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Reachable Set Estimation and Synthesis for
Periodic Positive Systems

Yong Chen ~, James Lam

and Ka-Wai Kwok

Abstract—This paper investigates the problems of reachable
set estimation and synthesis for periodic positive systems with
two different exogenous disturbances. The lifting method and
the pseudoperiodic Lyapunov function method are adopted for
the estimation problem. The reachable set bounding condi-
tions are proposed by employing Lyapunov-based inequalities
and the S-procedure technique. Two optimization methods are
used to minimize the bounding hyper-pyramids of the reachable
set. In addition, the state-feedback controller design conditions
that make the reachable set of closed-loop systems lie within
a given hyper-pyramid are derived. Finally, numerical exam-
ples are presented to illustrate the validity of the obtained
conditions.

Index Terms—Hyper-pyramid, periodic positive systems,
reachable set estimation, S-procedure, state-feedback control.

I. INTRODUCTION

ERIODIC systems, whose parameters have periodic

features, have attracted much attention in the past few
decades. Numerous practical systems in the real world have
periodic properties and, thus, can be modeled as periodic
systems. For example, in economics, the business cycles and
seasonal effects can be captured by periodic models. A pen-
dulum, which has cyclic behavior, can be modeled as a
periodic system. In terms of control, periodic control is a
proven effective way for improving the system performance
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for time-invariant plants [1], [2]. Because of the theoretical
and practical importance of periodic systems, problems con-
cerning periodic systems have been studied in [3] and [4].
Recently, periodic systems with positive characteristics have
attracted increasing attention from researchers. Systems are
called positive if for any non-negative initial conditions and
input signals, their states and output signals stay in the non-
negative orthant. Bougatef et al. [5] and Rami and Napp [6]
investigated the stability and stabilization problems of discrete-
time periodic positive systems. Periodic positive systems with
time delays were considered in [7] for the stability analysis
problem. For readers who are interested in the research results
of periodic systems, see also the monograph [8].

As a fundamental concept of control theory, reachability has
received growing attention in recent years. The reachable set of
a system is defined as the set of all system states that are reach-
able from the origin under given system inputs. In most cases,
the exact characterization of the reachable set for a system is
impossible. A common strategy for studying the reachable set
is to find a region that is as small as possible to bound the
reachable set. The estimation criteria for seeking the bounding
ellipsoids for the reachability of linear time-invariant systems
(LTIs) with different classes of inputs (such as unit-peak inputs
and componentwise unit-energy inputs) were presented in the
monograph [9]. In [10], the problem of recursively estimating
the state uncertainty set of discrete-time systems was investi-
gated. Over the past decade, with the development of multiple
Lyapunov functional approaches, Lyapunov functional meth-
ods and some new inequalities, researchers took delays and
uncertainties problems into account when investigating the
reachability of LTI systems. In [11], sufficient criteria for
seeking the bounding ellipsoids for the reachability of LTI
systems with time-varying delays and polytopic uncertain-
ties were derived by employing the Lyapunov—Razumikhin
method. However, the obtained conditions in [11] are dif-
ficult to check as they contain many nonlinear terms. In
order to reduce the computational complexity, the modified
Lyapunov—Krasovskii (L-K) functional method was used to
investigate the problem of the reachable set estimation in [12],
which can be checked conveniently. Then, the reachable
set estimation of discrete-time systems with integral bounds
was addressed in [13]. In addition, a novel maximal L-K
functional approach was proposed in [14] to reduce the con-
servatism of the reachable set bounding criteria. Besides the
above work, Nam and Pathirana [15] and Kwon er al. [16]
considered the reachable set estimation problem for LTI

2168-2267 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0002-5287-0767
https://orcid.org/0000-0002-0294-0640
https://orcid.org/0000-0001-8783-7441
https://orcid.org/0000-0002-0361-0512
https://orcid.org/0000-0003-1879-9730

