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1. Introduction

Dissipativity is a notion relating energy storage and energy
dissipation in dynamic systems (Brogliato, Lozano,Maschke, & Ege-
land, 2007; Meisami-Azad, Mohammadpour, & Grigoriadis, 2009).
Dissipativity theory can be used in many areas of science and en-
gineering, and it provides a framework to design and analyze con-
trol systems by using an input–output energy approach (Brogliato
et al., 2007). In the past three decades, linear positive real (or
nonlinear passivity-based) control systems, which can be consid-
ered as special situations of dissipative systems, have obtained
enormous achievements both in theory and in practice (Brogliato
et al., 2007). In particular, there are great interests in the problems
of mixed H∞ and output feedback synthesis for positive real sys-
tems. For example, the strictly positive real synthesis problems by
using constant output feedback has been studied in Barkana (2004)
and Huang, Ioannou, Maroulas, and Safonov (1999). The authors
of Covacic, Teixeira, Assunção, and Gaino (2012) have proposed a
linear matrix inequality based algorithm to find a constant out-
put feedback matrix, such that the closed-loop system is strictly
positive real. Research article (Chen & Wen, 1995) has addressed
the positive realness preserving model reduction problem with
associated H∞ norm error bounds.
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Negative imaginary systems theory, whichwas first established
in Lanzon and Petersen (2008), has emerged as a useful comple-
ment to the positive real systems theory (Petersen, 2015, 2017) and
attracted much attention among control theorists in recent years;
see Bhowmick and Patra (2017), Ferrante and Ntogramatzidis
(2013), Liu, Ono, Li, and Wu (2017), Liu and Xiong (2015), Liu and
Xiong (2017) and Patra and Lanzon (2011). One of the main differ-
ences between positive real and negative imaginary systems is that
the Nyquist plot of a Single-Input Single-Output (SISO) positive
real transfer function is contained in the right half of the complex
plane (Brogliato et al., 2007), while the positive-frequency Nyquist
plot of a SISO negative-imaginary transfer function lies below the
real axis (Petersen & Lanzon, 2010). Examples of such negative
imaginary properties could be found in many practical systems,
such as RLC networks (Petersen, 2015), large vehicle platoons (Cai
&Hagen, 2010), active vibration systemsby appropriately choosing
inputs and outputs (Petersen & Lanzon, 2010). In addition, stability
results of positive feedback interconnected negative imaginary
systems, which are dependent on the system gains at zero and
infinite frequency (Lanzon&Chen, 2017; Lanzon&Petersen, 2008),
play an important role in robust control problems. Several im-
portant applications on negative imaginary stability results could
be found in Bhikkaji, Moheimani, and Petersen (2012) and Karvi-
nen and Moheimani (2014). Along this line of research, one of
the main issues on negative imaginary systems theory is how to
test the negative imaginary property efficiently. Methods based
on frequency conditions, minimal state-space realization, spectral
conditions and Riccati equations have been studied in Lanzon and
Petersen (2008), Liu and Xiong (2015), Mabrok, Kallapur, Petersen,
and Lanzon (2014) and Mabrok, Kallapur, Petersen, and Lanzon

https://doi.org/10.1016/j.automatica.2018.11.031
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.11.031
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2018.11.031&domain=pdf
mailto:Lmaymay@mail.ustc.edu.cn
mailto:james.lam@hku.hk
mailto:zhubohao@connect.hku.hk
mailto:kwokkw@hku.hk
https://doi.org/10.1016/j.automatica.2018.11.031


M. Liu, J. Lam, B. Zhu et al. / Automatica 101 (2019) 190–196 191

(2015), respectively. Moreover, the negative imaginary synthesis
problems based on state feedback controller and output feedback
controller have been addressed in Liu and Xiong (2015), Mabrok
et al. (2015), Song, Lanzon, Patra, and Petersen (2010) and Xiong,
Lam, and Petersen (2016).

