
I. INTRODUCTION 

Bio-inspired continuum robots made of totally 

soft materials have attracted increasing research 

interests nowadays because of their high dexterity 

and compliance, which enables safe interaction 

with environments [1]. However, the inherent 

nonlinear property and infinite degrees of freedom 

challenge the precise control of soft robots. To 

replicate the adaptability of these systems in 

practical applications, accurate and efficient 

controllers are in great demand.  

Majority of existing controllers used model-

based approaches, which rely on approximations, 

such as constant curvature [2], or complicated 

analytical procedures like Cosserat rod theory [3] 

and Finite Element Modeling [4]. However, the 

assumptions may be invalid for systems with high 

nonlinearity or external disturbance while a 

complicate analytical model may be not 

computational suitable for real-time control. 

Model-free approaches, directly learn the 

kinematics or dynamics from sensory data, 

intuitively should fare better in this case. In our 

previous work, an efficient incremental 

nonparametric learning technique, locally weighted 

projection regression (LWPR), was used to solve 

the inverse problem. The proposed controller 

showed good performance on a redundantly fluid-

driven soft continuum robot, which enables a 3D 

orientation tracking accuracy within the mean error 

of 2.49˚ [5]. However, LWPR may require manual 

tuning of many hyperparameters in order to achieve 

small approximation error. Gaussian process 

regression (GPR) would be a more efficient 

nonparametric learning technique for accurate 

approximation of nonlinear functions [6]. 

Compared to LWPR, the hyperparameters of GPR 

can be automatically determined by maximizing the 

likelihood of the prediction distribution. GPR is 

also relatively simple to be constructed in an 

incremental form for online update, which could 

adapt to unknown external disturbance. 

To control the motion of soft robot, accurate 

sensory feedback also plays an important role. Eye-

in-hand camera allows a self-contained setup. Not 

only does it enable instant video feedback due to 

the robot motion, but it also provides the operators 

with an intuitive perception of environment. 

However, a hand-eye calibration procedure may be 

necessary, if model-based control method is 

adopted. To this end, in this project, we intend to 

combine GPR with an uncalibrated eye-in-hand 

camera with the aim at controlling a soft continuum 

robot without using any predefined model of its 

robot kinematics.   

II. METHOD 

Robot task space of our visual servo task is 

defined in image plane. The displacement between 

adjacent image frames is estimated using a 

template matching method, which compares the 

coherence between the template and a sliding 

window. GPR is utilized to establish the inverse 

mapping from the task space to the actuation space. 

The redundancy is addressed by pre-processing the 

sampling dataset so that it can only produce one 

inverse solution. To close the control loop of 

image-based visual servo, actuation command is 

calculated through the learned inverse mapping 

given the error displacement between the current 

position and target position.  

 

Fig. 1. Pneumatic-driven soft manipulator mounted with an 

endoscopic camera and five LEDs at its tip, of which the cables 

are routed and housed inside the inner channel. 

III. EXPERIMENTS AND RESULTS 

A. Experiment platform 

A pneumatically driven soft continuum robot 

made of silicon elastomer (Fig. 1) was used to 

validate our controller. Three individual fiber-

reinforced chambers enable robot bending at an 

angle >90˚, creating a workspace in 3D. An 
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endoscopic camera is mounted at the robot tip, 

which is surrounded by five LEDs for illumination.  

Experimental setup of the visual servo test is 

illustrated in Fig. 2.   

 
Fig. 2. Experimental setup for the visual servo task. 

 

B. Tracking Accuracy 

Point-to-point tracking was conducted. Fig. 3 

presents the robot configurations and image frames 

obtained at the initial and final positions, 

respectively. The robot was initially vertically 

positioned. A start point was manually selected at 

[320, 348] in the image plane of 400×400. Around 

the start point, a 100×100 template pattern was 

created and denoted by a red box in image frames. 

The desire point was at the image plane center, 

[200, 200]. The robot was controlled to reach the 

selected target at its image plane center in a 

100×100 block. Fig. 4a shows a trajectory of the 

tracking trace from a start point to its goal. Fig. 4b 

gives the error in unit of pixel against each time 

step. Our soft manipulator finally aims at the target 

point previously selected within an error <10 pixels.   

 

Fig. 3. (a) Initial robot configuration viewing on the objects 

through its endoscopic camera (Left). A target point was 

manually selected in the corresponding camera image (Right); 

(b) Robot tracing the selected target at its image plane center, 

thus reaching it as a final configuration. 

 

  

Fig. 4.  Performance of tracking on a target point defined on 

image plane: (a) Resultant trajectory traveled along the template 

pattern detected/matched; (b) Vertical and horizontal error 

measured from the actual position of target position at each time 

step.  

IV. CONCLUSION 

This paper presents a learning-based control 

method for eye-in-hand visual servo control. 

Complicated analytical modelling procedure or 

hand-eye calibration could be avoided with the use 

of our GPR-based controller. Experimental results 

demonstrate that the soft continuum robot could 

track a target position promptly within an error 

smaller than 10 pixels using the proposed controller.   
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