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

systems with different types of time delays. Many impor-
tant practical systems are actually nonlinear and the so-called
Takagi—Sugeno (T-S) fuzzy model has been extensively used
to deal with the problem of analysis and synthesis for complex
nonlinear systems under disturbances [17], [18]. Motivated
by the safety monitoring of nonlinear systems, the estima-
tion of the reachable set of time-delay T-S fuzzy systems
with bounded input disturbances and nonzero initial condi-
tions was studied in [19]. Some researchers investigated the
reachable set estimation problem for other types of systems,
such as time-delay neural networks and polytopic uncertain-
ties [20]; linear time-varying systems with delays [21]; bilinear
systems [22]; switched systems [23], [24]; large-scale non-
linear systems [25]; gene expression system [26]; singular
system [27]; and positive systems [28]. Moreover, the reach-
able set estimation criteria of discrete-time systems were
proposed in [29] and [30] and zonotopic guaranteed state esti-
mation for uncertain systems was studied in [31]. In light
of the reachability analysis results, researchers investigated
the reachable set synthesis problem [23], [32]. These reach-
able set estimation techniques, however, do not capture the
periodic and positivity characteristics of the periodic positive
system, which inevitably leads to conservative results. The
above reasons motivate this paper.

Notation: The notations employed are fairly standard.
N, Np, R, and R” denote the set of positive integers, non-
negative integers, real numbers, and n-dimensional Euclidean
space. R ™ denotes the set of n x m real matrices. R denotes
the set of non-negative real numbers and R denotes the set of
positive real numbers. Vector x and matrix A with all elements
positive (non-negative) are denoted as x >> 0 (x >> 0) and
A >> 0 (A => 0). 1 represents column vectors with each
entry being 1. The superscript T represents the matrix trans-
pose. The norms ||wkll1, llw|l1,1, and ||@|lec,1 are defined as

S lgil, Y peg lexllt, and supy-q lloxll1, respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

The discrete-time periodic positive systems considered can
be described by the following difference equation:

X1 = Apxi + Bo ki (1)
where x; € R™ is the state vector and wy; € R" is the distur-
bance vector. Ay = Agyv >> 0 and By, x = By k+iv == 0,
! € Np, are N-periodic real matrices with appropriate
dimensions.

Two possible classes of exogenous disturbances w will be
studied for the reachability analysis and synthesis problems

weQf 2lollol; <1, o => 0} 2
we QY| 2 lollolw <1, o == 0}. 3)

The reachable sets of system (1) are denoted as
s}tx<Qfl) S {xk o = 0, xz, wy satisfy (1)
andwes_zjfl, kzo} 4)
(25 1) 2 fabio = 0, 3, @ satisfy (1)

&+
and w € Qoo,l,

k> o}. (5)
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Then, we present the following sets for system (1):

Mo(Q7) 2 {xvlaw € M@, 1€ No)

?)?1(§2f1) £ {X1+1N|X1+1N € mx(flfl), le No}

ﬂfN—l(Qfl) £ {XN—1+1NIXN—1+1N € ?Rx(flfl), le No}-
(6)

By such definitions, the reachable set ERX(S_ZTI) can be
expressed as Me(Q) = Uimo1 v Ni(QF)). In addi-
tion, if the defined sets are for the QT . case, we have

a - 00,1
ERX(Q;J) = Ui=0,1,..‘,N71 mi(Q;Lo,l)'
Hyper-pyramids denoted by
Cp)=[ewe <1 & <Ry pery ™

will be employed for the reachable set bounding of system (1).

The following definitions and lemmas, which will be used
in the derivation of the reachable set estimation conditions,
are first proposed. The definition of positivity for system (1)
is given similar to [6].

Definition 1: System (1) is called positive if for any non-
negative initial condition xg, >> 0 at any initial time ko > 0
and all disturbances wy >> 0, trajectory x; >> 0 for all
k > k().

Lemma 1: The discrete-time periodic system (1) is positive
iff Ay >> 0, By >>0, k € Np.