State-space symmetric systems, which could lead to, but dif-
ferent from, transfer function matrix symmetry, arise very often
in diverse engineering fields (Meisami-Azad et al., 2009; Tan &
Grigoriadis, 2001). Physical systems include only one type of en-
ergy storage capability, such as structural systemswith only elastic
potential energy, and circuit networks with only electric energy
or magnetic energy (e.g., RL or RC circuits), as well as a special
systemwith zeros interlacing the poles (Liu, Sreeram, & Teo, 1998),
can be modeled as such state-space symmetric systems (Meisami-
Azad et al., 2009; Tan & Grigoriadis, 2001, 2007). Various problems
about state-space symmetric systems have been discussed such as
model reduction (Liu et al., 1998), dissipative control (Bara, 2012;
Meisami-Azad et al., 2009), decentralized control (Yang, Wang, &
Soh, 2001), stabilization and H∞ control synthesis problems in
continuous and discrete time cases (Tan & Grigoriadis, 2001, 2007)
and controller failure time analysis problem (Zhai & Lin, 2004).
Note that the obtained results show that state-space symmetric
systems exhibit many nice properties. For instance, the H∞ norm
of such systems, the optimal static output feedback gain, and
the optimal full-order dynamic output controller can be directly
computed based on system matrices.

In this paper, we are interested in studying the negative imag-
inary control for linear time-invariant state-space symmetric sys-
tems. The research is motivated by that many negative imaginary
systems in practice are symmetric, and partially motivated by the
nice properties of state-space symmetric systems. The objective
of the paper is to develop a simple and explicit testing method
for state-space symmetric negative imaginary and positive real
systems, and analytically provide the optimal H∞ norm and the
optimal control gain. The contributions of this paper are twofold:
(1) A necessary and sufficient condition based on system matrix
properties is provided to test the positive real and negative imagi-
nary properties for state-space symmetric systems, respectively;
(2) An explicit expression is obtained to compute the infimum
of the closed-loop H∞ norm under a mixed H∞ and negative
imaginary performance, and an explicit expression for associated
optimal control gain is also derived.

The layout of the paper is as follows: In Section 2, some basic
concepts and useful properties which will be used in later sections
are presented. In Section 3, the main results which contain the
positive real and negative imaginary lemmas for state-space sym-
metric systems are developed. In Section 4, static output feedback
control for mixed H∞ and negative imaginary control synthesis
problems are considered. Section 5 presents three examples to
illustrate the main results of the paper. Conclusions of the paper
are given in Section 6.

Notation: Rm×n denotes the set ofm× n real matrices.Rm×n
[s]

denotes the set of m × n real–rational proper transfer function
matrices in s. Rn denotes n-dimensional Euclidean space. Re[·]
denotes the real part of complex numbers. AT and A∗ denote
the transpose and the complex conjugate transpose of a complex
matrix A, respectively. λmax denotes the maximum eigenvalue for
a square complex matrix with only real eigenvalues. A > 0 or
A ≥ 0 denotes a real symmetric positive definite or real symmetric
positive semidefinite matrix. A† denotes the Moore–Penrose gen-
eralized inverse of A. If A is full column rank and A∗A = I , then
A†

= A∗. For a matrix A ∈ Rn×m with rank r (r < n), the orthogonal
complement A⊥ is defined as any (n− r)× nmatrix (possibly non-
unique) that satisfies A⊥A = 0 and A⊥A⊥T > 0. G(s) ∼ (A, B, C,D)
denotes that (A, B, C,D) is a state-space realization of G(s). ∥G∥∞

denotes theH∞ normof the transfer functionmatrixG(s). I denotes
an identity matrix with compatible dimensions. inf γ denotes the
infimum of γ .

2. Preliminaries

In this section, we introduce some basic concepts and useful
properties for state-space symmetric systems, positive real and
negative imaginary systems.

2.1. State-space symmetric systems

Consider the following class of linear time-invariant systems:

ẋ(t) = Ax(t) + Bw(t),
z(t) = Cx(t) + Dw(t), (1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m, m ≤ n,
x(t) ∈ Rn is the state vector, w(t) ∈ Rm is the exogenous input
vector, z(t) ∈ Rm is the system output vector, and (A, B, C,D) are
assumed to be a minimal state-space realization of the system.

System (1) is called state-space symmetric (Tan & Grigoriadis,
2001) if the following conditions hold:

A = AT , C = BT , D = DT .

