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ABSTRACT
This paper investigates the problems of stability and �1-gain analysis for positive 2-dimensional (2-
D)Markov jump systems. Themathematical model of 2-DMarkov jump systems is established based
on the Roesser model. Necessary and sufficient condition for stability and sufficient condition for
�1-gain computation are derived. Furthermore, the stability and �1-gain conditions are extended to
Markov jump systemswith partially known transition probabilities. The effectiveness of the obtained
theoretical findings is verified through two numerical examples.
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1. Introduction

The 2-D model, in which the system state depends on
two independent variables, has been used in different
fields to represent a wide range of practical systems. This
type of systems can be found in image data process-
ing and transmission, thermal processes, gas absorption,
and water stream heating. Due to their theoretical and
practical importance, 2-D systems have attracted much
research attention in recent years. The stability problem
of 2-D systems has been investigated inAnderson,Agath-
oklis, Jury, and Mansour (1986), Lu and Lee (1985), and
Hinamoto (1997). Two popular models of 2-D systems
introduced by Roesser (1975) and Fornasini and March-
esini (1976, 1978) have been considered in those papers.
TheH2 andH∞ control problems, which aim to study the
system performance, have been considered in Du, Xie,
and Zhang (2001) and Yang, Xie, and Zhang (2006) for
2-D systems.

Besides 2-D systems, the variables of many dynamic
systems are always confined to the positive orthant in
many real processes, such as the drug therapy scheduling
problem in HIV infection (Hernandez-Vargas, Colaneri,
& Middleton, 2014). Some research studies have been
focusing on positive systems. For instance, in Zhang, Jia,
Zhang, and Zuo (2018), a new model predictive control
framework has been proposed for positive systems with
polytopic uncertainty. The exponential stability, �1-gain
analysis problem and �1-induced controller for positive
Takagi–Sugeno (T-S) fuzzy systems have been investi-
gated in Du, Qiao, Zhao, and Wang (2018) and Chen,
Lam, andMeng (2017). In Zhu,Wang, and Zhang (2017),
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the stochastic finite-time �1-gain filtering problem for
discrete-time positive Markov jump linear systems with
time-delay has been analysed. The dominant pole assign-
ment problem, the dominant eigenstructure assignment
problem and the robust dominant pole assignment prob-
lem for linear time-invariant positive systems have been
considered in Li and Lam (2016). Some novel techniques
have been developed in the literature to study positive
systems, for example, the linear co-positive Lyapunov
function method. As the state of a positive system is
nonnegative, a linear co-positive Lyapunov function has
been used in Lian, Liu, and Zhuang (2015) to analyse the
mean stability of the positive Markov jump systems with
switching transition probabilities. In addition, although
the �2-gain andH∞ performance index are important for
characterising system performance of general systems,
the 1-norm of the system state and the �1-gain of the
system can provide more useful descriptions for positive
systems (Chen, Lam, Li, & Shu, 2013; Lian et al., 2015;
Shen & Lam, 2016; Xiang, Lam, & Shen, 2017). The 1-
norm of the system state has a good physical meaning
for positive systems because it is the sum of the val-
ues of the components of the state, for example, the
1-norm represents the sum of the number of materi-
als if a positive system is used to model the number
of the materials in a chemical process. The monograph
(Kaczorek, 2012) provides a brief introduction for posi-
tive 2-D systems. In this monograph, somemathematical
models (including the general model, the Roesser model,
and the Fornasini-Marchesinimodel) of positive 2-D sys-
tems have been introduced, the controllability, minimum
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energy control, and realisation problems have been inves-
tigated there. Moreover, the author of the monograph
(Kaczorek, 2012) also considered the problem of stability
for positive 2-D systems with delays in Kaczorek (2009).
In Kaczorek (2007), different forms of Lyapunov func-
tions have been developed to study the positive 2-D
Roesser systems. The stability problem for Roessermodel
has been treated in Kurek (2002). The authors in For-
nasini and Valcher (2005) have focused on the controlla-
bility and reachability problems for positive 2-D systems
by using a graph-theoretic approach.

