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Abstract
This article focuses on the design of proportional-derivative (PD) controllers for
positive linear systems in the continuous-time domain, which is a well-known
open problem in positive systems theory. The main objective is to design a
PD controller subject to interval gain variations, which simultaneously pre-
serves the closed-loop system stability and positivity. The provided results fill
the literature gap by considering both the PD controller structure and posi-
tivity. Although various feedback control strategies of positive systems have
been developed recently, the work provides, for the first time, a systematic and
tractable framework for finding nonfragile PD controller gains for positive sta-
bilization. Finally, the theory and algorithm performance are evaluated and
illustrated by numerical examples.
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1 INTRODUCTION

1.1 Background

Generally speaking, a positive system is a special dynamic system whose state and output variables have to be positive, or
at least non-negative, throughout its entire evolutionary horizon. The research on positive systems can be traced back to
Luenberger who, for the first time, introduced the concept of such class of systems in a fundamental book.1 Since then,
positive systems theory has seen a lot of applications in many industrial problems, such as biochemical engineering and
traffic control, to name just a few.2,3 The reason is that, for many real-world physical systems, the descriptor variables are
usually intrinsically positive or non-negative, otherwise the system state will lose its physical attributes.4 For example,
the amount of electric charges (electrons) stored in a capacitor must always remain non-negative. Meanwhile, positive
systems theory has also seen significant applications in stochastic processes since probabilities should be non-negative,
more specifically, Markov chains, Poisson processes and other probabilistic models can be regarded as special types of
positive systems.5 Due to the recent progresses in non-negative matrices6 and co-positive programming,7 more and more
mathematical tools are utilized in the research of positive systems theory, which identifies its particularity and significance
compared with other dynamic systems. Current research on positive systems, especially positive linear systems, could
be roughly divided into three types, that is, positive controllability and controller design,8,9 positive observability and
observer design,10 and positive realization.11 In recent years, positive systems theory has also been combined with other
branches of control theory, such as cooperative control12,13 and time-delay systems.14

More recently, the research interest of positive systems has focused on fairly different control issues, in particular,
robust positive stabilization and system performance15,16, the bounded real lemma17 and the Kalman–Yakubovic–Popov
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lemma18 for positive systems, decentralized and distributed control.19 In addition to the aforementioned control problems
of positive systems, the PD controller design, which is a fundamental methodology in feedback control systems, is a
new problem in the field of positive systems theory.20-22 The major challenge of this problem stems from the difficulty
in guaranteeing the positivity of the differentiator dynamics under the positive system framework. More specifically,
since the input signal of the differentiator may not be monotonically increasing or decreasing, the output signal of it
will be sign-indefinite. Therefore, how to choose an appropriate derivative gain for preserving the overall positivity has
become the key issue. This issue is further complicated by the significant coupling between the centralized multivariable
proportional and derivative gains in the synthesis process.

1.2 Related works

In the literature, a lot of feedback control strategies have been applied to controlling positive systems in order to fulfill
various constraints and performance indices. For instance, an asynchronous state-feedback controller was designed for
positive Markovian jump systems by applying Lyapunov–Krasovskii functional approach and recursive matrix inequality
methods.23 Necessary and sufficient conditions of state-feedback controller design were established in linear program-
ming for positive delay systems with semi-Markov process.24 Static output-feedback (SOF) controllers were designed for
continuous-time and discrete-time positive linear systems.25,26 Distributed observer-based output-feedback controllers
were employed for consensus of networked control systems with positivity constraint.27-29 Positive stabilization of lin-
ear singular systems through PD control was discussed recently.20 The PI controller design for positive systems was
also discussed.30 In a recent work,22 PID control for SISO positive systems was investigated under a strictly Metzlerian
assumption. In contrast to the existing works, the PD controller design problem is investigated for continuous-time posi-
tive LTI systems in this article, and new results are obtained. In addition, the interval gain variations are also considered
in the design of nonfragile controllers for positive systems. It is worth mentioning that there have been very few results
dedicated to the design of nonfragile controllers for positive systems to date.

1.3 Contributions

The main results and contributions of this work are summarized as follows:

I. The PD controller design problem is investigated for continuous-time positive linear systems;
II. A systematic framework is proposed for designing the nonfragile PD controller of positive linear systems;

III. Tractable linear programming and semidefinite programming algorithms are developed for solution.

Since the proposed design framework is systematic and tractable, and the analysis and synthesis conditions can be rep-
resented in the form of convex programming for designing output-feedback or state-feedback PD controllers, it is believed
that our approaches can be readily extended to solve the control problems for various kinds of positive systems with dif-
ferent performance indices, such as positive switched systems and delay systems. Regarding the broad and successful
applications of PID control in practical implementations, the authors also believe that, the positivity-preserving PD con-
troller design framework as well as the analysis and approaches proposed in this article will have significant influence in
both theoretical research and real-world industries in the near future.

