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Abstract—In this paper, we present a new soft and flexible 

sensor which can reconstruct its surface shape in real-time. A 

single-core optical fiber with fiber Bragg gratings (FBGs) is 

capable of detecting sparse local strains at high bandwidth using 

wavelength-division multiplexing (WDM). The fiber was 

embedded into an elastomeric substrate to reconstruct its global 

surface morphology. Finite element analysis (FEA) was used to 

determine the design parameters, and also to validate the unique 

mapping from sparse strain measurements to the continuum 

shape of the sensor. To simplify the fabrication and error 

compensation process without precise/prior knowledge of the 

FBG locations in the sensor, machine learning-based modelling 

was applied. This enables real-time, robust and reliable shape 

reconstruction. It is demonstrated to outperform various 

applications of electronics-based sensors which require 

sophisticated electrode wiring and noise reduction. Experiments 

were performed to evaluate the sensing accuracy and 

repeatability.  

 

Index Terms— Soft Sensors and Actuators, Flexible Robots, 

Fiber Bragg Gratings, Surface Shape Sensing  

I. INTRODUCTION 

N recent years, there has been a trend towards integrating 

soft and deformable structures into robotic systems. Target 

applications include surgery [1] and rehabilitation [2], where 

researchers take advantage of soft and flexible robots for their 

inherent mechanical compliance. However, these soft robotic 

systems are often controlled with feedback from either large 

tracking systems, using indirect variables (e.g. pressure in 

fiber-reinforced actuators), or in an open loop, neglecting the 

fact that actual robot shape and posture are inevitably affected 

by the environment [3].   

As a result, measurement of the surface shape itself has 

become an area of interest. Some research utilize non-contact 

external equipment such as stereo cameras and LiDAR to 

reconstruct 3D surfaces [4]. Motion capture systems have also 

been employed to collect the local position information of 
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subjects, with reflective markers attached to the surface [5, 6].  

Gelsight [7] was able to use external CCD cameras with visual 

processing techniques to reconstruct complex surfaces from 

image frames. Similarly, GelForce [8] uses CCD cameras to 

detect the displacement of markers in a flexible substrate to 

estimate surface traction fields. Although high-resolution 

sensing data from camera-based systems allows reconstruction 

of complex deformations, these kinds of systems are 

inconvenient to be used in soft robotics or stand-alone robotic 

systems due to their bulkiness and dependence on line-of-sight.  

The use of self-contained shape sensors is another approach 

to measuring flexible 3D objects. Small-sized contact-based 

sensors can be attached to objects for transducing the local 

position and orientation information. Microelectromechanical 

systems (MEMS) allow the integration of many miniaturized 

sensors to provide local information for global shape 

reconstruction [9]. Surface shape reconstruction has been 

performed with a non-stretchable sheet of three-axis 

accelerometers arranged in a grid pattern [10]. Similarly, 

Cheng et al. [11] developed an artificial skin that consisted of 

rigid hexagonal sensor units based on accelerometers, which 

could provide the relative pose of each sensor. Saguin-prynski 

et al. [12] described their work on 3D curve reconstruction from 

orientation measurements, and applied multiple curves for 

surface reconstruction. However, a limitation of grid-type 

MEMS sensors is that they often have limited flexibility and 

stretchability due to fixed connections between nodes. Due to 

wiring, they are also complicated for large-scale applications.  

More recently, liquid conductors, e.g. eutectic Gallium 

Indium (eGaIn) have been embedded in elastomeric substrates 

to measure strain in fully-soft sensors. These sensors are 

inherently compliant and have been designed as artificial skins 

that can be integrated into completely soft systems, like soft 

robots [13, 14] Their underlying sensing principle is similar to 

traditional strain gauges, requiring contact electrodes on either 

end of the liquid-metal channels. This can make scaling to 

larger or more complex designs a challenging task.  