On the other hand, many practical systems in the
real world have multi-mode features, such as the HIV
viral mutation model and traffic congestion model in
Wang and Zhao (2017). Their multi-mode dynamics can
be captured by the so-called switched systems. Recently,
many research results concerning 2-D switched systems
have been presented in the literature. The authors in
Xiang and Huang (2013) have investigated the problems
of stability and stabilisation of 2-D switched Roesser sys-
temsunder average dwell time switching signal. The same
problems for the Fornasini–Marchesini model have been
considered in Wu, Yang, Shi, and Su (2015). In addi-
tion, the asynchronous control problem of 2-D switched
systems under mode-dependent average dwell time has
been considered in Fei, Shi, Zhao, and Wu (2017). As
a special class of switched systems, Markov jump sys-
tems are able tomodel practical systems subject to abrupt
changes. The switching in a Markov jump system is gov-
erned by a Markov process in the continuous-time case
and a Markov chain in the discrete-time case. The stabil-
isation and H∞ control problems of 2-D Markov jump
Roesser systems have been studied in Gao, Lam, Xu,
and Wang (2004). Wu, Shi, Gao, and Wang (2008) have
studied theH∞ filter design problem for the same class of
systems. In Liang, Pang, andWang (2017), sufficient con-
ditions are established for the filtering error system such
that the system is stochastically asymptotically stablewith
�1-gain. To the best of the authors’ knowledge, there are
not many research results on positive 2-D Markov jump
systems in the literature. Thismotivates us for the present
study.

The main contributions of this paper are summarised
as follows:

(1) A necessary and sufficient condition for stability
analysis for positive 2-dimensional (2-D) Markov
jump systems is proposed for the first time.

(2) Sufficient condition for �1-gain computation is
derived.

The rest of this paper is organised as follows. The con-
sidered dynamic systems and problems are formulated in

Section 2. The assumptions, definitions, and lemmas that
are used to derive the main results are also given in that
section. Themain results on stability and �1-gain compu-
tation are presented in Section 3. Numerical examples are
given in Section 4 to verify the effectiveness of the the-
oretical findings. Finally, the conclusion of this paper is
given in Section 5.

Notations: The notations used throughout this paper
are standard. Rn denotes the n-dimensional Euclidean
space. N0 denotes the set of nonnegative integers. E(∗)

denotes the expectation operator. ‘⊗’ denotes the Kro-
necker product. The superscript ‘T’ represents matrix
transpose. x � 0 (x � 0) and A � 0 (A � 0) mean that
all elements of vector x and matrix A are positive (non-
negative). 1 represents the vector [1, 1, . . . , 1]T. In stands
for the identity matrix. The 1-norm ‖xi,j‖1, where xi,j =
[xi,j,1, xi,j,2, . . . , xi,j,n]T ∈ Rn, is defined as

∑n
l=1 |xi,j,l|. A

vectorωi,j belongs to l1{N0,N0}means that ‖ωi,j‖1 < ∞.
Vectors and matrices are assumed to have compatible
dimensions for algebraic operations if their dimensions
are not explicitly stated.

2. Problem formulation and preliminaries

The considered positive 2-D discrete-time systems in the
Roesser model with Markov jump parameters can be
described as follows:

S :

[
xhi+1,j

xvi,j+1

]
= A(ri,j)

[
xhi,j

xvi,j

]
+ B(ri,j)ωi,j,

yi,j = C(ri,j)

[
xhi,j

xvi,j

]
+ D(ri,j)ωi,j, (1)

where xhi,j ∈ Ru1 , xvi,j ∈ Ru2 are the horizontal and ver-
tical state vectors, respectively; ωi,j ∈ Rv is the distur-
bance vector which belongs to l1{N0,N0}; yi,j ∈ Rw is the
measured output vector.A(ri,j) � 0, B(ri,j) � 0,C(ri,j) �
0, D(ri,j) � 0 are positive real-valued system matrices.
They are determined by an homogenous Markov chain
ri,j, which takes values in a finite set L = {1, . . . , S} with
transition probabilities

Pr{ri,j = n, i + j = k + 1 | ri,j = m, i + j = k} = πmn,
(2)

where πmn ≥ 0 and
∑S

n=1 πmn = 1. Denote the transi-
tion matrix by � = {πmn}.

