. Despite the fixed and moving images only account for (8 × 𝑑𝑖𝑚) bytes 

of the graphics memory utilization, the subsequent computation to register the 

images will require substantial memory being allocated. Apart from the vector 

fields that are required to be stored inside the graphics memory, the image gradient 

of both the fixed and immediate moving image are essential to compute for the 

velocity field update as well as registration energy. As a result, the memory 

requirement of the diffeomorphic log-demons algorithm for different input dataset 

dimensions are presented in Figure 5.2. At high image resolution, the memory 

required may exceed the typical graphics memory limit that can be provided by a 

GPU. 
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Figure 5.2 Memory size requirement on the GPU with respect to the input 
image dimensions. The memory size demand can exceed the allowable memory 
provided by mid-end GPU (e.g. NVidia GTX1050Ti), or even high-end GPUs (e.g. 
NVidia GTX980) when the image dimension is large.  

5.2.2 Interpolation precision 

The GPU’s texture hardware is able to efficiently perform interpolation 

using its texture filtering pipeline. However, such fast texture filtering comes with 

a decreased precision. According to the CUDA Programming guide [105], the 

texture filtering is performed with the interpolant being rounded down to 9-bit 

fixed-point precision with 8-bit fractional values. Hence, with lower interpolant 

precision, the interpolation will be less precise than the usual CPU implementation.  

To investigate the effect of reduced precision by the hardwired texture 

filtering function, Figure 5.3 presents the results of image warping using with full 

float precision, as well as 9-bit interpolant precision using the texture hardware. It 

is observed that despite the GPU’s graphics hardware uses reduced interpolant 

precision, the resultant absolute error between the full and reduced interpolant 

precision is only around 0.3%. This 0.3% error is negligible, considering the 

intensity range of most medical image is often limited to 0-4095 (12-bit precision). 

Even for the vector field exponentiation operations which require 4-5 self-

composition, the absolute error will not exceed 2%, which is acceptable for the 
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demons algorithm considering the registration algorithm will to converge 

unconditionally.  

 

Figure 5.3 Fixed image warped by deformation field using full and reduced 
interpolant precision. Although hardwired texture filtering uses reduced interpolant 
precision, the resultant difference in terms of intensity is negligible (typ. 0.25%). 

5.3 Potential applications 

This presented GPU implementation of diffeomorphic log-demons achieved 

significant computation speed-up compared to the CPU counterparts. With this 

optimized GPU registration being able to accelerate the registration process by over 

two hundred times, this computation enhancement is unprecedented. As a result, 

whole registration time required can be reduced from minutes to seconds. With the 

promising computation speed-up provided, this presented GPU registration tool 

opens up countless research and applicational opportunities. This section discusses 

the potential application of the presented GPU registration tool. 
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5.3.1 Algorithmic improvements by meta-heuristic search of parameters 

One of the challenges in intensity-based image registration is the inability 

to determine the optimal registration parameters. Different input image sets not only 

consist of different image features, but they may also have different data ranges and 

dimensions. These variations in parameters can utterly alter the optimal registration 

parameters. To date, there are several studies focusing on optimization-based image 

registration. Klein et al. [112] looked into several optimization algorithms including 

gradient descent, quasi-Newton, and evolution strategies to look for the best 

parameters for registering CT images of the heart. Also, meta-heuristic based 

methods were also proposed, in a bid to search for a set of optimal image 

registration parameters. Later, Zheng et al. [114] have utilized and improved the 

particle swarm optimization (PSO) algorithm to register multimodal images. The 

clinical impact of such PSO-based search for image registration has also been 

presented in [115], exemplified by performing rigid 3D registration for medical 

images. However, much of these works only focus on registrations with relatively 

simple algorithms. Recently, Cuckoo Search algorithm, a variant of PSO, was 

employed to 2D diffeomorphic log-demons registration in an attempt to find out the 

optimal registration parameters [116]. However, this Cuckoo Search algorithm will 

require >11 hours to converge. Due to extensive computation demand of the demons 

algorithm, employing meta-heuristic based image registration for 3D diffeomorphic 

log-demons using CPU may not be practical. 

With the GPU-enabled diffeomorphic log-demons tool being open-sourced, 

the immense computation speed-up brought by the GPU tool can facilitate any 

optimization-based method on searching the optimal parameters. With the 

presented registration tool being able to accelerate the registration progress by 

approximately 200 times, these PSO-like search algorithms can have their speed 

and accuracy improved. Above all, the whole optimization can be accelerated due 

to the decrease in registration time. As the result of the decreased registration time, 

the cost of spawning a particle in PSO can be decreased. Therefore, more particles 

can be spawn in each PSO iteration, facilitating a more accurate search for the 

parameters.   
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5.3.2 Clinical applications 

Having a rapid non-rigid image registration is beneficial to many 

interventional procedures. For example, the MRI-guided EP process aiming to treat 

cardiac arrhythmia by electrically isolating specific cardiac tissue can be benefited 

by rapidly realigning the pre-op roadmap. Besides, intensity-modulated 

radiotherapy is also another potential clinical application which can be benefited by 

fast nonlinear re-alignment during radiation dosage evaluation. 