Assumption 1: System (1) is positive. That is, Ay >>
0, Byx => 0, k e Np.

Definition 2 [33]: Suppose V is a linear vector space,
s; © V. — R. The inequality s;(y) > O is called regular if
y* € V exists such that s;(y*) >0, [=1,2,...,M, M e N.

Lemma 2 [33]: Suppose s; : R — R, s;(y) = ngy +
h;, 1=0,1,...,M, be linear functionals defined in the linear
space R", where g; € R™, y € R, and M € N. If s5(y) is
regular for I = 1,2, ..., M, then the following statements are
identical.

1) so(y) > 0, for all y € R™ such that s;(y) > 0, [ =

1,2,..., M.
2) Scalars 7; > 0, [ = 1,2,..., M exist such that so(y) >
Z?il usi(y), Vy € R™.

In order to derive the reachable set estimation criteria, two
Lyapunov-based inequalities are introduced in the following
text which can be obtained by following a manner similar to
the proofs of [34, Lemmas 3.1 and 3.2].

Lemma 3: Suppose V(x, k) is a definite positive function
[i.e., for any x € R" and k € Ny, V(x, k) > 0 with V(0,0) =
0]. If

V1, k+1) — Vg, k) < 1Tay, V k e Ny (8)
then 0 < V(x, k) < 1.

Lemma 4: Suppose V(x, k) is a definite positive function
[i.e., for any x € R” and k € Ny, V(x, k) > 0 with V(0, 0) = 0]
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satisfying V(x, k) = V(x, k 4+ IN), | € Ny. If scalar variables
0 < o <1 exist such that

Vg1 k4 1) — aVr, k) — (1 — a1 <0, Vk € Ny
9
then 0 < V(xx, k) < 1 for all xq satisfying V(xp, 0) < 1.

IIT. MAIN RESULTS

In this section, the reachable set bounding criteria are
derived for different exogenous disturbances. The lifting
method and the pseudoperiodic co-positive Lyapunov func-
tional method are employed to derive the reachable set
bounding conditions. In order to minimize the bounding hyper-
pyramids, two optimization approaches are also adopted. In
addition, the state-feedback controller design conditions are
obtained in light of the results of reachable set estimation.

A. Reachable Set Estimation Conditions

1) Lifting Approach: Through lifting over a period of N,
we can obtain the following LTIs ¥;, i=0,1,...,N — 1:

it ykr1i = Aiyki + Buw,ior,i (10)
where
Yk,i = Xi+kN
T T T T
Wk,i = [“’i+k1v Wiy 1 4+kN wi+N71+kN]
Ai = Aiyn_1Aixn—2 - ANAN_1 - -+ A;
By,i = [AiN-1AisN-2 - - ANAN—1 - - Aix1Boi
AiyN_1AigN—2 - ANAN_1 - Ai;2By it
BoitN-1]
y(),,' = X;. (1 l)

The reachable set can be estimated through the obtained
time-invariant systems. We obtain the following reachability
estimation conditions for system (1).

Theorem 1: Consider system (1) with zero initial conditions
and the class of disturbances QTl in (2). If there exist vectors
pi €RY, i=0,1,...,N —1, such that

Alpi—pi<<0, Bl pi<<1 i=01,....N-1 (12)

Mlp; < 1,i=1,2,...,N—1 (13)
where
Ii=[Aim1Aic2 -+ A1Buoo  Aim1Ai—2 -+ A3By
Ais1Byicy  Bui-1]  (14)

then the reachable set E)’{X(S_Z‘f 1) of the positive periodic
system (1) is bounded by the union of a set of hyper-pyramids

denoted by
U coo. (15)
i=0,1,...,N—1
Proof: The disturbance w € S_Zt] implies
o0
Z 1Moy < 1. (16)
k=0

We adopt a linear co-positive Lyapunov function for system %;