Remark 2.1: In this paper, it is assumed that switching
occurs only at each sampling point of i or j. In other
words, the value of ri,j depends on i + j (Benzaouia,
Hmamed, Tadeo, & Hajjaji, 2011; Duan & Xiang, 2014).
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Denote system matrices A(ri,j), B(ri,j), C(ri,j), D(ri,j)
as Am, Bm, Cm, Dm, respectively, if the considered sys-
tem operates at themthmode, namely, ri,j = m. The state
of the system is denoted as

xi,j =
[
xhi,j

xvi,j

]
∈ R

u. (3)

The boundary condition is (X0, R0) with

X0 = [xhT0,0 xhT0,1 xhT0,2 · · ·
xvT0,0 xvT1,0 xvT2,0 · · ·]T , (4)

R0 = {r0,0, r0,1, r0,2, . . . , r0,0, r1,0, r2,0, . . .} . (5)

We make the following assumption on the boundary
condition.

Assumption 2.1: The boundary condition is assumed to
satisfy

lim
N→∞ E

{ N∑
k=0

(‖xh0,k‖1 + ‖xvk,0‖1)
}

< ∞. (6)

Next, we will introduce the definitions for positivity,
asymptotic stability in the mean sense, and �1-gain in the
mean sense for system (1).

Definition 2.1: System (1) is positive if xi,j � 0, yi,j � 0
for boundary condition X0 � 0 and disturbance ωi,j � 0.

Definition 2.2 (Kaczorek, 2011; Liang et al., 2017):
System (1) withωi,j ≡ 0 is said to be asymptotically stable
in the mean sense if

lim
i+j→∞ E

{‖xi,j‖1} = 0 (7)

for boundary condition satisfying Assumption 2.1.

Definition 2.3: Given a scalar γ > 0, system (1) is said
to be asymptotically stable with �1-gain γ in the mean
sense if it is asymptotically stable in the mean sense and
under zero boundary condition X0 = 0, ‖y‖E ≤ γ ‖ω‖1
for all non-zero ω = {ωi,j} ∈ �1{N0,N0} where

‖y‖E = E(

∞∑
i=0

∞∑
j=0

‖yi,j‖1), ‖ω‖1 =
∞∑
i=0

∞∑
j=0

‖ωi,j‖1.

(8)

Lemma 2.4 (Kaczorek, 2007): The positive 2-D deter-
ministic system

[
xhi+1,j

xvi,j+1

]
= A

[
xhi,j

xvi,j

]
(9)

is asymptotically stable if and only if there exists a vector
p � 0 such that

pT(A − Iu) ≺ 0. (10)

The stability of deterministic system (9) is defined as
follows.

Definition 2.5: System (9) is said to be asymptotically
stable if

lim
i+j→∞ ‖xi,j‖1 = 0 (11)

for boundary condition satisfying Assumption 2.1.

Lemma 2.6 (Zhu, Han, & Zhang, 2014): The positive 1-
D Markov jump system

xi+1 = A(ri)xi, ri ∈ L (12)

is asymptotically stable in the mean sense if and only if
there exist vectors pm � 0, m = 1, . . . , S, satisfying

pTmAm − pTm ≺ 0, (13)

where pm =∑S
n=1 πmnpn.

The aims of this paper are to establish

• the asymptotic stability condition for system (1);
• the �1-gain computation condition for system (1).

3. Main results

3.1. Stability analysis

Theorem 3.1: Positive 2-D Markov jump system (1) is
asymptotically stable in the mean sense if and only if there
exist vectors phm � 0, pvm � 0, m = 1, . . . , S, satisfying

pTmAm − pTm ≺ 0, (14)

where pm = [phTm pvTm ]T, pm =∑S
n=1 πmnpn.
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Proof: Define the following indicator function (Costa,
Fragoso, & Marques, 2005):

1{r(i,j)=l} =
{
1, if ri,j = l, l ∈ L,
0, otherwise.

(15)

For (i, j) ∈ N0 × N0, l ∈ L, we introduce the following
notations:

xhi,j(l) = E{xhi,j1{r(i,j)=l}}, xvi,j(l) = E{xvi,j1{r(i,j)=l}},

X
h
i,j =

[
xi,jhT(1) xi,jhT(2) · · · xhTi,j (S)

]T
,

X
v
i,j =

[
xi,jvT(1) xi,jvT(2) · · · xvTi,j (S)

]T
,

Xi,j =
[
X
hT
i,j X

vT
i,j

]T
,

X
+
i,j =

[
X
hT
i+1,j X

vT
i,j+1

]T
,

Zi,j = [xi,jhT(1) xi,jvT(1) xi,jhT(2) xi,jvT(2)

· · · xhTi,j (S) xvTi,j (S)
]T

,

Z
+
i,j = [xi+1,j

hT(1) xi,j+1
vT(1) xi+1,j

hT(2)

xi,j+1
vT(2) · · · xhTi+1,j(S) xvTi,j+1(S)