1.4 Paper outline

The remainder of this article is organized in the following order. In Section 2, the notations used in this article
are provided and some preliminary knowledge on positive systems theory is introduced. In Section 3, a systematic
formulation for positivity-preserving PD controller design is presented, and several conditions on the positivity and
stability are derived using positive systems theory and Lyapunov theory. Then the positivity and stability design of
PD controllers is provided and the corresponding linear programming and semidefinite programming algorithms are
developed. In Section 4, numerical examples are included to illustrate the effectiveness of our proposed results on
single-input positive systems and multi-input positive systems, respectively. The nonfragility of the PD controller design
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is also verified through using randomly generated gain variations. In Section 5, the whole article is summarized and
concluded.

2 PRELIMINARIES

2.1 Notations

The notations used in this article are included in the following table.

Notation Type Description

R Set Set of real numbers

C Set Set of complex numbers

𝛼(X) Scalar Spectral abscissa

𝛽(X) Scalar Maximal diagonal entry

[A]ij Scalar Entry of matrix A

x(t) Vector System state

u(t) Vector System input

y(t) Vector System output

XT Matrix Matrix transpose

sym(X) Matrix Symmetric matrix XT + X

diag(a1, a2, … , an) Matrix Diagonal matrix

I (or In) Matrix (n × n) identity matrix

KP Matrix Proportional controller gain

KD Matrix Derivative controller gain

A,B,C Matrix State, input, output matrices

G(s) Function Transfer function

X ≻ (or ≽) 0 Operator Positive (semi) definite

X > (or ≥) 0 Operator ∀i, j, [X]ij > 0 (or ≥ 0)

X ≻ (or ≽) Y Operator X − Y ≻ 0 (or ≽ 0)

X > (or ≥) Y Operator X − Y > 0 (or ≥ 0)

2.2 Positive systems theory

Consider the following continuous-time positive linear system{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

, (1)

where x(t) ∈ Rn, u(t) ∈ Rp, and y(t) ∈ Rm denote the system state, input, and output, respectively. The state, input, and
output matrices are denoted by A, B, and C. Moreover, it is assumed that (A,B) is stabilizable and (C,A) is detectable in
this article. To pave the way for further analysis, some useful results4 are provided as follows.

Definition 1. The system in (1) is called a positive linear system if for any non-negative initial state x(0) ≥ 0 and inputs
u(t) ≥ 0, ∀t ≥ 0, the state x(t) and output y(t) are always non-negative, that is, x(t) ≥ 0 and y(t) ≥ 0, ∀t ≥ 0.

Lemma 1. The linear dynamic system in (1) is positive if and only if matrix A ∈ Rn×n is Metzler, meanwhile matrices
B ∈ Rn×p and C ∈ Rm×n are non-negative.
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Lemma 2. For any Metzler matrices M1 ∈ Rn×n and M2 ∈ Rn×n, if M1 ≤ M2, then it holds that 𝛼(M1) ≤ 𝛼(M2).

Lemma 3. For any Metzler matrix M ∈ Rn×n, it is Hurwitz if and only if there exists a diagonal matrix D ≻ 0 such that

DM + MTD ≺ 0 or MD + DMT ≺ 0.

Lemma 4. For any Metzler matrix M ∈ Rn×n, it is Hurwitz if and only if there exists a vector 𝜈 > 0 such that

𝜈TM < 0 or M𝜈 < 0.

Through using the above fundamental results on matrix theory and positive systems theory, the PD controller design
of the continuous-time positive linear system in (1) will be investigated in the following sections.

3 MAIN RESULTS

In this section, we first propose a systematic formulation for PD controller design of the positive linear system in (1), and
then provide several positivity and stability analysis results. Based on positive systems theory and Lyapunov theory, the
positivity and stability design of PD controllers is derived and the corresponding linear programming and semidefinite
programming algorithms are developed.

3.1 Formulation of PD controller

The objective of this subsection is to provide a systematic framework for tuning the gains of the following multivariable
PD controller:

u(t) = KPy(t) + KDŷ(t), (2)

where ŷ(t) = ̇̌y(t) is the derivative of the output signal of the low past filter: Φ ̇̌y(t) = −y̌(t) + y(t) and Φ ∶=
diag(𝜏1, 𝜏2, … , 𝜏m). The positive time constant matrix Φ, in the filtered derivative term, is fixed according to the required
controller bandwidth of each channel.31 The control input in (2) can be expressed as

u(s) = KPy(s) + KDGD(s)y(s), (3)

where GD(s) ∶= diag((s∕(1 + 𝜏1s)), (s∕(1 + 𝜏2s)), … , (s∕(1 + 𝜏ms))) denotes the transfer function matrix of the
differentiator.31 To transform the tuning of controller parameters into an SOF control problem, we reformulate the
transfer function matrix GD(s) into the following state-space form:{