Vivk.i) = Py (17)

where p; = [pi1, pi2, - - - ,pinX]T € R'fﬁ. The initial condition
Yo,; can be obtained as follows forie 1,2,...,N — 1:

Yo,i = Xi = Ai_1Xi—1 + By i—1wi—1
= Ai—1(Ai—2xi—2 + Bo,i—20i—2) + B i—10i—1
=A; 1Ai2Xi 2 +Ai 1By i 2wi2 + By i—10i—1

=Ai1Ai—2 - Aoxo + Ai—1Ai—2 - - A1By,0w0
+ Ai1Ai—2 - A2By w1 + - - + By i—1wi-1
=Ai1Ai—2 - A1Byowo + Ai_1Ai—2 - - A2B,, 101
+- 4 Bo,i-10i-1

T
=Ti{w; of ol ] (18)
From condition (13), we have
T
Vibo,) = piyoi=piTi{wg  of - ol]
T
<1 og of - o]
i—1
- Z 1" w,. (19)
m=0
On the other hand, condition (12) ensures that
Vi1, = Vi) < 1o (20)

where wy ; is defined in (11). The proof of (20) is as follows:
_.T T
Vik+1,i) — Vilk,i) = Pi Yk+1,i — Di Ykii
= p; (Aivk,i + Bu,ion.i) — pi Vk.i
— (»T 4. T , T . .
= (pi Aj —Di )Yk,t +p; Bw,lwk,l

< 1Tay ;. 1)
By adding (20) from k =0 to k =1— 1, we have
-1 i+IN—1
Vi) = Vivo) <Y 1Twji= Y 1Tw, (22
j=0 m=i
for [ € N. As Vi(yo.) < Y01 1wy, (22) implies
i+IN—1 i+IN—1
Vior) < Vibo)+ Y Top= )Y 1o,
m=i m=0
o0
< Z 1Tw, < 1. (23)
m=0

This means that the defined set Sﬁi(S_ZT’l) is restricted by hyper-
pyramid C(p)). As Re(QY ) = Uio.1..v_1 Ri(Q), we
conclude that the reachable set SRX(S_Zfl) is restricted by the
union of a set of hyper-pyramids given by (15). |

Theorem 2: Consider system (1) with zero initial conditions
and the class of disturbances Q;ro | in (3). If there exist vectors
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pi € R, and scalars 0 < o; <1, i =0,1,...N — 1, such
that

1_ .
Alpi —aipi < <0, By pi << Nall,i=0,l,-..,N—l
(24)
1
pi<-1,i=12,....,N—1 (25)
l

then the reachable set mx(fzjo ;) of periodic positive
systems (1) is bounded by the union of a set of hyper-pyramids

denoted by
U co. (26)
i=0,1,...,.N—1
Proof: The disturbance w € Q:o,l implies
1oy < 1. 27

We adopt a linear co-positive Lyapunov function for system %;

Vi) = pi Yk (28)

where p; = [pi1,pi2, ..., pin,)" € RY. The initial condition
Yo.; can be obtained as
T
vo =Ti[o) o - o] (29)
From condition (25), we have
T
Vi(vo.0) = piyo.i =p,~TF,~[w§ wl e wiT_l]
1
<Al o - W' "<t G0

i

holds for i = 1,2, ..., N — 1. In addition, for i = 0, we have
Vikyo,i) = Vo(yo,0) = Vo(xo) = Vo(0) = 0. On the other hand,
condition (24) ensures that

1 —q
Vi(vrs1.i) — aiVi(vk.i) — Tllka,i <0. (1)
The proof of (31) is as follows:
1 — o
Vi(vrs1.i) — aiVi(ve,i) — I 1oy
1 —q
= P! Vit1,i — 0D} Vii — S o
T T l—ai
= p; (Aiv.i + Bu,iwk.i) — aip; yi.i — 1wy,
B TR S (B P e Ay
= ( i A, a;p; )yk,z + |\ p;i Bw,i 1 Jox,i
<0. (32)
From (31), we have
1-— Qi _T1
Vilyrr1i) — «iVi(wi) < Vg <l—o (33)
which means
Vikeri) — 1 < oi(Vilow,i) — 1). (34)