]T
,

A = (�T ⊗ Iu)diag(A1,A2, . . . ,AS). (16)

Then there exists an orthogonal matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iu1 0 0 0 0 · · · 0 0
0 0 Iu1 0 0 · · · 0 0
0 0 0 0 Iu1 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · Iu1 0
0 Iu2 0 0 0 · · · 0 0
0 0 0 Iu2 0 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · 0 Iu2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(17)
such that Xi,j = MZi,j. For the orthogonal matrix M,
it is easy to verify that the following statements are
equivalent:

• qT ≺ 0;
• qTM ≺ 0.

By using the above notations, for system (1) without
disturbances, we can get the following equation:

Z
+
i,j = AZi,j. (18)

Furthermore, we have the following positive auxiliary
system:

X
+
i,j = MAMT

Xi,j, (19)

the boundary condition is obtained as

X0 = [XhT
0,0 X

hT
0,1 X

hT
0,2 · · · X

vT
0,0

X
vT
1,0 X

vT
2,0 · · ·]T � 0. (20)

It should be pointed out that the obtained auxiliary sys-
tem (19) is a positive 2-D deterministic system.

In addition, we have

‖Xi,j‖1 = 1TSuXi,j = 1Tu1

S∑
l=1

xhi,j(l) + 1Tu2

S∑
l=1

xvi,j(l)

= 1TuE{xi,j}
= E{‖xi,j‖1}. (21)

Therefore, positive 2-D Markov jump system (1) is
asymptotically stable in the mean sense if and only
if auxiliary positive 2-D deterministic system (19)
is asymptotically stable because limi+j→∞ ‖Xi,j‖1 =
limi+j→∞ E{‖xi,j‖1}. By Lemma 2.4, auxiliary positive 2-
Ddeterministic system (19) is asymptotically stable if and
only if there exists a vector q � 0 such that

qT(MAMT − ISn) ≺ 0. (22)

Let p = MTq = [pT1 pT2 · · · pTS ]
T, then the above condi-

tion can be rewritten as

pT(A − ISu)MT ≺ 0, (23)

the above inequality is equivalent to

pT(A − ISu) ≺ 0. (24)

Substituting (16) into the above inequality yields
⎡
⎢⎢⎢⎣
p1
p2
...
pS

⎤
⎥⎥⎥⎦
T⎡
⎢⎢⎢⎣

π11A1 − In π21A2 · · · πS1AS
π12A1 π22A2 − In · · · πS2AS

...
...

. . .
...

π1SA1 π2SA2 · · · πSSAS − In

⎤
⎥⎥⎥⎦

≺ 0, (25)

which is equivalent to pTmAm − pTm ≺ 0, ∀m ∈ L. Thus
we can conclude that positive 2-D Markov jump sys-
tem (1) is asymptotically stable in the mean sense if
and only if condition (14) holds. This completes the
proof. �

Based on Theorem 3.1 and Lemma 2.6, it is easy to obtain
the following corollary.
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Corollary 3.2: Positive 2-D Markov jump system (1) is
asymptotically stable in the mean sense if and only if posi-
tive 1-D Markov jump system (12) is asymptotically stable
in the mean sense.

3.2. �1-gain analysis

Theorem 3.3: Positive 2-D Markov jump system (1) is
asymptotically stable with �1-gain no greater than γ in
themean sense if there exist vectors phm � 0, pvm � 0, m =
1, . . . , S, satisfying

pTmAm − pTm + 1TCm ≺ 0, (26)

pTmBm + 1TDm − γ 1T ≺ 0, (27)

where pm = [phTm pvTm ]T, pm =∑S
n=1 πmnpn.

Proof: On the one hand, condition (26) implies con-
dition (14) as Cm � 0. Then according to Theorem 1,
system (1) with ωi,j = 0 is asymptotically stable in the
mean sense.