̇̂x(t) = Âx̂(t) + B̂y(t)
ŷ(t) = Ĉx̂(t) + D̂y(t)

, (4)

with Â = −Φ−1, B̂ = Φ−1, Ĉ = −Φ−1, and D̂ = Φ−1, which is a state-space realization given in an explicit form. Therefore,
the closed-loop system in (1) with the PD controller in (2) can be reformulated as[

ẋ(t)
̇̂x(t)

]
=

[
A + BKPC + BKDD̂C BKDĈ

B̂C Â

][
x(t)
x̂(t)

]
. (5)

Hence, the tuning of the PD controller parameters for the positive linear system in (1) is reduced to finding an SOF
controller gain matrix K =

[
KP KD

]
for the overall closed-loop system in (5). In order to formulate a systematic procedure

to determining the SOF controller gain K, we further define that

Ã =

[
A 0

B̂C Â

]
, B̃ =

[
B
0

]
, C̃ =

[
C 0

D̂C Ĉ

]
,
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and x̃(t) =
[
x(t) x̂(t)

]T, then the closed-loop system in (1) can be represented in the following compact form:

̇̃x(t) = (Ã + B̃KC̃)x̃(t).

In the above derivations, the gain variations of the PD controller are not considered, while in real situations, gain variations
always exist. With the gain variations, the control input in (2) becomes

u(t) = (KP + ΔP)y(t) + (KD + ΔD)ŷ(t), (6)

where ΔP and ΔD denote the gain variations of KP and KD, respectively. The nonfragile PD controller in (6) has interval
gain variations described as

−ΔP ≤ ΔP ≤ ΔP and − ΔD ≤ ΔD ≤ ΔD, (7)

where ΔP, ΔP, ΔD, and ΔD are non-negative matrices with compatible dimensions. Define Δ ∶=
[
ΔP ΔD

]
. Using the

nonfragile PD controller in (6) to the system in (1) leads to the following closed-loop system:

̇̃x(t) = (Ã + B̃(K + Δ)C̃)x̃(t). (8)

Based on the above discussions, the problem to be solved in this article is presented as follows.
Problem PDPLS (PD controller design of positive linear system) Subject to the gain variations in (7), design the

nonfragile PD controller gain in (6), that is, KP and KD, for the positive linear system in (1) such that the closed-loop system
in (8) is asymptotically stable and the system state x̃(t) always stays in the non-negative orthant, that is, x̃(t) ≥ 0 for t ≥ 0.

It is well known that the traditional PD controller design can only guarantee the stability of the system, and the
positivity is not preserved during the dynamic process. More specifically, since the input signal of the differentiator may
not be monotonically increasing or decreasing, the output signal of it will be sign-indefinite. Therefore, the key point is
how to choose the appropriate derivative gain for the differentiator. The situation becomes much more complicated when
significant coupling between the proportional and derivative gains in the centralized multivariable PD controllers. The
main difficulty of the above problem is to simultaneously achieve the stability and positivity of the positive linear system
in (1). Through utilizing positive systems theory and Lyapunov theory, the Problem PDPLS is analyzed and solved in
the following subsections.

Remark 1. The PD control strategy, as shown in (2), (3), and (4), provides more degrees of freedom for parameter tuning
to stabilize or optimize certain performances such as disturbance rejection32 and transient deviation.33 This also exhibits
the advantages of PD controller in practical implementations. For example, it is well known that a suitable PD controller
usually has a shorter settling time than a P controller.31 Moreover, since industrial systems are much more complicated,
a simple P controller is usually not a good practical choice, such examples can be found in wireless communications34

and robotic manipulators.35 Although one can obtain a similar state-space representation corresponding to the PID type
controller, the challenge of this problem is that the positivity and stability of systems may not be preserved at the same
time. To address this problem, one alternative choice may be the generalized PID controller, which is an approximate
version of the traditional PID controller. This problem will be left to our future work

3.2 Positivity and stability analysis

Proposition 1. The system in (5) is positive and asymptotically stable if and only if

1) A + BKPC + BKDD̂C is Metzler;
2) BKD is nonpositive;
3) The following matrix is Hurwitz: [

A + BKPC + BKDD̂C BKDĈ
B̂C Â

]
. (9)
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Proof. The asymptotic stability of the system in (5) follows from condition 3). Thus it suffices to show that, the system in
(5) is a positive linear system. Notice that Â = −Φ−1 is Metzler and B̂C = Φ−1C is a non-negative matrix. By conditions 1)
and 2), we further have that BKDĈ = −BKDΦ−1 is non-negative and A + BKPC + BKDD̂C is Metzler.