Optical fiber-based sensors using fiber Bragg gratings 

(FBGs) are one of the sensor technologies that have proven 

performance in fields like civil engineering [15] and aerospace 

industries [16]. FBGs have excellent electromagnetic, 

immunity [17] and can be used in harsh environment [18], such 

as extreme high electromagnetic noise, vacuum and extremely 

low temperature. They can carry a high density of sensors on a 

single fiber [19] with small form factor and long-term 
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stability[20]. 3D curve-based shape reconstruction based on 

FBG sensing has been increasingly applied for continuum 

robots[21], such as steerable interventional needles for biopsy 

and ablation [22]. However, these methods were specified for 

tube-shaped reconstruction, where FBGs are used to monitor 

the 3D curvature. To extend the application of FBGs in shape 

sensing, more designs have been proposed. Silva et al. [23] 

designed a wearable sensing glove for monitoring hand 

gestures and postures, in which a single FBG fiber was laid 

across a hand in a curvilinear layout. In this design, the glove 

was able to show the hand motion in real time, however, this 

was achieved by measuring the bending angle of each finger 

joint, not from the shape of the hand itself. This creates 

dependence on the accurate placement of FBGs so that they 

align with the patient’s finger joints. Mable et al. [24] 

implemented a dual-layer FBG mesh in their 3D shape sensor. 

It requires precise fixture of FBG allocation, where the two 

fiber layers must be aligned such that each FBG is overlaid 

exactly on each other at 90°. Zhang et al. [25] provided surface 

shape reconstruction algorithm for a large scale (800 ×800 mm) 

plate surface, with a net of orthogonal FBG strain sensors. The 

sensor can detect both convex and concave object surfaces, 

however, the use of a relatively rigid Plexiglas substrate limits 

the deformation to simple shapes. Additionally, for shape 

sensors employing orthogonal fiber layouts, the stretchability 

of the overall sensor substrate is limited, and depends on 

precise FBG positioning that strongly affects the reconstruction 

accuracy [26]. 

In this work, we design and fabricate a new flexible 3D shape 

sensor which can reconstruct the surface of the subject in 

real-time. Unlike most optical fiber-based shape sensors that 

can only measure the curvature change along the fiber, the 

proposed sensor can measure the complete 3D shape of its 

surface deformed by bending and twisting. A single fiber with 

sparsely distributed FBGs is embedded into a flat silicone 

rubber plate and used to measure strains on both top and bottom 

surfaces. Through finite element analysis (FEA), we consider 

the effect of design parameters and validate the uniqueness of 

strain-to-shape mapping. The overall deformation is mapped to 

the optical signals using a machine learning approach. 

Although this introduces a dependence on the obtained training 

data, this approach can compensate for fabrication errors while 

eliminating the need for complex modeling and stringent 

allocation of FBGs. The presented sensor layout and design are 

easily tailor-made to specific applications. The main 

contributions of this work are: 

i) Development of a design framework for FBG-based 

surface morphology sensors. A single-core optical fiber 

with sparsely distributed FBGs was used to detect surface 

morphology in real-time. 

ii)  FEA to determine sensor design parameters with 

embedded FBGs. The mapping between surface 

deformation and fiber responses were proven to be unique 

for the proposed fiber layout.  

iii) Machine learning-based modelling to enable more robust 

and reliable shape reconstruction without explicit 

knowledge of the FBG configuration/allocation.  

II. SENSOR DESIGN AND STRAIN DATA ANALYSIS 

To prototype our surface shape sensor, we propose key 

design considerations, followed by parametric studies using 

FEA. The shape reconstruction, namely the mapping from local 

strain to shape, is simulated. Such a mapping is proven unique 

through our data-driven approach. Finally, the sensor is 

fabricated and tested with the physical parameters suggested. 

The overall workflow of our study is illustrated in Fig. 1. 

A. Surface shape sensor design 

1) Design considerations 

Flexibility – Sensors that integrate with soft, flexible structures 

must be adequately flexible to not inhibit the motion of the 

original structure. In particular for soft robotics, this integration 

should not alter the deformation actuated by the soft actuators. 

A thin optical fiber of 195 μm ensures promising compliance 

with such morphological deformation, compared to 

electronics-based sensors that require complicated electrode 

wiring and that are inherently rigid. A single-core fiber has a 

high capability of multiplexing strain measurements through 

multiple FBGs. In our sensor design, each FBG should be short 

to detect local strain. The distribution of such strain sensing 

would be critical to reconstruct the shape in detail.  

Stretchability – Stretching is a common form of deformation, 

especially for the motion of soft robots. Surface shape sensors 

are typically designed with grid-form sensing networks, 

however, this configuration can limit the degree of flexibility 

and stretchability especially when unavoidable in-plane loading 

exists, particularly in soft robots. Our proposed fiber layout in 

the sensor allows stretchability along different directions, and 

silicone rubber is chosen as the substrate layer for high 

compliance and firm bonding with common soft robots 

fabricated with silicone. 