On the other hand, for �1-gain, consider the following
index:

Ji,j = E

{[
phT(ri+1,j)xhi+1,j + pvT(ri,j+1)xvi,j+1

−pT(ri,j)xi,j + 1Tyi,j
]
|(xi,j,ωi,j, ri,j = m)

}
− γ 1Tωi,j, (28)

where p(ri,j) = [phT(ri,j) pvT(ri,j)]T � 0. Along the tra-
jectory of system (1), we have

Ji,j = pTm
(
Amxi,j + Bmωi,j

)− pTmxi,j

+ 1T
(
Cmxi,j + Dmωi,j

)− γ 1Tωi,j

=
(
pTmAm − pTm + 1TCm

)
xi,j

+
(
pTmBm + 1TDm − γ 1T

)
ωi,j. (29)

Conditions (26) and (27) ensure Ji,j ≤ 0 for all xi,j �
0, ωi,j � 0, and the ‘= ’ occurs at xi,j = 0, ωi,j = 0. Based
on the above relationship, we can easily obtain

E

{
phT(r0,k+1)xh0,k+1

}
= E

{
phT(r0,k+1)xh0,k+1

}
,

E

{
phT(r1,k)xh1,k + pvT(r0,k+1)xv0,k+1

}
≤ E

{
pT(r0,k)x0,k − 1Ty0,k

}
+ γ 1Tω0,k,

E

{
phT(r2,k−1)xh2,k−1 + pvT(r1,k)xv1,k

}
≤ E

{
pT(r1,k−1)x1,k−1 − 1Ty1,k−1

}
+ γ 1Tω1,k−1,

...

E

{
phT(rk+1,0)xhk+1,0 + pvT(rk,1)xvk,1

}
≤ E

{
pT(rk,0)xk,0 − 1Tyk,0

}
+ γ 1Tωk,0,

E

{
pvT(rk+1,0)xvk+1,0

}
= E

{
pvT(rk+1,0)xvk+1,0

}
. (30)

Adding both sides of the above inequalities and con-
sidering the zero boundary conditions xh0,i = 0, xvj,0 =
0, i, j = 0, 1, 2, . . . , yield

E

⎧⎨
⎩

k+1∑
j=0

[
pT(rk+1−j,j)xk+1−j,j

]⎫⎬
⎭

≤ E

⎧⎨
⎩

k∑
j=0

[
pT(rk−j,j)xk−j,j − 1Tyk−j,j

]⎫⎬
⎭

+ γ

k∑
j=0

1Tωk−j,j. (31)

Taking the sum of both sides of the above inequality for
k from 0 to N, we have

E

⎧⎨
⎩

N∑
k=0

k∑
j=0

1Tyk−j,j

⎫⎬
⎭ ≤ γ

N∑
k=0

k∑
j=0

1Tωk−j,j

− E

⎧⎨
⎩

N+1∑
j=0

[
pT(rN+1−j,j)xN+1−j,j

]⎫⎬
⎭ . (32)

For N → ∞, we have

E

⎧⎨
⎩

∞∑
k=0

k∑
j=0

1Tyk−j,j

⎫⎬
⎭ ≤ γ

∞∑
k=0

k∑
j=0

1Tωk−j,j, (33)

for non-zeroω = {ωi,j} ∈ l1{N0,N0}. The above inequal-
ity indicates ‖y‖E ≤ γ ‖ω‖1. Thus we can conclude that
the �1-gain of positive 2-D Markov jump system (1) in
the mean sense is no greater than γ . This completes the
proof. �

3.3. Further extension to partially known transition
probabilities

In some circumstances, the mode transition probabilities
are not always known (Sun, Zhang, & Wu, 2018; Zhang
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& Lam, 2010). Next, we will extend the asymptotic stabil-
ity definition for system (1) and the stability and �1-gain
analysis results to systemswith partially known transition
probabilities. The transition probability matrix may take
the following form:

� =

⎡
⎢⎢⎢⎢⎢⎣

π11 ? ? · · · π1S
? π22 π23 · · · ?
? ? π33 · · · π3S
...

...
...

. . .
...

πS1 ? πS3 · · · ?

⎤
⎥⎥⎥⎥⎥⎦ , (34)

where ‘?’ represents an unknown transition probability.
Form ∈ L, denote

Km = {n : if πmn is known} , UKm

= {n : if πmn is unknown} . (35)

In the following, when dealing with the partially known
probability situations, it is assumed that UKm is a non-
empty set.

Definition 3.4: System (1) with ωi,j ≡ 0 and partially
known transition probabilities is said to be robustly
asymptotically stable in the mean sense if

lim
i+j→∞ E

{‖xi,j‖1} = 0 (36)

for boundary condition satisfying Assumption 1.

The following two theorems give the robust asymp-
totic stability and �1-gain computational conditions for
systems with partially known transition probabilities.