Based on the above results, we can conclude that the matrix in (9) is Metzler. Hence the dynamic system in (5) is a
positive linear system. ▪

With interval gain variations considered in the design, we will derive the conditions for positivity and stability analysis
in the following theorem.

Theorem 1. Problem PDPLS is solvable if and only if all of the following conditions hold,

1) A + B(KP − ΔP)C + B(KD − ΔD)D̂C is Metzler;
2) B(KD + ΔD) is non-positive;
3) The following matrix is Hurwitz:[

A + B(KP + ΔP)C + B(KD + ΔD)D̂C B(KD − ΔD)Ĉ
B̂C Â

]
. (10)

Proof. Regarding the proof, the necessity part is obvious since the three conditions always hold if Problem PDPLS is
solvable. We will give the sufficiency part in the following.

Notice that, (1) is a positive linear system, and thus matrix A is Metzler, and matrices B and C are non-negative. The
system matrix in (8) can be expressed as

Ã + B̃(K + Δ)C̃ =

[
A + B(KP + ΔP)C + B(KD + ΔD)D̂C B(KD + ΔD)Ĉ

B̂C Â

]
.

For any −ΔP ≤ ΔP ≤ ΔP and −ΔD ≤ ΔD ≤ ΔD, it is easy to see that

A + B(KP + ΔP)C + B(KD + ΔD)D̂C ≥ A + B(KP − ΔP)C + B(KD − ΔD)D̂C.

By condition 1), we further have that A + B(KP + ΔP)C + B(KD + ΔD)D̂C is Metzler. For condition 2), since B(KD + ΔD) is
a non-positive matrix, then B(KD + ΔD)Ĉ ≥ B(KD + ΔD)Ĉ ≥ 0 which implies that B(KD + ΔD)Ĉ is a non-negative matrix.
Hence we have that Ã + B̃(K + Δ)C̃ is a Metzler matrix and thus the system in (8) is a positive linear system. Then it
remains to prove the stability of the system in (8). Notice that, from condition 3),

Ã + B̃(K + Δ)C̃ ≤

[
A + B(KP + ΔP)C + B(KD + ΔD)D̂C B(KD − ΔD)Ĉ

B̂C Â

]
,

which follows from B(ΔP − ΔP)C + B(ΔD − ΔD)D̂C ≥ 0 and B(ΔD + ΔD) ≥ 0. By Lemma 2, we further have that

𝛼(Ã + B̃(K + Δ)C̃) ≤ 𝛼

([
A + B(KP + ΔP)C + B(KD + ΔD)D̂C B(KD − ΔD)Ĉ

B̂C Â

])
< 0,

which implies that Ã + B̃(K + Δ)C̃ is Hurwitz. Hence the system in (8) is asymptotically stable. ▪

Remark 2. The above analysis provides several conditions for the solvability of Problem PDPLS. Based on the positivity
and stability analyses in Proposition 1 and Theorem 1, the positivity and stability design on gain matrices KP and KP of
the PD controller in (2) are derived in Section 3.3. ◼

3.3 Positivity and stability design

Before we solve the Problem PDPLS in the multi-input case, we first provide the following theorem for the single-input
case, which is able to lead to convex linear-programming-based conditions.
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Theorem 2. Assume that (1) is a single-input system. Problem PDPLS is solvable if and only if there exist vectors p1 ≻ 0
and p2 ≻ 0, and matrices KP and KD such that the following linear program holds:

1) A + B(KP − ΔP)C + B(KD − ΔD)D̂C is Metzler;
2) B(KD + ΔD) ≤ 0;
3) pT

1 A + KPC + ΔPC + KDD̂C + ΔDD̂C + pT
2 B̂C < 0;

4) KDĈ − ΔDĈ + pT
2 Â < 0;

5) pT
1 B = 1.

When the linear program holds, the PD controller gains KP and KD can be obtained.

Proof. In the following, we will give a proof to show that the conditions 3) to 5) in Theorem 2 are equivalent to the
condition 3) in Theorem 1, since the conditions 1) and 2) in Theorems 2 and 1 are identical.

In Theorem 2, since 5) pT
1 B = 1 is a scalar, we substitute it into conditions 3) and 4), and they, respectively, become

pT
1 A + pT

1 BKPC + pT
1 BΔPC + pT

1 BKDD̂C + pT
1 BΔDD̂C + pT

2 B̂C < 0, (11)

and

pT
1 BKDĈ − pT

1 BΔDĈ + pT
2 Â < 0. (12)

We rewrite (11) and (12) into a compact form:[
p1

p2

]T [
A + B(KP + ΔP)C + B(KD + ΔD)D̂C B(KD − ΔD)Ĉ

B̂C Â

]
< 0. (13)

By Lemma 4, we can conclude from (13) that the matrix in (10) is Hurwitz.
It follows from the condition 3) of Theorem 1 that, if the matrix in (10) is Hurwitz, according to Lemma 4, there must

exist vectors p̃1 > 0 and p̃2 > 0 such that

[
p̃1

p̃2

]T [
A + B(KP + ΔP)C + B(KD + ΔD)D̂C B(KD − ΔD)Ĉ

B̂C Â

]
< 0.