As Vi(yo,;)) —1 <0, i=0,1,...,N—1, the above inequality
ensures

Vi) <1
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holds for k € Ny. This means that the defined set ER,-(Q:O,])
is restricted by the hyper-pyramid C(p;). As SRX(S_Z;’I) =
Uizo.1...v-1 ?R,-(S_Z:Oql), we conclude that the reachable set
?RX(S_Z; 1) is restricted by the union of a set of hyper-pyramids
denoted by (26). [ |

2) Pseudoperiodic Lyapunov Functional Approach: The
reachable set estimation criteria can also be derived through
the pseudoperiodic co-positive Lyapunov functional approach.
By using the pseudoperiodic co-positive Lyapunov functional
method, the following theorems are proposed.

Theorem 3: Consider system (1) with zero initial conditions
and the class of disturbances S_ZT] in (2). If there exist vectors
pieRY, i=0,1,...,N, such that

Alpis1 —pi <0, BY pis1 =<1, i=0,1,....N—1
(35)
PN = Do (36)

then the reachable set ﬂtx(S_ZTI) of periodic positive system (1)
is bounded by the union of a set of hyper-pyramids denoted

by
U Cpi).

i=0,1,....N—1

(37)

Proof: Construct a pseudoperiodic co-positive Lyapunov

functional as
V(xk, k) = pxx (38)

where px = pirin € R’jj, I € Np. In order to employ
Lemma 3, we define

Hi = V(g1 k+ 1) = Vg, k). (39
Then, along the trajectory of system (1), we have
Hi = pjy Xkt — i3
— I T
= Prs1 (Akxi + Bo k%) — py Xk
= (Pis1Ak = Pi )%k + Pis 1 Bokok. (40)
Due to the periodicity of pi, conditions (35) and (36) lead to
APk — pr <=0, Bz,,kpkﬂ <=1 41)

accordingly, H; < 1Tw;. By applying Lemma 3, it follows
that V(xg, k) = prk < 1, which implies that the reach-
able set E)'tx(Qfl) is restricted by the union of a set of
hyper-pyramids (37). |
Theorem 4: Consider system (1) with zero initial conditions
and the class of disturbances S_Z; | in (3). If there exist vectors
pi € R, i=0,1,...,N, and scalars 0 < o; < 1, i =
0,1,...,N — 1, such that
Alpiy1 — aipi << 0, B}, pip1 << (1 —apl
i=0,1,...,N—1 (42)
PN = Po (43)

then the reachable set N X(S_Z;’l) of the periodic positive
system (1) is bounded by the union of a set of hyper-pyramids

denoted by
U con.
i=0,1,....N—1

(44)
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Proof: Construct a pseudoperiodic co-positive Lyapunov
functional as

V(x, k) = ppxe (45)

where px = prrin € R’jj, I € Np. In order to employ
Lemma 4, we define

L=V, k+ 1) — Vo, k) — (1 — a1 o (46)

where oy = ax4in, [ € Np. Then, along the trajectory of
system (1), we have

Iy = p;cr+1xk+1 — appr — (1 — a1 oy
= le (Akxk + Bo gwx) — axppxr — (1 — o)1 ooy
_ (T T T T T
= (Pry1Ak — app) %+ (P Bok — (1 — a1 oy
47)

Due to the periodicity of ¢« and pg, conditions (42) and (43)
lead to

Alpis1 — akpk << 0, BY ipr1 << (1—a)1l  (48)

accordingly, I; < 0. By using Lemma 4, we have V(x;, k) =
pgxk < 1, which implies that the reachable set Sﬁx(S—Z;’l) is
restricted by the union of a set of hyper-pyramids (44). |

Remark 1: In the proofs of Theorems 3 and 4, we adopted
a class of Lyapunov functions that have matrices (P;, i =
0,1,...,N — 1) with periodicity corresponding to that of
the N-periodic systems. Such Lyapunov functions are referred
to as pseudoperiodic Lyapunov functions, which lead to less
conservative results.