Reliability – The reliability of the sensor over time would 

define its usage in practical applications. FBGs provide 

excellent durability in harsh environments including dramatic 

temperature changes and chemical corrosions [27]. However, 

FBG-written fiber is still fragile under concentrated loading. In 

this work, Draw Tower Gratings (DTGs) are selected instead of 

conventional strip-and-recoat FBGs, as they offer over four 

times the mechanical strength.  

2) FBG sensing principle 

The proposed sensing principle of our flexible shape sensor is 

based on the mapping between the local strains and global 

displacements. When the sensor is deformed by bending, 

 

Figure 1.  Workflow of the proposed surface shape sensing approach. 
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twisting or other forms of deformation, the embedded FBG 

sensors are strained accordingly. The decomposed axial strains 

along the fiber are then converted to optical signals in which 

different strains would result in different wavelength 

components measured by the optical interrogator.  

The shift in central wavelength of the each FBG depends on 

the effective refractive index and the grating period which are a 

function of temperature and strain. Therefore, the sensing 

response varies when our proposed sensor experiences 

temperature changes or under external forces. The mechanical 

strains change the grating period and the effective refractive 

index, resulting in shifts in Bragg wavelengths[28]. Including 

the effect of temperature, this allows strain and temperature 

measurements by the reflected FBG spectrum in real-time. This 

dependency is described as follows: 
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where   is the wavelength shift, 0 is the base wavelength at 
fabrication, k = 0.78 is the gage factor,   is the change of 
refraction index and  T is the temperature change in K. The 
strain   includes the mechanical-induced strain m  and the 
thermal strain T . Substituting 

T sp T =   into equation (1): 
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where 
sp is the coefficient of thermal expansion of the 

substrate material. 

As the temperature has an impact on sensing signals, 

temperature compensation is performed to obtain precise 

mechanical strain measurements. An additional temperature 

grating is used to correct other strain measuring gratings. 

Substituting 0m =  into (2), its signal is calculated according 

to equation: 
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where 0c  is the central wavelength of the compensation FBG. 

For the FBGs used in mechanical strain sensing, (2) can be 

rewritten as: 
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and 0m  is the central wavelength of the mechanical strain 

measuring FBG. Taking (3) into (4):  
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Shifted wavelengths due to the mechanical strain m  can be 

calculated by subtracting the signal of the 

temperature-compensation FBG from the signal of the active 

strain-measuring FBG.  

3) Conceptual design /Sensor layout  

As our first proof-of-concept sensor design, we chose a 

rectangular geometry for the sensor base to simplify its 

fabrication. The sensor base was molded from a silicone rubber 

 

Figure 2.  (a) Overview of the proposed surface shape sensor structure: a 

single fiber is looped in two circles away from the midplane. Each circle 
contains 8 FBGs. (b) Finite element model of the sensor. The silicone plate is 

discretized into 3D 8-node continuum elements and the optical fiber is 

discretized into 3D 2-node truss elements. 12 surface sets (6 shown in green) 
are predefined to apply random pressure loadings for simulating the external 

forces.  

square and the FBG sensor is circularly wrapped on the top and 

bottom of the sensor as shown in Fig. 2a. The FBG fiber is 

placed away from the midplane to enable sensor response to 

bending deformation. The overall design includes five layers: 

the middle sensor base substrate layer, two FBG sensor layers 

and two silicone protection layers. The protection layers are 

thin coatings above the FBG layers and have a small effect on 

sensor flexibility. The FBG sensor layer is shaped in circular 

form to obtain the strain information.  

B. Parametric study using FEA  

In our work, we make use of FEA to analyze the relationship 

between the sensor global displacements and the local strains. 

Validation through FEA allows us to see the effect of 

parameters like sensor thickness, and to ensure unique sensor 

responses prior to fabrication. The side length of the square 

sensor was chosen to be 45 mm in our prototype. In this 

research, two selected parameters are studied with FEA. Proper 

fiber layer offset and sensor thickness are studied to evaluate 

the sensor performances. The estimated and predicted sensor 

responses of the sensor are computed with Abaqus 6.14.  

1) FEA Modeling 

The finite element model of the sensor is shown in Fig. 2b. 