Noticing that p̃T
1 B is a positive scalar, the following inequality also holds:

1
p̃T

1 B
×

[
p̃1

p̃2

]T [
A + B(KP + ΔP)C + B(KD + ΔD)D̂C B(KD − ΔD)Ĉ

B̂C Â

]
< 0,

which means that there exist vectors p1 = p̃1∕(p̃T
1 B) > 0 (or equivalently, pT

1 B = (p̃T
1 B)∕(p̃T

1 B) = 1), and p2 = p̃T
2∕(p̃

T
1 B) > 0

such that conditions 3) to 5) hold. The whole proof is completed. ▪

In Theorem 2, the design conditions are represented in the form of linear programming for the single-input case. In the
following theorem, we will consider the problem in the multi-input case, and derive a necessary and sufficient condition
of Theorem 1 for solution.

Theorem 3. Problem PDPLS is solvable if and only if there exist diagonal matrices P1 ≻ 0, P2 ≻ 0, a scalar 𝛾 > 0, and
matrices KP and KD such that the following conditions hold:

1) A + B(KP − ΔP)C + B(KD − ΔD)D̂C is Metzler;
2) B(KD + ΔD) ≤ 0;
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3) Γ(𝛾,P1,P2,KP,KD) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

{
sym(AP1 + BΔPCP1 + BΔDD̂CP1)

−𝛾BKPKT
P BT − 𝛾BKDKT

DBT

}
P1CTB̂T − BΔDĈP2 𝛾BKP + P1CT 𝛾BKD + P1CTD̂T

# sym(ÂP2) 0 P2ĈT

# # −𝛾I 0
# # 0 −𝛾I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0.

Proof. Define the nonsingular matrix as

T =

⎡⎢⎢⎢⎢⎢⎣

I 0 BKP BKD

0 I 0 0
0 0 I 0
0 0 0 I

⎤⎥⎥⎥⎥⎥⎦
.

Pre and postmultiplying Γ by T and TT, respectively, leads to

TΓTT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

{
sym((A + B(KP + ΔP)C
+ B(KD + ΔD)D̂C)P1)

}
P1CTB̂T + B(KD − ΔD)ĈP2 P1CT P1CTD̂T

# sym(ÂP2) 0 P2ĈT

# # −𝛾I 0
# # 0 −𝛾I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0,

from which we can see that[
sym((A + B(KP + ΔP)C + B(KD + ΔD)D̂C)P1) P1CTB̂T + B(KD − ΔD)ĈP2

# sym(ÂP2)

]
≺ 0. (14)

This inequality guarantees that the matrix in (10) is Hurwitz.
If the matrix in (10) is Hurwitz, there are matrices P1 ≻ 0 and P2 ≻ 0 such that (14) holds. Therefore, one can always

find a sufficiently large scalar 𝛾 > 0 such that

−

[
CP1 0

D̂CP1 ĈP2

][
sym((A + B(KP + ΔP)C + B(KD + ΔD)D̂C)P1) P1CTB̂T + B(KD − ΔD)ĈP2

# sym(ÂP2)

]−1 [
P1CT P1CTD̂T

0 P2ĈT

]

+

[
−𝛾I 0

0 −𝛾I

]
≺ 0. (15)

Through Schur complement equivalence, (15) is equivalent to TΓTT ≺ 0 which further indicates thatΓ ≺ 0. Therefore,
the conditions in Theorem 2 are equivalent to the conditions in Theorem 3. The whole proof is completed. ▪

Some equivalent conditions of Theorem 3 will be derived in the following theorem.

Theorem 4. Problem PDPLS is solvable if and only if there exist diagonal matrices P1 ≻ 0, P2 ≻ 0, a scalar 𝛾 > 0, and
matrices LP, LD, MP, and MD such that the following conditions hold:

1) 𝛾A + B(LP − 𝛾ΔP)C + B(LD − 𝛾ΔD)D̂C is Metzler;
2) B(LD + 𝛾ΔD) ≤ 0;
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3) Λ(𝛾,P1,P2,LP,LD,MP,MD) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎨⎪⎪⎩
sym(AP1 + BΔPCP1 + BΔDD̂CP1) − BLPMT

P BT

−BMPLT
PBT + 𝛾BMPMT

P BT − BLDMT
DBT

−BMDLT
DBT + 𝛾BMDMT

DBT

⎫⎪⎪⎬⎪⎪⎭
P1CTB̂T − BΔDĈP2 BLP + P1CT BLD + P1CTD̂T

# sym(ÂP2) 0 P2ĈT

# # −𝛾I 0

# # 0 −𝛾I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≺ 0. (16)

When the above conditions hold, the PD controller gains can be obtained by KP = (1∕𝛾)LP and KD = (1∕𝛾)LD.