Theorem 3.5: Positive 2-D Markov jump system (1) with
partially known transition probabilities given by (35) is
robustly
asymptotically stable in the mean sense if and only if there
exist vectors phm � 0, pvm � 0, m = 1, . . . , S, satisfying

[
pKm + (1 − πK

m
)
pn
]T

Am − pTm ≺ 0, (37)

for all n ∈ UKm, where pm = [phTm pvTm ]T, pKm =∑
n∈Km

πmnpn, πK
m =∑n∈Km

πmn.

Proof: We state with the fact that 0 ≤ πK
m ≤ 1. ForπK

m =
1, the conditions in Theorem 3.5 reduce to the condi-
tions in Theorem 3.1. For πK

m < 1, the left-hand side of

condition (14) in Theorem 3.1 can be rewritten as

�m = pTmAm − pTm ≺ 0

=
⎛
⎝pKm +

∑
n∈UKm

πmnpn

⎞
⎠

T

Am − pTm

=
⎡
⎣pKm + (1 − πK

m
) ∑
n∈UKm

πmn

1 − πK
m
pn

⎤
⎦
T

Am − pTm.

(38)

Since 0 ≤ πmn/(1 − πK
m) ≤ 1, ∀n ∈ UKm, and∑

n∈UKm
πmn/(1 − πK

m) = 1, we have

�m =
∑

n∈UKm

πmn

1 − πK
m

{[
pKm + (1 − πK

m
)
pn
]T

Am

−pmT
}
. (39)

Therefore, �m ≺ 0 is equivalent to condition (37). Then,
according to Theorem 3.1, system (1) with partially
known transition peobabilities in the form of (35) is
robustly asymptotically stable in the mean sense if
and only if conditions (37) hold. This completes the
proof. �

Theorem 3.6: Positive 2-D Markov jump system (1) with
partially known transition probabilities given by (35) is
robustly asymptotically stable with �1-gain no greater than
γ in the mean sense if there exist vectors phm � 0, pvm �
0, m = 1, . . . , S,
satisfying
[
pKm + (1 − πK

m
)
pn
]T

Am − pTm + 1TCm ≺ 0, (40)[
pKm + (1 − πK

m
)
pn
]T

Bm + 1TDm − γ 1T ≺ 0, (41)

for all n ∈ UKm, where pm = [phTm pvTm ]T, pKm =∑
n∈Km

πmnpn, πK
m =∑n∈Km

πmn.

The proof of Theorem 3.5 can be easily obtained by a
similar method presented in the proof of Theorem 3.4.
We omit it here for simplicity.

If the mode transition probabilities are completely
unknown, pKm and πK

m are no longer present in the
analysis. By removing them from inequality (36) in
Theorem 3.4, we have the following two corollaries for
positive 2-D switched systems with unknown transition
probabilities.

Corollary 3.7: Positive 2-D switched system (1) with
unknown transition probabilities given by (35) is robustly
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asymptotically stable if and only if there exist vectors phm �
0, pvm � 0, m = 1, . . . , S, satisfying

pTnAm − pTm ≺ 0, (42)

for all (m, n) ∈ L × L, where pm = [phTm pvTm ]T.

Corollary 3.8: Positive 2-D switched system (1) with
unknown transition probabilities given by (35) is
robustly asymptotically stable with �1-gain no greater
than γ if there exist vectors phm � 0, pvm � 0, m =
1, . . . , S, satisfying

pTnAm − pTm + 1TCm ≺ 0, (43)

pTnBm + 1TDm − γ 1T ≺ 0, (44)

for all (m, n) ∈ L × L, where pm = [phTm pvTm ]T.

4. Illustrative example

Example 4.1: Consider system (1) with parameters
given in Liang et al. (2017). The parameters of system (1)
are given as follows:

A1 =
[
0.2 0.5
0.2 0.3

]
, B1 =

[
0.3
0.5

]
,

A2 =
[
0.2 0.6
0.5 0.2

]
, B2 =

[
0.3
0.4

]
,

C1 = C2 =
[
0.1 0.0
0.1 0.6

]
,

D1 = D2 = [0.0 0.3
]T .

Assume that the transition matrix is given by

� =
[
0.30 0.70
0.60 0.40

]
. (45)

Using Theorem 3.3, the obtained minimum γ is γ ∗ =
1.3165. The obtained value of P1 and P2 are

P1 =
[
0.6852
1.5243

]
, P2 =

[
1.1101
1.4087

]
.