5.3.2.1 Accelerated mapping of electro-anatomical map 

In the EP procedure, the construction of the cardiac roadmap heavily relies 

on EA map acquired using a mapping catheter. Such electro-anatomical map 

reveals the cardiac electrophysiologic activity throughout the cardiac cycle [117]. 

Any tissue with abnormal electrical signals can be revealed. Thus, such cardiac-

phase-dependent EA map can assist surgeons to pinpoint the cardiac tissue that 

needs to be isolated, thereby improving treatment accuracy and effectiveness.  

The major technical challenge resides in the re-alignment of the 

intraoperatively acquired EA mapping data on the preoperatively constructed 

cardiac image. To construct a cardiac roadmap, these EA mapping data gathered by 

numerous contact points (Figure 5.4a) needed to be promptly registered back to the 

pre-op cardiac model (Figure 5.4b). However, the distribution of these EA contact 

points may not align with the pre-op model, due to the physiological movement of 

the cardiac chambers, as well as respiratory motion. 

Non-rigid image registration can be used to find out the spatial 

misalignment between the images. Once the misalignment is found, the EA data 

can be re-aligned back to the pre-op cardiac atlas (Figure 5.4c). However, such 

registration needs to be repeated for numerous times to register every single contact 

points back to the anatomically correct pre-op model. As such, this repeated 

registration demands considerable computation. The currently available clinical 

system can only provide an approximate alignment using rigid image registration 

[121], thus it relies heavily on the surgeons’ experience to estimate the 

correspondence between the EA map and the pre-op atlas.  



 

107 

Therefore, having a fast, reliable non-rigid image registration scheme can 

facilitate the EA mapping process. By promptly realigning the EA mapping data 

back to the anatomically-correct cardiac atlas, a reliable EA map can be produced. 

With our implementation of diffeomorphic log-demons being capable to accelerate 

the registration computation by ~220 times, it is possible for the registration to be 

completed within a couple of seconds for accurate visualization.  

 

Figure 5.4 (a) EA map of the left atrium obtained prior to the EP process. 
The mapping gathered by EA contact points may not be anatomically correct. (b) 
Anatomically correct left atrium model obtained by segmentation of an MR image. 
(c) Image registration used to realign the EA mapping data back to the anatomically 
correct left atrium model. Images retrieved from [118-120]. 

5.3.2.2 Intra-op registration of EP target 

iMRI possesses the ability to visualize scars and edema created by during 

the EP procedure. However, due to large-scale tissue deformation of the rapidly 

moving cardiac chamber, the left atrium on the iMRI image may not be aligned 

with the pre-op image, as well as the EA roadmap. Similar to the EA mapping 

procedure, the major challenge resides in having a proper realignment between the 

lesion registered back to the cardiac roadmap [122]. Due to the rapid pumping 

motion of the heart, the iMRI image can exhibit misalignment between cardiac 

cycles, even if the image is gated. Therefore, it is essential to have prior knowledge 

of the tissue deformation between the pre-op and the intra-op images. In this light, 
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non-rigid registration can be used to realign the lesion on the intra-op images back 

to the pre-op roadmap augmented with the EA mapping. 

Figure 5.5 demonstrates the workflow of integrating non-rigid image 

registration on the cardiac EP procedure. Non-rigid image registration is essential 

to resolve the large misalignment between the pre-op cardiac roadmap and the iMRI 

image. Once the misalignment is found, the lesion spots on the intra-op image can 

be accurately realigned back on the pre-op model. With the presented non-rigid 

image registration tool in this thesis, it is believed that such image realignment can 

be performed in fast and frequent manner. As such, the number of iMRI scanning 

can be further increased to ensure favorable post-operative outcome.  

 

Figure 5.5 (a) EP roadmap of left atrium rendered based on pre-op MR 
images. (b) Significant mismatch indicated by orange arrows between the roadmap 
and intra-op images. (c) Ablation landmarks selected on a slice of 2-D intra-op MR 
images. Yellow arrows illustrate the deformation. (d) Ablation landmarks realigned 
appropriately on the 3-D roadmap based on the deformation field. 
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5.3.2.3 Towards extensive use of IGRT  

Radiotherapy is one of the areas that extensively adopt intra-op imaging. 

However, current use of intra-op imaging to adjust radiotherapy treatment plan is 

limited. Instead, the onboard CBCT imagers are mostly used in patient localization 

and position calibration [123]. As presented in Figure 5.6, tissue deformation can 

be observed when the patient undergoes the month-long radiotherapy treatment, 

which can lead to discrepancies between the treatment plan and the actual anatomy.  