Proof. In the following, we will give a proof to show that the conditions in Theorem 4 are equivalent to the conditions
in Theorem 3. Substituting LP = 𝛾KP and LD = 𝛾KD into (16), we have BLP − P1CT = 𝛾BKP − P1CT and BLD − P1CTD̂T =
𝛾BKD − P1CTD̂T. Then it suffices to show that Λ ≺ 0 if and only if Γ ≺ 0. If Γ ≺ 0, there exist MP = KP and MD = KD such
that Λ = Γ ≺ 0. On the other hand, if Λ ≺ 0, notice that

{
sym(AP1 + BΔPCP1 + BΔDD̂CP1)

−𝛾BKPKT
P BT − 𝛾BKDKT

DBT

}
−

⎧⎪⎨⎪⎩
sym(AP1 + BΔPCP1 + BΔDD̂CP1) − BLPMT

P BT

−BMPLT
PBT + 𝛾BMPMT

P BT − BLDMT
DBT

−BMDLT
DBT + 𝛾BMDMT

DBT

⎫⎪⎬⎪⎭
= −𝛾B(KP − MP)(KP − MP)TBT − 𝛾B(KD − MD)(KD − MD)TBT ≼ 0.

which implies that Γ ≺ 0. The whole proof is completed. ▪

Remark 3. For the system in (1), if p = m, one can also design a decentralized PD controller of which the gains have the
following diagonal structure:

KP =

⎡⎢⎢⎢⎢⎢⎣

[KP]11 0 … 0
0 [KP]22 … 0
0 0 ⋱ 0
0 0 … [KP]pp

⎤⎥⎥⎥⎥⎥⎦
, KD =

⎡⎢⎢⎢⎢⎢⎣

[KD]11 0 … 0
0 [KD]22 … 0
0 0 ⋱ 0
0 0 … [KD]pp

⎤⎥⎥⎥⎥⎥⎦
,

using Theorem 4. In this case, the corresponding design variables in the conditions of Theorem 4 have the following
diagonal structure:

LP =

⎡⎢⎢⎢⎢⎢⎣

[LP]11 0 … 0
0 [LP]22 … 0
0 0 ⋱ 0
0 0 … [LP]pp

⎤⎥⎥⎥⎥⎥⎦
, LD =

⎡⎢⎢⎢⎢⎢⎣

[LD]11 0 … 0
0 [LD]22 … 0
0 0 ⋱ 0
0 0 … [LD]pp

⎤⎥⎥⎥⎥⎥⎦
. (17)

◼

In this subsection, through using the Lyapunov theory of positive systems, Theorem 2 provides a
linear-programming-based method to solve Problem PDPLS in the single-input case. Then an LMI-based PD controller
design is given in Theorems 3 and 4 which can be utilized to tackle the problem in the multi-input case. From the com-
putational point of view, the linear-programming-based approach is more efficient than the LMI-based approach. Based
on the above result in Theorem 4, a tractable algorithmic solution to Problem PDPLS will be developed in the following
subsection.
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3.4 Algorithmic solution

Based on the discussions and derivations in the previous subsections, in particular, Theorems 3 and 4, an iterative
algorithm is constructed to design the nonfragile PD controller gains for the positive linear system in (1).

Algorithm: Nonfragile PD Controller Design (NPDCD)

Setp 1: Set k = 1 and 𝜖(0) = 0. Select initial values K(1)
P and K(1)

D such that matrix (10) is Hurwitz.
Step 2: For fixed MP = K(k)

P and MD = K(k)
D , solve the following convex optimization problem with respective to 𝛾 > 0, P1 ≻ 0,

P2 ≻ 0, LP and LD:
minimize 𝜖(k) subject to

⎧⎪⎨⎪⎩
𝛾A + B(LP − 𝛾ΔP)C + B(LD − 𝛾ΔD)D̂C is Metzler,
B(LD + 𝛾ΔD) ≤ 0,
Λ(𝛾,P1,P2,LP,LD,MP,MD) ≺ 𝜖(k)I.

Step 3: If 𝜖(k) ≤ 0, STOP, a solution is obtained as K∗
P = (1∕𝛾)LP and K∗

D = (1∕𝛾)LD. Otherwise, go to next step.
Step 4: If |𝜖(k) − 𝜖(k−1)|∕𝜖(k) < 𝜃 which is a prescribed tolerance, STOP. Otherwise, update k = k + 1, K(k)

P = (1∕𝛾)LP, and
K(k)

D = (1∕𝛾)LD, then go to Step 2.