It is clear that state-space symmetric system (1) implies external
symmetry or system symmetry, that is, G(s) = GT (s), where G(s) =

C(sI−A)−1B+D is the transfer functionmatrix of system (1). How-
ever, the converse does not hold, that is, some external symmetric
systems do not admit a state-space symmetric realization.

Using a particular solution of the bounded real lemma, the
authors of Tan andGrigoriadis (2001) have provided an explicit for-
mula to compute theH∞ norm of the stable state-space symmetric
systems:

∥G∥∞ = max{λmax(−D), λmax(G(0))}. (2)

2.2. Positive real and negative imaginary systems

The definitions of positive real and negative imaginary transfer
function matrices are introduced in the following.

Definition 1 (Anderson & Vongpanitlerd, 1973). A square transfer
function matrix F (s) is positive real if

1. all the elements of F (s) are analytic in Re[s] > 0;
2. F (s) is real for real positive s;
3. F∗(s) + F (s) ≥ 0 for Re[s] > 0.

Definition 2 (Xiong, Petersen, & Lanzon, 2010). A square real–
rational proper transfer function matrix G(s) is said to be negative
imaginary if

1. G(s) has no poles at the origin and in Re[s] > 0;
2. j[G(jω) − G∗(jω)] ≥ 0 for all ω ∈ (0, ∞) except values of ω,

where jω is a pole of G(s);
3. If s = jω0, ω0 ∈ (0, ∞), is a pole of G(s), it is at most a simple

pole, and the residual matrix K0 = lims→jω0 (s − jω0)jG(s) is
positive semidefinite Hermitian.

Remark 1. The concept of negative imaginary transfer function
matrix has been extended to allow poles at the origin or infinity
in Liu and Xiong (2016) and Mabrok et al. (2015). New version of
negative imaginary lemma, which allows poles at the origin, has
been introduced in Mabrok et al. (2015). In this paper, to better
help the controller design and calculate the infimum of H∞ norm
for closed-loop state-space symmetric systems, we only consider
real–rational proper negative imaginary systems without poles at
the origin.
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To determinewhether a transfer functionmatrix is positive real
or negative imaginary, the positive real lemma and negative imag-
inary lemma introduced in the following, provide a necessary and
sufficient condition in terms of theminimal state-space realization
of the system.

Lemma 1 (Brogliato et al., 2007; Willems, 1976). Let (A, B, C,D) be
a minimal state-space realization of a real–rational proper transfer
function matrix F (s) ∈ Rm×m

[s], where A ∈ Rn×n, B ∈ Rn×m, C ∈

Rm×n, D ∈ Rm×m. Then F (s) is positive real if and only if there exists
matrix P > 0, P ∈ Rn×n, such that(
PA + ATP PB − CT

BTP − C −D − DT

)
≤ 0. (3)

Lemma 2 (Lanzon & Petersen, 2008; Xiong et al., 2010). Let (A, B, C,

D) be a minimal state-space realization of a real–rational proper
transfer function matrix G(s) ∈ Rm×m

[s], where A ∈ Rn×n, B ∈

Rn×m, C ∈ Rm×n, D ∈ Rm×m. Then G(s) is negative imaginary if
and only if

1. det(A) ̸= 0, D = DT .
2. There exists a matrix Y > 0, Y ∈ Rn×n such that

AY + YAT
≤ 0, and B + AYCT

= 0. (4)

The following three lemmas are useful to derive the main re-
sults of the paper.

Lemma 3 (Meisami-Azad et al., 2009; Zhou, Doyle, & Glover, 1996).
Consider real matrices Λ and Γ . Suppose Λ = ΛT > 0. Then
Λ > Γ Γ T if and only if λmax(Γ TΛ−1Γ ) < 1.