3) Optimization of Bounding Hyper-Pyramids: Note that
any p; obtained in Theorems 1-4 can be used to estimate
the bounding hyper-pyramids for the reachability of systems.
Usually, the bounding hyper-pyramids are required to be as
small as possible. This goal can be obtained by seeking the
solutions of the two following optimization problems.

Minimal Volume Problem:

Ny
min <— Z In pﬂ>
=1

subject to the conditions in Theorems 1-4  (49)

where p;; is the /th element of vector p;, i =0,1,...,N —
1,1=1,2,...,n,.
Sequentially Minimal Axis Problem:

1

min(—), subject to the conditions in Theorems 1-4
Dil

(50

where p;; is the Ith element of vector p;, i =0,1,...,N —1,
[=1,2,...,n4.

Denote p?’OPt as the optimal p; obtained by solving MVP,
and pﬁ’Op " as the optimal p; obtained by solving SMAP along
xj-coordinate, then S)%i(f_ztl) or SR,‘(S_Z:'O‘I) can be restricted

by the intersection of hyper-pyramids (g .. C(pf‘()pt)

and the overall reachable sets f}ix(S_Zle) or SRX(S_Z;'O 1) can be
. ] ,
bounded by Uizq. 1 x—1(Mizo.1,....e C@;)-

b}

Remark 2: For disturbances w € Q;’o,l, the computational
cost of Theorem 4 is higher than that of Theorem 2 because
it is harder to seek the coupled (ak, px) pairs in the conditions
of Theorem 4. However, the lifting method is inapplicable to
the reachable set estimation problem of more general periodic
positive systems and the reachable set synthesis problem. In
addition, the genetic algorithm (GA) [23], [35], [36] can be
employed to optimize value of the variables o in Theorem 4.

As special cases of the pseudoperiodic Lyapunov func-
tions, if all of the p; are set to be the identical, then
Theorems 3 and 4 reduce to the common Lyapunov functional
approaches. We propose several corollaries for comparison in
the following text.

Corollary 1: Consider system (1) with zero initial condi-

tions and the class of disturbances 52‘1"1 in (2). If vector
p € R’ exists such that

Alp-p<<0, Bl p<<1,i=01,....N—1 (5]

then the reachable set S)%X(S_Zfl) of the periodic positive

system (1) is bounded by the given hyper-pyramid C(p).
Corollary 2: Consider system (1) with zero initial condi-

tions and the class of disturbances Q;“O’] in (3). If there exist

vector p € R'}f and scalars 0 < ¢g; <1, i=0,1,...,N—1,

such that

Alp—aip<<0, By p<<(l—epl, i=0.1,....N—1
(52)

then the reachable set sytx(s'z;J) of the periodic positive
system (1) is bounded by the given hyper-pyramid C(p).

Corollary 3: Consider system (1) with zero initial condi-
tions and the class of disturbances 5_2;’1 in (3). If vector
pE ]Rr_:f and scalar 0 < a < 1 exist such that

Alp—ap=<<0, Bl p<<(1-al, i=0,1,....,N—1
(53)

then the reachable set ?RX(S_Z;I) of the periodic positive
system (1) is bounded by the given hyper-pyramid C(p).
Remark 3: Decision variables in Corollaries 1-3 are fewer
than those in Theorems 3 and 4. However, as common
variables P and « are expected to satisfy all subsystems,
Corollaries 1-3 are more conservative than Theorems 3 and 4.