Remark 4. In Step 1, the initial values of KP and KD can be obtained by solving an SOF controller K =
[
KP KD

]
for the

closed-loop system Ā + BKC where

Ā =

[
A + BΔPC + BΔDD̂C −BΔDĈ

B̂C Â

]
, B =

[
B
0

]
and C =

[
C 0

D̂C Ĉ

]
.

This is a very standard SOF control problem that can be solved by various design approaches in the literature.36 ◼

4 SIMULATIONS

In this section, we will verify the effectiveness of our theoretical results and algorithms through using illustrative
examples. The filtered derivative term is set to be 𝜏i = 0.1, i = 1, 2, … ,m, in the numerical simulations.

4.1 Single-input positive system

Consider the positive linear system in (1) with the following system matrices:

A =
⎡⎢⎢⎢⎣
−0.15 1.90 1.55
0.50 −0.3 0.10
0.20 0.50 −2.55

⎤⎥⎥⎥⎦ , B =
⎡⎢⎢⎢⎣
0.055
0.169
0.059

⎤⎥⎥⎥⎦ and C =

[
0.1 0.1 0
0 0 0.1

]
,

and the state-space realization corresponding to differentiator GD:

[
Â B̂
Ĉ D̂

]
=

⎡⎢⎢⎢⎢⎢⎣

−10 0 10 0
0 −10 0 10

−10 0 10 0
0 −10 0 10

⎤⎥⎥⎥⎥⎥⎦
. (18)
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The controller gain variations have the values as follows:

ΔP =
[
0.1 0.1

]
, ΔP =

[
0.1 0.1

]
, ΔD =

[
0.1 0.1

]
, and ΔD =

[
0.1 0.1

]
.

This is a single-input positive linear system. By implementing the program in Theorem 2 using YALMIP with MATLAB
R2020b, a feasible solution was obtained as

K∗
P =

[
−26.2373 −0.8230

]
and K∗

D =
[
−0.2282 −0.2223

]
. (19)

Substituting (19) into the conditions 1) and 2) of Proposition 1, we can verify that

A + BK∗
PC + BK∗

DD̂C =
⎡⎢⎢⎢⎣
−0.3069 1.7431 1.5332
0.0180 −0.7820 0.0485
0.0317 0.3317 −2.5680

⎤⎥⎥⎥⎦ ,
is a Metzler matrix and

BK∗
D =

⎡⎢⎢⎢⎣
−0.1255 −0.1222
−0.3856 −0.3756
−0.1346 −0.1311

⎤⎥⎥⎥⎦ < 0,

which have preserved the positivity of system (1). Furthermore, the eigenvalues of the corresponding matrix (9) are
{−0.0867,−0.9172,−2.5928,−10.0601,−10.0000} which have guaranteed the stability according to Proposition 1.

To show the controller nonfragility, we let the gain variations be

ΔP =
[
−0.25 0.5

]
and ΔD =

[
0.075 −0.025

]
. (20)

Under the gain variations (20), we have

A + B(K∗
P + ΔP)C + B(K∗

D + ΔD)D̂C =
⎡⎢⎢⎢⎣
−0.3041 1.7459 1.5346
0.0265 −0.7735 0.0528
0.0347 0.3347 −2.5665

⎤⎥⎥⎥⎦ ,
is a Metzler matrix and

B(K∗
D + ΔD) =

⎡⎢⎢⎢⎣
−0.0842 −0.1360
−0.2589 −0.4179
−0.0904 −0.1459

⎤⎥⎥⎥⎦ < 0,

which have preserved the positivity of system (1). Meanwhile, the eigenvalues of the corresponding matrix in (9) are
{−0.0992,−0.9075,−2.5902,−10.0473,−10.0000} which have guaranteed the stability according to Proposition 1.

4.2 Multi-input positive system

Consider the positive linear system in (1) with the following system matrices:

A =
⎡⎢⎢⎢⎣
−1 1 3
1 −1 3

0.5 2 −5

⎤⎥⎥⎥⎦ , B =
⎡⎢⎢⎢⎣
0.1 0.5
0.5 0.1
0.3 0

⎤⎥⎥⎥⎦ and C =
[
0.1 0.5 0

]
,
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and the state-space realization corresponding to the differentiator GD:[
Â B̂
Ĉ D̂

]
=

[
−10 10
−10 10

]
. (21)

The controller gain variations have the values as follows:

ΔP =

[
0.5
1.0

]
, ΔP =

[
1.0
0.5

]
, ΔD =

[
0.1
0.1

]
and ΔD =

[
0.1
0.1

]
.

By implementing Algorithm NPDCD, the PD controller gains were initialized as

K(1)
P =

[
−7.4994
−4.0750

]
and K(1)

D =

[
−4.6186
−2.8065

]
.