Lemma 4 (Skelton, Iwasaki, & Grigoriadis, 1998; Tan & Grigoriadis,
2001, Generalized Finsler’s Lemma). Consider real matrices M and Q
such that M has full column rank and Q = Q T . Then the following
statements are equivalent:

(i) There exists a real matrix X = XT such that

MXMT
− Q > 0. (5)

(ii) The following condition holds:

M⊥QM⊥T < 0. (6)

If the above statements hold, then all matrices X satisfying (5) have
the property

X > M†(Q − QM⊥T (M⊥QM⊥T )−1M⊥Q )M†T . (7)

Lemma 5 (Skelton et al., 1998, Bounded Real Lemma). Consider
system (1), and let γ > 0 be given. Then, system (1) is stable and
has H∞ norm less than γ if and only if there exists a matrix P > 0,
P ∈ Rn×n, such that⎛⎝ATP + PA PB CT

BTP −γ I DT

C D −γ I

⎞⎠ < 0.

3. Positive real and negative imaginary lemma for symmetric
systems

In this section, we are concerned with the positive real and
negative imaginary theorems for state-space symmetric systems.
Necessary and sufficient conditions are established to characterize
the positive real and negative imaginary properties of state-space
symmetric systems.

3.1. State-space symmetric positive real theorem

The state-space symmetric positive real theorem in terms of
minimal state-space realization is developed in this subsection.

Theorem 1. The state-space symmetric system (1) is positive real if
and only if

A ≤ 0, and D ≥ 0.

Proof. (Sufficiency) Suppose A ≤ 0, and D ≥ 0. Then,(
2A 0
0 −2D

)
=

(
2A B − CT

BT
− C −2D

)
≤ 0.

That is, inequality (3) is satisfied with P = I . Hence, according to
Lemma 1, system (1) is positive real.

(Necessity) Suppose the state-space symmetric system (1) is
positive real. Then, it follows from Lemma 1 that there exists a
matrix P = PT > 0 such that(

AP + PA PB − B
BTP − BT

−2D

)
≤ 0. (8)

Next, we will show that P = I > 0 is a solution of (8). Since P > 0,
it has a singular value decomposition as follows:

P = UΣ0UT , UT
= U−1, Σ0 = diag{σ1, σ2, . . . , σn} > 0,

where σi > 0, i = 1, 2, . . . , n, are the singular values (or eigenval-
ues) of P . Let

Ā = UTAU, B̄ = UTB, C̄ = CU, D̄ = D.

It can be found that (Ā, B̄, C̄, D̄) is also a minimal realization of
system (1) and state-space symmetric. Then, pre-multiplying of (8)
by
(
UT 0
0 I

)
and post-multiplying of (8) by

(
U 0
0 I

)
, we obtain the

following equivalent condition:(
UT 0
0 I

)(
AP + PA PB − B
BTP − BT

−2D

)(
U 0
0 I

)
≤ 0,

which is equivalent to(
ĀΣ0 + Σ0Ā Σ0B̄ − B̄
B̄TΣ0 − B̄T

−2D̄

)
≤ 0. (9)

Then, pre- and post-multiplying of (9) by
(

Σ−1
0 0
0 −I

)
, where

Σ−1
0 = diag{σ−1

1 , σ−1
2 , . . . , σ−1

n } = (Σ−1
0 )T > 0, it follows that(

ĀΣ−1
0 + Σ−1

0 Ā Σ−1
0 B̄ − B̄

B̄TΣ−1
0 − B̄T

−2D̄

)
≤ 0. (10)

Hence, according to inequalities (9) and (10), one has that both Σ0
and Σ−1

0 are solutions of (9). Since σ1 > 0, there exists 0 < λ1 < 1
such that λ1σ1 + (1 − λ1)σ−1

1 = 1. Then, by computing the linear
combination of (9) and (10), that is, λ1 × (9) + (1 − λ1) × (10), we
obtain(
ĀΣ1 + Σ1Ā Σ1B̄ − B̄
B̄TΣ1 − B̄T

−2D̄

)
≤ 0, (11)

where

Σ1 = diag{λ1σ1 + (1 − λ1)σ−1
1 , λ1σ2 + (1 − λ1)σ−1

2 , . . . ,

λ1σn + (1 − λ1)σ−1
n }

= diag{1, λ1σ2 + (1 − λ1)σ−1
2 , . . . , λ1σn + (1 − λ1)σ−1

n }

≜ diag{1, σ̃2, . . . , σ̃n} > 0.