The silicone sensor base and the sensor fiber are modeled as 3D 

deformable models. The protection layers (0.2 mm thick) are 

not included in the simplified finite element model as it has a 

negligible effect on the uniqueness of the sensor response.  

The silicone plate model is meshed to 2×18×18 C3D8RH 

elements and the sensor fiber is meshed to 44 T3D2H elements 

which are 2-node linear 3D trusses that only allow axial strains. 

For silicone rubber (Smooth On Ecoflex 0030), it is modeled as 

a hyperelastic material using Ogden strain energy potential. 

Parameters of the 3-term Ogden model are adopted from 

literature[29]: μ1 = 0.024361, μ2 = 6.6703 × 10−5, μ3 = 0.45381 × 

10−3, α1 = 1.7138, α2 = 7.0679, α3 = -3.3659, D1 = 3.2587, D2 = 

D3 = 0, where μs, αs and Ds are temperature-dependent material 

parameters. The units for μs and Ds are MPa and (MPa)-1 

respectively, whilst αs are dimensionless. To model the 

mechanical behavior of the fiber, a linear elastic model is used 

with elastic modulus 70 GPa and Poisson’s ratio 0.16 [30].To 

simulate sensor response under different loading conditions, 

one edge of the sensor is prescribed with the clamped condition 

while others are free. All the simulations are done under static 

loading steps. To generate deformations such as bending and 



2377-3766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2893036, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2018 

 
4 

twisting, surface loads are applied on twelve surface sets. They 

are arranged symmetrically on the top and bottom surface of the 

sensor, with those on the top surface (green) in Fig. 2b.  

2) Sensor parameters analysis 

Other than the width of the sensor, two other key parameters 

of the sensor should be determined in advance, i.e. the fiber 

layer offset h  and the sensor thickness t . According to the 

Kirchhoff plate theory, the material element would experience 

a strain which increases with the offset distance from the 

neutral plate. Simulation with FEA was also conducted and the 

results were in agreement. Therefore, to maximize the 

sensitivity of the sensor, the fiber layer offset was set to the 

maximum value, i.e. the two fiber layers would be put on the 

upper and lower surfaces of the substrate.  

Since the fiber layers were selected to be on the surface of the 

sensor, the overall thickness governs both the sensor sensitivity 

and flexibility. To investigate the effect of changing sensor 

thickness, sensor responses were obtained through FEA such 

that the sensor was placed on two supporting pins and subjected 

to a loading force generated by a cylinder with radius 20 mm. 

At step = 1.0, the sensor is bent to the same radius by pushing 

the cylinder. For the soft and flexible sensor, the low thickness 

would be an advantage when integrating the sensor on actuators 

and other components for flexibility. However, as single core 

fiber is used in this work, the fiber needs to be offset from the 

mid-plane and with a suitable thickness to differentiate between 

deformation patterns. The thickness t  is determined by 

considering the strain patterns with varying thickness (2.5 – 7.5 

mm). The range was selected by considering reasonable sensor 

thicknesses that would not inhibit flexible motions. 

In Fig. 3, the strain responses of our proposed sensor 

structure are simulated under the same bending with several 

steps. When the sensor base thickness t is 2.5 mm, the 

compression strain responses are not significant enough to 

identify shape patterns due to the overlapping and may be 

altered by sensor noise. By increasing the sensor thickness, the 

output responses also increase and become noticeable. At t  = 

2.5 mm, strains due to compressive loadings are overlapped at 

each simulation step. At t  = 5 mm, negative strains can be 

clearly identified and used to discriminate deformations. At t  = 

7.5 mm, the sensitivity is further increased, with several acute 

points appearing. However, the flexibility would decrease 

when the thickness increases. After comparing the sensor 

responses with more deformation modes, 5 mm is selected as 

the sensor thickness of our primary shape sensor to yield 

distinct strain patterns while providing high flexibility. 

Depending on the application and sensing requirement, the 

sensor thickness can be adjusted for optimal performance. 

C. Data-driven uniqueness and modeling 

To reconstruct the surface from local strains, a model which 

could map from the strain data to the surface deformation is 

needed and the uniqueness of the mapping should be 

guaranteed. Conventional methods build kinematics models 

with complicated mathematical analysis, which typically 

require highly accurate fabrication or error compensation. We 

apply a data-driven approach, namely an artificial neural 

network (ANN), to tackle the modeling problem and for 

validation of the sensor’s uniqueness.  