After several iterations, we obtained 𝜖(3) = −1.00 < 0 and Algorithm NPDCD returned the PD controller gains as

K∗
P =

[
−9.0185
0.2990

]
and K∗

D =

[
−2.4113
−0.2988

]
. (22)

Substituting (22) into the conditions 1) and 2) of Proposition 1, we can verify that

A + BK∗
PC + BK∗

DD̂C =

⎡⎢⎢⎢⎢⎣
−1.1143 0.4286 3.0000

0.4285 −3.8574 3.0000

0.1571 0.2855 −5.0000

⎤⎥⎥⎥⎥⎦
,

is a Metzler matrix and BK∗
D =

[
−0.3905 −1.2355 −0.7234

]T is nonpositive, which have preserved the positivity of
system (1). Meanwhile, we can verify that

[
A + BK∗

PC + BK∗
DD̂C BK∗

DĈ
B̂C Â

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

−1.1143 0.4286 3.0000 0.3905

0.4285 −3.8574 3.0000 1.2355

0.1571 0.2855 −5.0000 0.7234

0.1000 0.5000 0.0000 −1.0000

⎤⎥⎥⎥⎥⎥⎥⎦
,

which has eigenvalues {−0.3610,−1.3020,−3.8461,−5.4627} and thus is a Hurwitz matrix.
To show the controller nonfragility, we randomly generated 100 pairs (ΔP,ΔD) satisfying ΔP ≤ ΔP ≤ ΔP and ΔD ≤

ΔD ≤ ΔD. The state responses of system (1) with controller (6) are shown in Figure 1.

4.3 Decentralized PD controller

Consider the positive linear system in (1) with the following system matrices:

A =

⎡⎢⎢⎢⎢⎣
−2 1 3

1 −4 3

0.5 2 −3

⎤⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎣
0.1 0.5
0.5 0.1
0.3 0

⎤⎥⎥⎥⎦ and C =

[
0.1 0.5 0
0.1 0.2 0.1

]
,



LIU et al. 13

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F I G U R E 1 State responses of system (1) subject to gain variations (x(0) = [1.0 1.0 1.0]T)

and the state-space realization corresponding to the differentiator GD:

[
Â B̂
Ĉ D̂

]
=

⎡⎢⎢⎢⎢⎢⎣

−10 0 10 0
0 −10 0 10

−10 0 10 0
0 −10 0 10

⎤⎥⎥⎥⎥⎥⎦
. (23)

The controller gain variations have the values as follows:

ΔP =

[
0.5 0
0 1.0

]
, ΔP =

[
1.0 0
0 0.5

]
, ΔD =

[
0.1 0
0 0.1

]
, and ΔD =

[
0.1 0
0 0.1

]
.

By implementing Algorithm NPDCD with LP and LD having the structure in (17), the PD controller gains were initialized
as

K(1)
P =

[
−2.8469 −3.1249
−0.4411 −3.1574

]
and K(1)

D =

[
−2.9027 −0.5846
−0.3374 0.0012

]
.

After several iterations, we obtained 𝜖(3) = −1.00 < 0 and Algorithm NPDCD returned the PD controller gains as

K∗
P =

[
−4.4586 0

0 −3.2725

]
and K∗

D =

[
−0.1235 0

0 −0.1091

]
. (24)

Substituting (24) into the conditions 1) and 2) of Proposition 1, we can verify that

A + BK∗
PC + BK∗

DD̂C =
⎡⎢⎢⎢⎣
−2.2751 0.2789 2.7818
0.6717 −5.5107 2.9564
0.3292 1.1459 −3.0000

⎤⎥⎥⎥⎦ ,
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is a Metzler matrix and

BK∗
D =

⎡⎢⎢⎢⎣
−0.0124 −0.0546
−0.0618 −0.0109
−0.0371 0

⎤⎥⎥⎥⎦ ,
is nonpositive, which have preserved the positivity of system (1). Meanwhile, we can verify that

[
A + BK∗

PC + BK∗
DD̂C BK∗

DĈ
B̂C Â

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2.2751 0.2789 2.7818 0.1235 0.5456
0.6717 −5.5107 2.9564 0.6176 0.1091
0.3292 1.1459 −3.0000 0.3706 0
1.0000 5.0000 0 −10.0000 0
1.0000 2.0000 1.0000 0 −10.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

which has eigenvalues {−0.7371,−3.3277,−6.1144,−10.0243,−10.5825} and thus is a Hurwitz matrix.

5 CONCLUSION

In this article, we have addressed and solved the PD control design problem for positive systems. A systematic framework
has been proposed for designing the multivariable PD controller that can preserve the stability and positivity. Controller
gain variations have also been considered in the design. Linear programming and semidefinite programming algorithms
have been developed for single-input and multi-input positive systems, respectively. Illustrative examples attested the
numerical efficiency of the proposed PD control design methodologies.
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