Assume zero boundary conditions, and let the distur-
bance ωi,j be

ωi,j =
{
0.10, 0 ≤ i ≤ 3, 0 ≤ j ≤ 10,
0, otherwise.

(46)

The Markov chain, trajectories of the system and the
�1-gain performance are shown in Figure 1. Figure 1(a)
shows the switching signal generated by the transition
matrix. Figures 1(b) and (c) show the state trajectories

of the system. The measured outputs are shown in Fig-
ures 1(d) and (e). The obtained �1-gain under the switch-
ing signal shown in Figure 1(a) is 0.8382. Define the
following function:

Li,j =
∑i

p=0
∑j

q=0 ‖yp,q‖1∑i
p=0
∑j

q=0 ‖ωp,q‖1
.

The plot of Li,j is shown in Figure 1(f). It is obvious that
Li,j converges to 0.8382 as i and j increase. Running sys-
tem (1) for 100 times, and the arithmetic mean of the
obtained �1-gains from the 100 realisations is 0.8364,
which is below the prescribed value γ ∗ = 1.3165.

Example 4.2: Consider system (1) with three operation
modes. The parameters are given as follows:

A1 =
[
0.2 0.5
0.2 0.3

]
, B1 =

[
0.3
0.5

]
,

A2 =
[
0.2 0.6
0.5 0.2

]
, B2 =

[
0.3
0.4

]
,

A3 =
[
0.1 0.3
0.4 0.2

]
, B3 =

[
0.2
0.1

]
,

C1 = C2 =
[
0.1 0.0
0.1 0.6

]
,

D1 = D2 = [0.0 0.3
]T .

C3 =
[
0.1 0.2
0.1 0.3

]
, D3 =

[
0.2
0.1

]
.

The fully known transition matrix is given by

� =
⎡
⎣0.30 0.30 0.40
0.20 0.40 0.40
0.40 0.50 0.10

⎤
⎦ . (47)

In the following, three cases are investigated to illustrate
the efficiency of the proposed theorems and corollaries.

Case 1: considering the above positive 2-D Markov
jump system, where the transition probabilities are fully
known.
Case 2: considering the above positive 2-DMarkov jump
system with partially known transition probabilities. The
partially known transition matrix is given as

� =
⎡
⎣0.30 0.30 0.40
0.20 ? ?
0.40 0.50 0.10

⎤
⎦ ,

where the relation between known and unknown transi-
tion probabilities is

π22 + π23 = 1 − π21.

Case 3: consider the above system with unknown transi-
tion probabilities.
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Table 1. Obtained minimum �1-gain γ ∗ for different cases.

Case 1 Case 2 Case 3

Stability Theorem 3.1 Theorem 3.3 Corollary 3.6
analyse feasible feasible feasible

P1

[
0.6016
1.3613

] [
0.6453
1.4477

] [
0.9312
1.8526

]

P2

[
0.9718
1.3413

] [
1.1788
1.5490

] [
1.3530
1.7648

]

P3

[
0.8070
1.0053

] [
0.8779
1.0728

] [
1.2487
1.4824

]

γ ∗ 1.1449 1.2336 1.5883

Using Theorems 3.3, 3.5, and Corollary 3.7, the
obtained minimum �1-gain γ ∗ are shown in Table 1 for
different cases.

From Table 1, it can be found that the more infor-
mation the transition matrix has, the better the system
�1-gain performance is.

5. Conclusion

The problems of stability and �1-gain analysis for pos-
itive 2-D Markov jump systems have been studied in
this paper. Sufficient and necessary asymptotic stabil-
ity condition and sufficient �1-gain computation con-
dition have been derived. The obtained results are fur-
ther extended to positive 2-D Markov jump systems
with partially known transition probabilities. The use-
fulness of the obtained stability and �1-gain condi-
tions have been verified through simulation examples.

Figure 1. Switching signal and trajectories of the system. (a) Switching signal; (b) state trajectory of xhi,j ; (c) state trajectory of x
v
i,j ; (d) first

component of measured output yi,j ; (e) second component of measured output yi,j ; (f ) �1-gain.
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Furthermore, our future work will extend the proposed
results to the 2-D positive Markov jump systems with
stochastic nonlinearities, missing measurements, and
state-delays (Wang, Wang, Li, & Wang, 2016; Wei, Qiu,
Karimi, & Wang, 2015).
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