Similar as before, pre- and post-multiplying of (11) by
(

Σ−1
1 0
0 −I

)
,

a similar condition for Σ−1
1 as in (9) is obtained as follows(

ĀΣ−1
1 + Σ−1

1 Ā Σ−1
1 B̄ − B̄

B̄TΣ−1
1 − B̄T

−2D̄

)
≤ 0. (12)
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It follows from (11) and (12) that bothΣ1 andΣ−1
1 are solutions of

(9). Since σ̃2 > 0, there exists 0 < λ2 < 1 such that λ2σ̃2 + (1 −

λ2)σ̃2 = 1. Then, the corresponding linear combination of (11) and
(12) results in(
ĀΣ2 + Σ2Ā Σ2B̄ − B̄
B̄TΣ2 − B̄T

−2D̄

)
≤ 0, (13)

where

Σ2 = diag{1, λ2σ̃2 + (1 − λ2)σ̃−1
2 , λ2σ̃3 + (1 − λ2)σ̃−1

3 , . . . ,

λ2σ̃n + (1 − λ2)σ̃−1
n }

= diag{1, 1, λ2σ̃3 + (1 − λ2)σ̃−1
3 , . . . , λ2σ̃n + (1 − λ2)σ̃−1

n }

≜ diag{1, 1, σ̂3, . . . , σ̂n} > 0.

By repeating this process, we can construct Σn = I satisfying (9).
That is, P = UΣnUT

= I is a solution of (8). It follows that(
2A 0
0 −2D

)
≤ 0,

and hence A ≤ 0 and D ≥ 0. This completes the proof.

Remark 2. Consider the necessity proof of Theorem 1. According
to inequality (8), we know that −2D ≤ 0 and there exists a matrix
P > 0 such that AP + PA ≤ 0. Since (A, B, C,D) is a minimal
realization of system (1) and A = AT , A has no poles in Re[s] > 0.
We can directly obtain that A ≤ 0 and D ≥ 0, which does not show
that the identity matrix I is a solution of (8). However, the proof
in Theorem 1 shows that the identity matrix I is a solution of (8),
which is not only a nice property of state-space symmetric positive
real theorem, but also will be used in the proof of Theorem 3 later.
The idea of Theorem 1 and its proof are motivated by Lemma 2
in Tan and Grigoriadis (2001).

Suppose system (1) has no poles at the origin, we have the
following corollary.

Corollary 1. Suppose the state-space symmetric system (1) has no
poles at the origin. Then, system (1) is positive real if and only if

A < 0, and D ≥ 0.

Proof. The proof of sufficiency is obvious. For necessity, we know
that (A, B, C,D) is a minimal state-space realization of system (1)
and system (1) has no poles at the origin, and thus A has no poles
at the origin. Moreover, A = AT implies that all the eigenvalues of
matrix A are real numbers. In other words, A has no poles on the
imaginary axis. Then, it follows from Theorem 1 that A < 0 and
D ≥ 0.

3.2. State-space symmetric negative imaginary theorem

In this subsection, the negative imaginary theorem for state-
space symmetric systems is developed in terms of the system state
matrix.

Theorem 2. The state-space symmetric system (1) is negative imag-
inary if and only if

A < 0.

Proof. (Sufficiency) Suppose A < 0. Then, we have

− AA−1
− A−1A = −2I < 0,

B − AA−1B = 0.

That is, Condition 2 of Lemma 2 holds with Y = −A−1 > 0. So, it
follows from Lemma 2 that system (1) is negative imaginary.

(Necessity) Suppose the state-space symmetric system (1) is
negative imaginary. We know that A = AT , and (A, B, C,D) is
a minimal state-space realization. Meanwhile, Condition 1 of 3.
implies that system (1) has no poles at the origin and in Re[s] > 0.
Hence, A < 0.

Remark 3. Theorem 2 cannot be directly proved by using the
relationship between positive real and negative imaginary sys-
tems, and the state-space symmetric positive real theorem. The
reason is that F (s) = s[G(s) − G(∞)] ∼ (A, B, CA, CB) is not state-
space symmetric. An equivalent system representation of F (s) ∼

(A, B, CA, CB) is given by F (s) ∼ (A
1
2 AA−

1
2 , A

1
2 B, CAA−

1
2 , CB) ∼

(A, A
1
2 B, BTA

1
2 , BTB), which is state-space symmetric, but A

1
2 could

be a complex matrix when A < 0.