 

Figure 5.6 CT image showing significant tissue deformation at the thorax 
after receiving 50Gy of radiation in radiotherapy. This large-scale deformation may 
lead to damage to critical organs if not compensated. Image retrieved from [124]. 

To mitigate any unintended damage to the healthy tissues or critical organs 

due to tissue shrinkage and deformation throughout the radiotherapy treatment, 

IGRT possesses the ability to perioperatively localize the treatment target. Non-

rigid image registration is the key and to quantify the misalignments between the 

pre-op image and the intra-op CBCT images. Such knowledge on the misalignment 

is for essential treatment plan adjustment. However, most non-rigid image 

registration schemes are slow, and can be bottlenecking. As the image registration 

require perioperatively acquired CBCT image, the required registration time will 

occupy significant timeslots of the radiotherapy machine, thus, precluding any 

extensive use of IGRT [125]. As such timeslots are limited, a common practice is 
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to employ IGRT only to the high risks patients. For example, only the patients 

suffering from recurrent cancer [126], or patients with the tumors located near 

critical organs [127]. With the presented work in this thesis which is capable to 

accelerate the registration process, it is expected the operations of IGRT can be 

streamlined, resulting in a more widespread and extensive use of IGRT. 
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Chapter 6  

CONCLUSION AND FUTURE WORK 

6.1.1 Achievement of this thesis 

Non-rigid image registration has long been validated as an effective strategy 

to co-register misaligned image sets. Such realignment is decisive towards safer and 

precise image-guided interventions, but suffers from prolonged registration time. 

The recent advancement in high-performance computation devices, enabled fast 

computation for different applications. However, to effectively utilize the 

computation device for image registration, one has to obtain a solid knowledge of 

both the algorithm and the hardware microarchitecture. This thesis attempted to 

bridge the technological gap between the registration algorithm and its potential 

application in the clinical scenario. 

In this thesis, I have introduced several performance-aware techniques on 

GPU which is essential to achieve the near-real-time image registration, which will 

also be applicable to numerous other time-critical applications. By thoroughly 

analyzing the algorithm, it is found that most of the operations in diffeomorphic log-

demons are not bottlenecked by computation, contrary to the popular belief. Instead, 

the major bottleneck resides in the memory latency during data transactions. By 

appropriately resolving the memory bottleneck, we confirm the ability achieve 

impressive acceleration of the intensity-based image registration process with a 

GPU. The achievements are summarized below: 
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In Chapter 2, an overview of current intra-op imaging technique, as well as 

the clinical demand for image-guided intervention is highlighted. We have pointed 

out the demands of fast non-rigid image registration, as well as the necessity of 

using high-performance application accelerators for time-critical applications.  

In Chapter 3, the basis of performance-aware programming on GPU have 

been introduced. Besides, testing and profiling have been conducted on the 

diffeomorphic log-demons. I have also presented the underlying computation 

bottleneck operations, as well as proposed the essential performance-aware 

programming techniques to work around with such bottleneck.  

The optimized implementations of these bottlenecking operations are 

extensively tested and analyzed in Chapter 4. Following the in-depth analysis of 

the computation demand and improvements, I have presented a working, optimized 

GPU implementation of diffeomorphic log-demons which will be open-sourced in 

the near future.  

Finally, a brief comparison between our open-sourced GPU diffeomorphic 

log-demons registration tool and other open-source image registration toolkits was 

conducted earlier in Chapter 5. Also, I have briefly discussed the limitation of 

using GPU in intensity-based image registration, as well as the potential 

applications of the presented high-performance registration implementation on 

GPU. 
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6.1.2 Ongoing research and future work 

The diffeomorphic log-demons algorithm possesses a lot of potential in 

terms of translational research, due to its ability to reliably realign mismatched 

images. However, the high computation requirement precludes the usage of the 

algorithm in a lot of time-critical applications. With significant computation speed-

up being achieved in the GPU implementation in as presented in this thesis, it is 

expected that a lot of research opportunities can be opened up. For example, 

integrating the registration into intra-op navigation systems can undoubtedly 

increase surgical safety and accuracy. Ongoing research as an extension of this 

work includes the integration of the registration framework onto the various 

surgical robotic systems enabled with intra-op scans. For example, the MR-safe 

robotic system [128] capable of providing intra-op MRI guidance, or the hydraulic 

driving robot capable of performing MRI-guided stereotactic neurosurgery [129]. 

The work presented in this thesis further confirmed the potent ability to 

accelerate various intensity-based image registration schemes using GPU. Future 

work includes the integration of this optimized GPU implementation into the ITK 

framework. Also, this work can be extended by investigating the possibility of using 

GPU to accelerate the computation of another variant of the demons algorithm, 

including LCC-Demons [107], Spectral demons [74], and other approaches. 
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