From the modeling perspective, data-driven approaches are 

beneficial for compensating errors induced during fabrication, 

or when sensor positions are not explicitly known. It allows 

flexibility in fabrication and design, making it easier to 

customize the sensor to different applications. For validating 

the sensor’s uniqueness, we use data generated from our FEA 

model to train a separate ANN. In both ANNs, a typical 

multilayer feedforward network with two layers is built, but 

different backpropagation methods are used for uniqueness 

validation and modeling. The hidden layer contains 10 neurons 

which connect to the inputs and the second layer produce the 

network outputs.  

1) Uniqueness validation with FEA 

Initially in our FEA validation, bending, twisting and 

random loading are tested to analyze the uniqueness of the 

model. Pressure loading was applied to the highlighted surfaces 

to cause deformation, as shown in Fig. 2b. The use of pressure 

loading creates a smooth deformed surface without applying a 

concentrated force on a particular element or node. In Fig. 4, 

the deformation patterns and the corresponding strain response 

are shown and compared. Under different deformation patterns, 

the strain responses are notably different, indicating that 

different shapes could be reconstructed uniquely. Moreover, for 

the same shape in opposite directions (e.g. bending up vs 

bending down) similar strain response patterns are observed, 

but inversed, due to the double-layer fiber layout of the sensor. 

It is also noted for the same deformation pattern at different 

magnitudes of deformation (e.g. the different steps simulated in 

Fig. 3), the overall strain response patterns remain the same, 

while the strain peaks increase with the deformation magnitude. 

 

Figure 3.  Simulated strain response of three sensors with different thicknesses 

under 3-point bending. Fibers were placed at the top and bottom surfaces of the 

sensor. Strain responses were observed to increase with sensor thickness.  
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2) Uniqueness validation with ANN 

To further validate the sensor’s uniqueness, a large number 

of simulated strain responses and corresponding surface 

displacement data were extracted from the FEA model for 

training of an ANN. Within a defined range of pressure, 729 

simulations with random pressure loadings were gathered, 

where each contains 10 steps, thus 7290 data sets were 

generated. The inputs to the neural network are the 16 sparse 

axial strains in fiber truss elements and the output nodes are 

from 1083 (19×19×3) displacement data. Scaled conjugate 

gradient backpropagation was used, since the network is large 

and requires less memory for calculations, whereas 

Levenberg-Marquardt (L-M) backpropagation was used for 

reconstructing the actual surface shape in Section III. 

 
Figure 4.   Simulated fiber strains under three types of deformation. The 1st 

column depicts the deformed shape sensor. The 2nd column shows the strain 
induced in the fiber, where warmer the color indicates higher the strain induced. 

The 3rd column plots the overall strain patterns simulated for the FBGs. 

The neural network performance is evaluated by 

mean-squared-error (MSE) between the FEA-simulated 

displacement in the experiment and the output displacement 

from the trained network. The training stops when the 

magnitude of performance gradient is less than 1e-6 or the 

validation performance stop decreasing. Cross-validation is 

employed to prevent over-fitting in which 70% of the data is 

used for network training, 15% is used for validation and the 

last 15% is used for testing. The results showed a good fit with a 

R2 value of 0.989 and the overall errors are small. The high 

accuracy of regression implies that, within the sampled range, 

the relationship between the surface displacements and FBG 

strains are unique.  

D.  Sensor fabrication 

1) Sensor fabrication procedure 

The fabrication can be performed as the size and other 

parameters have been determined. Ecoflex silicones are chosen 

due to their low viscosity that favors mixing and de-airing in 

fabrication. A mixed portion of silicones are degassed and 

injected into 3D-printed molds which are coated with releasing 

agent. After demolding the patterned silicone plate, the top and 

bottom surfaces of the plate are penetrated with a needle for 

passing the fiber. Since stresses are induced by shaping the 

fiber to target configuration, small pins are used to temporarily 

fix the fiber shape on the silicone plate, preventing the fiber 

from returning to its neutral position. A thin layer of 

ELASTOSIL® E41 is applied to partially seal the optical fiber 

and silicone plate. Finally, the pins are removed and two thin 

silicone coatings (same material as silicone plate) are placed 

and bonded firmly on the top and bottom surface of the silicone 

plate as protective layers.  