Remark 4. Based on Theorem 2, it can be found that a stable state-
space symmetric system is always negative imaginary, and state-
space symmetric positive real system without poles at the origin
is also negative imaginary. The H∞ norm of state-space symmetric
negative imaginary systems can be directly calculated by using (2).
When removing theminimal realization assumption, the condition
in Theorem 2 is sufficient to test the negative imaginary properties
of state-space symmetric systems, which can be proved by using
Corollary 1 in Song, Lanzon, Patra, and Petersen (2012) and the
necessity proof in Theorem 2. When system (1) has poles at the
origin, we can use Lemma 2 in Mabrok et al. (2015) to derive
the generalized state-space negative imaginary lemma by allowing
poles at the origin. Also, note that the state-space symmetric neg-
ative imaginary system in this paper is impossible to be lossless
negative imaginary, because the system is stable, while all the
poles of lossless negative imaginary systems lie on the imaginary
axis.

4. MixedH∞ andnegative imaginary control synthesis problem

Consider a linear time-invariant system

ẋ(t) = Ax(t) + B1w(t) + B2u(t),
z(t) = C1x(t),
y(t) = C2x(t),

(14)

where x(t) ∈ Rn is the system state, w(t) ∈ Rm is the system
input, u(t) ∈ Rp is the control input, p ≤ n,m ≤ n, z(t) ∈ Rm is the
system output, y(t) ∈ Rp is themeasured output. Thematrices A ∈

Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×p, C1 × Rm×n and C2 ∈ Rp×n are known
constant matrices. B2 is assumed to be of full column rank. The
system is chosen to be strictly proper to keep the results tractable
and simple. System (14) is called to be state-space symmetric if the
following conditions hold:

A = AT , B1 = CT
1 , B2 = CT

2 . (15)

The aim of this section is to design a symmetric static output
feedback control law

u(t) = −Fy(t), (16)

where F = F T , such that the resulting closed-loop system is
negative imaginary with H∞ norm less than a given scalar γ >

0. The closed-loop system of plant (14) with controller (16) is
given by

ẋ(t) = (A − B2FC2)x(t) + B1w(t),
z(t) = C1x(t).

(17)

The closed-loop system (A − B2FC2, B1, C1, 0) is also state-space
symmetric.
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The following lemma provides a necessary and sufficient sta-
bilizability condition for state-space symmetric systems by output
feedback control.

Lemma 6 (Tan & Grigoriadis, 2001). Consider the state-space sym-
metric system represented by (14). Then, there exists a symmetric
static output feedback control law (16) stabilizes the closed-loop
system if and only if the following condition holds:

B⊥

2 AB
⊥T
2 < 0. (18)

The following theorem provides explicit expressions for the
infimum of the closed-loop H∞ norm under a mixed H∞ and
negative imaginary performance, and the corresponding controller
gain range. The idea of Theorem 3 and its proof are motivated by
Theorem8 inMeisami-Azad et al. (2009) and the comments in Bara
(2012).

Theorem 3. Consider the state-space symmetric system represented
by (14) and the control law represented by (16). Suppose that system
(14) is stabilizable, that is, condition (18) holds. Then, the infimum
of the closed-loop H∞ norm γinf under a mixed H∞ and negative
imaginary performance by symmetric static output feedback control,
can be computed from

γinf ≜ inf γ = λmax[BT
1B

⊥T
2 (−B⊥

2 AB
⊥T
2 )−1B⊥

2 B1]. (19)

For any γ > γinf, a symmetric static output feedback gain, which
renders the closed-loop system negative imaginary with H∞ norm less
than γ , can be selected as

F > B†
2[∆ − ∆B⊥T

2 (B⊥

2 ∆B⊥T
2 )−1B⊥

2 ∆]B†T
2 , (20)

where ∆ = A +
1
γ
B1BT

1 .