B. State-Feedback Controller Design

This section investigates the problem of state-feedback con-
troller design for periodic positive systems with two different
exogenous disturbances. Consider system (1) with control
inputs

X1 = AiXk + By ik + By g (54)

where u; € R™ is the control input vector and B, =
By k+in, | € Np, are N-periodic constant real matrices. For
system (54), a periodic state-feedback controller is designed as

ur = Kixy (55)

where Ky = Ki4v, | € Nyp, are N-periodic controller gain
matrices to be determined. With this controller, the closed-loop
system is given as

Xkl = (Ak + Bu,kKk)xk ~+ By k.- (56)
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In this section, the following reachable set synthesis problem
will be investigated.

1) CDP: Given a hyper-pyramid C(n), where n € R,
design a state-feedback controller (55) such that the
reachable set of the closed-loop system (56) is bounded
in the given hyper-pyramid C(7).

Remark 4: It is worth mentioning that matrices Ax and B, x
are not required to be non-negative. The positivity of the
closed-loop system is ensured as long as Ay + B, Ky and
B, x are non-negative.

Then, the pseudoperiodic co-positive Lyapunov function
approach is used to study the state-feedback controller design
problem. We have the following theorems for the proposed
state-feedback controller design problem.

Theorem 5: Consider system (54) under zero initial condi-
tions and the class of disturbances Q L in (2). Given a vector

n € R', if there exist vectors p; € R+, i=0,1,...,N, and
zeR™ (=01, N — 1, such that

A,-Tpl-ﬂ +2—pi << 0 57)

Bj, pi1 << 1 (58)

(7 Bupit1)Ai + Buipizi == 0 (59)

PiBypiv1 > 0 (60)

Byi>>0 (61)

pi==n (62)

PN = Do (63)

where p; € R™, i =0,1,...,N — 1, are given nonzero vec-

tors, then there exists a state-feedback controller in the form
of (55) such that the reachable set ERX(QL) of the closed-
loop system is bounded in the given hyper-pyramid C(#), and
a desired controller can be proposed with the controller gains
denoted by

pizt

Ki=——F——.
ﬁBE,iPi+l

(64)

Proof: Note that ﬁ'erZ ;Pi+1 1s a scalar, thus (64) implies

~T
T ZiP;

P = . (65)
' ﬁBE,ipH—l

Right-multiplying BE, Pi+1 on each side of (65), one can obtain

KBy piv1 = 2. (66)
Applying the change of variable z; to (57), one has
(Ai + BuiKi) " piv1 — pi << 0. (67)
In addition, (59) and (60) imply
~ T
Ai + By iﬂ’r,—; izi;m >>0 (68)
which means
Ai+ B, K; >> 0. (69)

This equation and (61) ensure the positivity of the closed-
loop system. According to Theorem 3, conditions (58)
and (67) ensure that the reachable set of the closed-loop
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system is restricted by the union of a set of hyper-pyramids
Ui=o.1....v—1 C(pi). Furthermore, p; >> n means that hyper-
pyramids C(p;) are contained in the given hyper-pyramid
C(n). Thus, the reachable set ‘)ix(52+1) of the closed-loop
system is restricted by the given hyper—pyramld C(n). |

Theorem 6: Consider system (54) under zero initial con-
ditions and the class of disturbances Q;’l in (3). Given
a vector n € RY, if there exist vectors p; € R, i =

0,1,....,N, zz € R, { = 0,1,...,N — 1, and scalars
0<ao;<1,i=0,1,...,N—1, such that

Alpi1 + 2 — aipi << 0 (70)

By pin << (—a)l  (71)

(BTBY ipis1)Ai + Bupizy 220 (72)

PiByipiv1t > 0 (73)

Byi>>0 (74)

pi == (75)

PN = Do (76)

where p; € R™, i =0,1,...,N — 1, are given nonzero vec-

tors, then there exists a state-feedback controller in the form
of (55) such that the reachable set Sﬁx(Q;'OJ) of the closed-
loop system is bounded in the given hyper-pyramid C(7), and
a desired controller can be proposed with the controller gains
denoted by

piz;

Ki=——+—.
IN;ZTBIJ‘PHI

(77)

We omit the proof of Theorem 6 here as it is similar to
the proof of Theorem 5. The controller design method used
in this paper is inspired by the work of [37], and the choice
of vectors p; is free.