In the proposed sensor layout, the embedded fiber is wound 

in a circular fashion, which means that the center and corners of 

the sensor have no underlying FBGs. For any local deformation 

that occurs on the side of the sensor, strains will still be 

imparted to the nearby FBGs due to the inherent stiffness of the 

silicone substrate. For deformations at the center of the sensor, 

it is expected to generate global grating responses but with 

lower magnitude, since the gratings are surrounding the center 

but not aligned with the resultant strain in the FBGs. 

2) Detailed specifications on fiber 

The FBGs embedded in the silicone plate are made from 

intense ultraviolet light exposure on the optical fiber core. A 

fixed index modulation, i.e. a grating, is created and increased 

the core refractive index permanently. The fiber has a cladding 

diameter of 125 μm and is coated with Ormocer (a diameter of 

195 μm). Each grating has a length of 5 mm where smaller 

lengths are also available in practice. Each grating is separated 

with a 10 mm gap for the first 16 FBGs and 450 mm between 

16th and 17th FBG. 16 FBGs covered two surfaces of the 

silicone plate to capture strain information and the remaining 

FBG is used as a temperature compensation sensor. FBGs with 

shorter wavelengths are located nearer to the lead-in end. The 

number of gratings, the separation between gratings, and fiber 

length can be tailor-made for each desired application, 

providing excellent flexibility in sensor design. In this study, 

we use a Wavelength-Division Multiplexing (WDM)-based 

fiber system. Although other multiplexing methods (e.g. 

Optical Frequency Domain Reflectometry, or OFDR) can 

provide a greater number of FBGs per fiber, WDM offers low 

cost, simplicity, and high frequency sampling [20].  

III. EXPERIMENTAL SETUP AND RESULTS 

A. Data input and sampling for model training 

The unique strain-shape mapping for surface shape 
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reconstruction has been investigated with FEA. The 

corresponding surface sensor is also fabricated. Experiments 

are designed to validate the sensing performance and 

characteristics. Such validation requires ground truth data that 

represents the surface morphology. In our setup as shown in 

Fig. 5, our fabricated sensor is clamped at one side to ease the 

validation. Nine grid points on the sensor surface were chosen, 

where reflective markers were attached. Their 3D positions 

were measured by two infrared (IR) tracking cameras 

(Optitrack Flex 3). The tracking rate was 100 fps and the mean 

positional error was 0.015 mm. 

 
Figure 5.  Experimental setup for training data collection. The sensor is 

covered with 9 IR-tracking markers and clamped on a fixture. Their 3D 
positions tracked by two Optitrack Flex 3 cameras are collected as data outputs 

of the ANN. 

An invisible broadband light (Amonics ALS-CL-18) is 

transmitted to the optical fiber via an optical circulator 

(PIOC-3-CL). Light is reflected due to the change in core 

refractive index which is strain dependent. The reflected 

spectrum is sent to a small FBG interrogator (I-MON 512 USB) 

from the output port of the optical circulator. This interrogator 

can detect and identify over 70 FBGs with a wavelength 

resolution > 0.5 pm and a maximum measuring frequency of 

3000 Hz.  

To build a learning model for the real sensing, 1000 

IR-tracked sensor configurations, along with their 

corresponding Bragg spectrum, are captured, then used for 

ANN training with L-M backpropagation. Since there would be 

fabrication defects, such as fiber dislocations within the 

silicone substrate or uneven stiffness distribution, it is 

advantageous that no calibration is required. Any error caused 

by these defects are compensated by the ANN training. Those 

defects exist even with industrial manufacturing processes and 

are difficult to be considered in analytical models. 

 
Figure 6.  A surface shape reconstruction example. (a) A force is applied to the 

sensor and causes deformation of the sensor surface, and (b) The sensor surface 
is reconstructed by the trained neural network. The colormap indicates the 

depth of the surface.  

B. Surface reconstruction performance 

The sensor was bent and twisted manually to form various, 

complex configurations, but also without blocking any of the 9 

optical markers from the IR-tracking. At each time point, 16 

Bragg wavelengths were measured. The shifted wavelengths 

act as inputs, which are proportional to the actual change of 

strain at the corresponding FBG location. Displacements of the 

9 markers in 3D, twenty-seven (9×3) variables in total, are then 

defined as outputs. The ANN will, thereby, model such a 

mapping from these inputs to outputs (Training time: 4s, 

Window10, 8G RAM, i7-7500U). A linearly-interpolated 

surface is fitted by the output nodes. Fig. 6 shows an example 

of our shape sensing, where the surface is reconstructed based 

on displacement coordinates estimated by the ANN outputs. 