Proof. We know that the closed-loop system (17) is state-space
symmetric. According to Theorem 2 and the bounded real lemma,
the closed-loop system (17) is negative imaginary with H∞ norm
less than γ if and only if the closed-loop system (17) is stable with
H∞ norm less than γ , which is equivalent to the following matrix
inequality holds⎛⎝(A − B2FBT

2)P + P(A − B2FBT
2) PB1 B1

BT
1P −γ I 0
BT
1 0 −γ I

⎞⎠ < 0. (21)

Using a similar argument as in the proof of Theorem1 and the proof
of Lemma2 in Tan andGrigoriadis (2001), it can be found that P = I
is a solution of (21). Hence,⎛⎝2A − 2B2FBT

2 B1 B1

BT
1 −γ I 0

BT
1 0 −γ I

⎞⎠ < 0. (22)

Using Schur complement equivalence, we obtain(
−γ I 0
0 −γ I

)
< 0, (23)

and

A +
1
γ
B1BT

1 < B2FBT
2 . (24)

It is obvious that (23) holds. According to the definition of orthog-
onal complement, we know that B⊥T

2 is of full column rank. By pre-
and post-multiplying (24) with B⊥

2 and B⊥T
2 , it follows that

B⊥

2 (A +
1
γ
B1BT

1)B
⊥T
2 < 0, (25)

and hence
1
γ
B⊥

2 B1BT
1B

⊥T
2 < −B⊥

2 AB
⊥T
2 . (26)

Note that (25) also holds by applying the Generalized Finsler’s
Lemma on (24). Then, applying Lemma 3 on (26) results in

λmax
[ 1
γ
BT
1B

⊥T
2 (−B⊥

2 AB
⊥T
2 )−1B⊥

2 B1
]

< 1. (27)

One has that

γ > λmax[BT
1B

⊥T
2 (−B⊥

2 AB
⊥T
2 )−1B⊥

2 B1]. (28)

That is, inf γ = λmax[BT
1B

⊥T
2 (−B⊥

2 AB
⊥T
2 )−1B⊥

2 B1], which provides
the infimum of the H∞ norm γinf as described in (19). Then, ap-
plying the Generalized Finsler’s Lemma on (24) again, we obtain
that F satisfies the condition in (20).

Remark 5. Let γ = αγinf with α > 1, the selected optimal control
gain F as described in (20) ensures that the closed-loop system is
negative imaginary; meanwhile, the H∞ norm of the closed-loop
system is less than αγinf. Similarly, static output feedback control
for mixed H∞ and positive real control synthesis problem can be
considered by using the similar method in Theorem 3.

Remark 6. Compared with Theorem 8 in Meisami-Azad et al.
(2009), the explicit formulation of theH∞ norm and the associated
optimal control gain in Meisami-Azad et al. (2009, Theorem 8)
are related to the trade-off parameter θ ∈ (0, 1). However, our
explicit expressions of Theorem 3 in (19) and (20) are independent
of the trade-off parameter θ and consistent with the comments
in Bara (2012). As pointed out in Bara (2012), the H∞ norm of a
stable state-space symmetric system is a constant value for a given
system, which only depends on the system state-space matrices,
it should not depend on the trade-off parameter θ . Note that
condition (18) is needed to confirm that the system is stabilizable.

5. Numerical examples

Three examples are provided in this section to illustrate the
main results of the paper. The first example demonstrates the
application of state-space symmetric negative imaginary theorem.
The second example validates the explicit expressions of closed-
loop optimal H∞ norm and the associated control gain to Multi-
InputMulti-Output (MIMO) systems. One SISO example that shows
the relationship between optimal H∞ norm and optimal control
gain is studied in the third example.

Example 1. Consider an RL circuit network as depicted in Fig. 1.
This RL circuit network is taken from Meisami-Azad et al. (2009).
We take the currents through the three inductors Li, i = 1, 2, 3,
as the state variables xi(t), i = 1, 2, 3, take the signal Vd

L1
as the

system input w(t), and take the current i as the output z(t). Then,
this results in the following open-loop system:

ẋ(t) =

⎛⎜⎜⎜⎜⎜⎝
−R2

L1

R2

L1
0

R2

L2

−(R2 + R3)
L2

R3

L2
0

R3

L3

−(R3 + R4)
L3

⎞⎟⎟⎟⎟⎟⎠ x(t) +

(1
0
0

)
w(t),

z(t) =
(
1 0 0

)
x(t) +

L1
R1

w(t).