Real-time sensing performance is also demonstrated in the 

attached video, in which the soft sensor was deformed 

(bended/twisted) manually. The reconstructed surface motion 

was obtained in sync with the deformation. The surface 

reconstruction update frequency is approximately 10 Hz within 

the Matlab environment. 

 
Figure 7.  Accuracy analysis of the surface shape reconstruction: (a) A surface 

reconstruction sample with colored trajectories of nine nodes, where the color 

indicates the corresponding displacement errors during bending. (b) 
Displacement error distribution of all nodes. (c) Root-mean-square error 

(RMSe) of all node displacements. 

The sensing error can be obtained by comparing the 

ANN-estimated output coordinates with the IR-tracking ground 

truth. A sample deformation case is shown in Fig. 7a, where the 

sensor was bent up from the neutral position. Colored 

trajectories of the nine markers were recorded. The warmer the 

color the bigger the displacement errors, relative to the ground 

truth. Fig. 7b shows the histogram of such errors throughout 

1350 instance samples. The majority of node displacement 

errors were mostly below 2 mm. Larger errors are seen in nodes 

further from the clamped side (fixed end), i.e. C1~C3 in Fig. 

7a. The root-mean-square error (RMSe) was about 1.8 mm for 

nodes C1~C3. In contrast, the nodes A1~A3, and B1~B3 had 

smaller errors, with RMSe at 1.17 mm across all nodes. In 

general, the node displacement errors increased with the 

distance from the fixed end. This could be attributed to the 

distribution of node positions in the ANN training data. Every 

node has the same total samples, however the nodes at the free 

end, C1~C3, have a larger displacement range, when compared 

with nodes A1~A3 and B1~B3. This results in less spatially 
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dense sample points, and hence poorer training performance for 

the distal nodes. This may be a primary cause for the increased 

reconstruction error at nodes C1~C3 (Fig. 7c).  

Reliability tests were performed to ensure consistent 

responses over a long operating period. Numerous repeated 

cycles of sensor motion were generated by 3 linear actuators, 

which pushed/pulled the nodes C1~C3. As illustrated in Fig. 

8a, the sensor was bent upward, downward and finally back to 

the neutral position in 2 seconds. A total of 1000 bending cycles 

were conducted over 50 min, with Bragg wavelength responses 

recorded at the peak of upward motion. Fig. 8c shows the 

reflected wavelength shift of eight FBGs on a layer. It can be 

observed that the wavelength shift values fluctuate slightly 

around a constant value. The boxplot (Fig. 8d) shows 

distributions of the eight wavelength shifts. The wavelength 

fluctuations remained below 0.01 nm for all FBGs, 

corresponding to 0.3 mm displacement. This indicates that the 

sensor can maintain stable and reliable responses throughout 

1000 deformation cycles. 

The signal-to-noise ratio (SNR) for the bent-up configuration 

is 14.9dB, calculated by comparing the vertical displacements  

of the distal node and noise. The hysteresis of the sensor was 

also evaluated by repeatedly displacing the distal side of the 

sensor (nodes C1 to C3) upwards by 20 mm and returning to the 

neutral flat position (3 cycles at ~1 Hz). The vertical 

displacement was provided by a linear actuator, and the vertical 

position of the node C2 and the wavelength shift of the FBG 

with largest shift was recorded. Small disparity between the 

bending up and return motion was found, as illustrated in Fig. 

8e, suggesting a low level of hysteresis in the presented sensor. 

To test the resolution of the sensor, a range of vertical 

displacement steps ranging from 0.1 mm to 1 mm were applied 

to the distal sensor side. The sensor could detect displacement 

changes down to the applied 0.1 mm displacement, suggesting 

that the sensor resolution is 0.1 mm or lower. 