(29)

If L1 = L2 = L3, then system (29) is state-space symmetric. Let
L1 = L2 = L3 = 1 H , R1 = 2 �, R2 = 3 �, R3 = 4 �, and R4 = 5 �,
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Fig. 1. RL circuit network.

the system matrices A, B, C and D of system (29) are given by

A =

(
−3 3 0
3 −7 4
0 4 −9

)
, B = CT

=

(1
0
0

)
, D =

1
2
. (30)

It can be found that A = AT < 0, and hence this system is negative
imaginary according to Theorem 2. Moreover, YALMIP (Lofberg,
2004) and SeDuMi were used to find a solution

Y =

(0.7833 0.4500 0.2000
0.4500 0.5324 0.2298
0.2000 0.2298 0.2721

)
> 0,

which satisfies the inequality and equality conditions of (4), and
hence illustrates that system (29) with the data in (30) is negative
imaginary. Meanwhile, system (29) with the data in (30) is also
asymptotically stable and positive real according to Corollary 1.

Example 2 (MIMO System). Consider an MIMO state-space sym-
metric system (14) with data given by

A =

⎛⎜⎝−3 2 0 1
2 −2 −1 0
0 −1 −3 1
1 0 1 −5

⎞⎟⎠ , B1 = CT
1 =

⎛⎜⎝3 2.5
1 −1
0 1
0 −1

⎞⎟⎠ ,

B2 = CT
2 =

⎛⎜⎝1 0
0 1
0 0
0 0

⎞⎟⎠ .

The open-loop system (A1, B1, C1, 0) is asymptotically stable. Using
the explicit formula (2), it can be computed that the H∞ norm of
the open-loop system is γ ∗

= 35.1145. Consider the symmetric
static output feedback H∞ control design problem. Using (19) in
Theorem 3, the infimum of the closed-loop system H∞ norm is
calculated as γinf = 0.4286. For γ = 1.5γinf > γinf, a symmetric
static output feedback controller, which leads to the closed-loop
system satisfies negative imaginary properties with H∞ norm less
than γ , can be selected explicitly by using Theorem 3 as follows:

F >

(
37.1367 −7.5451
−7.5451 7.6253

)
.

Example 3 (SISO System). Consider a SISO state-space symmetric
system (14) with data given by

A =

(
−5 0 2
0 −1 −1
2 −1 −2

)
, B1 = CT

1 =

(1
0
1

)
,

B2 = CT
2 =

(1
0
0

)
.

Fig. 2. Variation of the closed-loop H∞ norm with the control gain F .

It can be computed that the H∞ norm of the open-loop system
(A, B1, C1, 0) is γ ∗

= 10. Using (19) in Theorem 3, we explicitly
compute the infimum of closed-loop H∞ norm as γinf = 1. For
γ = 1.6 > γinf, a symmetric static output feedback controller,
which leads to the closed-loop system satisfies negative imaginary
properties with H∞ norm less than γ , can be chosen by F >
14. Fig. 2 shows that the variation of the closed-loop H∞ norm
as a function of the control gain F which confirms the negative
imaginary and H∞ norm performances. When −1 < F < 0, the
closed-loop H∞ norm is larger than 10; when F < −1, the closed-
loop system is unstable.

6. Conclusions

This paper has studied the static output feedback negative
imaginary synthesis problem for state-space symmetric systems.
A necessary and sufficient condition involving only system state
matrix and feedforwardmatrix has been developed to characterize
the state-space symmetric positive real and negative imaginary
systems, respectively. An explicit expression for the infimum H∞

norm of the closed-loop system that satisfies negative imaginary
properties, and the associated optimal control gain have been
developed. The results presented in the paper have provided a con-
venient tool to test the state-space symmetric negative imaginary
properties, and provided an explicit solution to compute the opti-
mal H∞ norm and control gain. Especially for large-scale systems,
the explicit solution has obvious computational advantages.
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