Despite the reasonable flexiblity and stretchability of our 

sensor prototype, the allowable strain caused by purely in-plane 

loading is still small. It is limited by the rigid optical fiber that 

constrains the deformation. In combination with the sensor’s 

small size, more complex deformations could not be measured 

without risk of damage to the fiber. The sensor flexibility could 

be further enhanced by altering the fiber layout, but this 

requires consideration of other factors such as fiber length, 

number of FBGs, as well as the trade-off against the overall 

sensor sensitivity. Another limitation of the proposed sensor is 

the pressure sensitivity. Applying pressure to the sensor can 

induce strain in the FBGs without causing large deformation of 

the surface itself. This may cause incorrect shape 

reconstruction using our current approach. We will investigate 

techniques capable of distinguishing local pressure stimuli 

from the general shape reconstruction. This could enable 

simultaneous measurement of shape and force, which is 

particularly important for haptics applications, and ultimately 

reduce reconstruction error. Furthermore, in this work we 

compensate ambient temperature changes near the sensor, 

however there is still difficulty in compensating local 

temperature changes for each FBG, which is an inherent 

disadvantage of using one single-core fiber. 

IV. CONCLUSIONS 

In this work, a high-performance surface shape sensor is 

presented. Provided with sparsely distributed strain measured 

by FBGs along a single-core optical fiber, we have 

demonstrated that the soft sensor surface shape can be promptly 

reconstructed using a machine learning algorithm. The sensor 

makes use of sparse FBG data provided by a WDM-based fiber 

system. Prior to our real sensor fabrication, we have also 

conducted FEA to characterize the sensor parameters, such as 

to predict the sensing strains, and their accuracy, as well as the 

uniqueness of mapping between the fiber strains and the sensor 

surface. Our proposed sensor prototype has been tested to 

virtually reconstruct a flexible surface in real-time. The sensing 

accuracy and reliability have also been experimentally 

validated. The sensor achieved an accuracy of RMSe = 1.17 

mm for reconstructed node displacements, which is also a 

reflection of the dependence on training data quality. For 1000 

repeated cycles of motion applied on the sensor, the measured 

node displacements remained under 0.3 mm, demonstrating 

reliability in response to the repeated deformation. In general, 

these outperform various electronics-based shape sensors, 

Figure 8. Repeatability tests of the proposed shape sensor under periodic loading. (a) Sensor is clamped to a fixture, and bent along the free end by 3 linear 
actuators. 1000 cycles of such bending were conducted in 50 min. (b) Zoomed in view of wavelength shift fluctuation. (c) Wavelength shifts of the 8 FBGs on 

the first layer were recorded at the peak of upward bending. Over the cycles, the shift values showed small fluctuations about a constant. (d) Boxplot showing 

the distributions of wavelength shift. Fluctuation for all FBGs was less than 0.01 nm, corresponding to 0.3 mm displacement. (e) Hysteresis plot comparing 

vertical position of the distal node C2 and wavelength shift of the FBG with largest shift. The sensor was bent up and returned to the flat position for 3 cycles. 
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(despite just very few reported) particularly in the aspects of 

complicated fabrication, electrodes and cables handling.  

Based on the proposed design framework, a sensor could be 

used on the surface of a soft robot to improve interaction with 

the environment. This could aid in advanced soft robotic 

control where haptic sensing and locating contact on the soft 

robot body is a difficult task with current sensors. A similar 

application of the sensor is for enhancing rigid-link robots. The 

sensor could be integrated as both a soft, pliable layer, and a 

surface/contact sensor for enabling close interaction with the 

environment. For applications as a wearable device (e.g. 

rehabilitation), the sensor would closely interact with the body. 

For complex deformations like in a shoulder joint, the original 

sensor shape should be customized to the anatomy, which may 

increase the difficulty in fabrication. Although with our 

framework, complex, task-specific modeling is not required, 

care must be taken to minimize the sensor’s effect on the wearer 

(human or robot) and not change their intrinsic deformability.  

Regarding cost, fiber-based shape sensors commonly make 

use of multiple-core fiber paired with OFDR-based 

measurement systems, which are substantially more expensive 

(>USD160K) and complex to implement, relative to our 

WDM-based, single-core fiber system (<USD20K). 

A number of limitations still exist for the proposed sensor. 

Firstly, by making use of a learning-based modeling approach, 

inherent disadvantages arise relating to data acquisition time 

and reliance on accurate training data. Additionally, the 

proposed sensor design has a limited ability to reconstruct very 

complex shapes, due to the inherent rigidity of optical fiber, in 

combination with the small sensor size. In future studies, we 

will propose an FEA-based optimization scheme to investigate 

ideal optical fiber layouts for complex deformations or 

customized shape structures (e.g. tube reconstruction in the 

supplementary video). We also aim to accelerate the 

reconstruction speed by exploring other plotting environments 

and implementation on higher performance hardware. 
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