Remark 5: The synthesis problem of positive systems is
more difficult compared with that of general systems. A com-
mon method used in the literature for the synthesis problem
is a two-step iterative method. In order to solve the synthesis
problem directly, vectors z; and p; are introduced. The syn-
thesis problem of the single control input case can be solved
efficiently by the proposed corollaries. However, the proposed
method may lead to a certain level of conservatism for the
synthesis problem of the multiple control input case as the
rank of controller gain matrices is restricted to be 1.

IV. ILLUSTRATIVE EXAMPLE

We use four numerical examples to illustrate the effec-
tiveness of the results obtained in the above section.
Examples 1 and 2 are provided to show the determination
of the bounding hyper-pyramids for the reachability of the
positive per10d1c system with different disturbances, w € Ql 1
and w € QF o.1> Tespectively. Then, in Examples 3 and 4, we
propose dlfferent state-feedback controllers to ensure that the
state of the closed-loop system can be bounded by the glven
hyper-pyramid under either exogenous disturbances w € Ql 1
orwe QL .
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A. Example 1
Consider system (1) with two modes

0.8 04 0.2
Ao = [0.2 0.6:|’ Boo= [0.4}

0.7 0.1 0.3
Ar= [0.3 0.8]’ Bor = [0.1]'
As A; >> 0, B, >> 0, for i = 0, 1, this system is pos-
itive. Then, the bounding hyper-pyramids can be determined
for the reachability of the system with exogenous disturbances

w € Qfl by the proposed methods.

By solving the MVP and SMAP in regard to Theorem 1,

the following optimal solutions are obtained.
When minimizing the capacity of C(pg)

(78)

(),()pt _ 19871
Po = = [1.6901 ' (79)
The optimal capacity of C(pg) is 0.1489.
When minimizing the capacity of C(p;)
(),()pt _ 19223
v [1.5386 ' (80)

The optimal capacity of C(p;) is 0.1691. When minimizing
(1/po1)

Lopt _ [ 1.9879]
Po =1 1.6898 | ®D
When minimizing (1/po2)
2opt [ 1.7272]
Po = 18134 (82
When minimizing (1/p11)
Lopt _ | 1.9230]
Pro =1 15384 | ®)
When minimizing (1/p12)
2opt [ 1.6667]
Pr =1 16666 | ®

By solving the MVP and SMAP in regard to Theorem 3,
the following optimal solutions are obtained.
When minimizing the capacity of C(po)

0,0pt _ | 1.9867 _ | 1.8980
Po = [1.6900 P PU= 15508 | (83)
The optimal capacity of C(pg) is 0.1489.
When minimizing the capacity of C(p1)
(184927 oopt [ 1.9209
po= |:1.6925:|’ P = [1.5394} (86)

The optimal capacity of C(p;) is 0.1691. When minimizing

(1/po1)
Lopt _ [1.98807  [1.8986
Po _[1.6899 P 15507 | @7
When minimizing (1/po2)
2opt_ [17272] [1.7531
Po _[1.8133 PU= 6234 | (88)

When minimizing (1/p11)

_ 1.8467 Lopt __ 1.9229
po= [1.6923:|’ P = [1.5385:|' )
When minimizing (1/p12)
_ 1.6670 2,0pt 1.6671
po = |:16670i|’ P1 - |:16664i| (90)

Moreover, the bounding hyper-pyramids can be calculated
by Corollary 1. However, when checking the inequalities
in (51), that is

Agp—p =<0, BL pp<<1
Alp—p=<<0, Bl p=<<1

it is shown that they are infeasible for system (78), which
means that Corollary 1 is more conservative than Theorem 3.

The bounding hyper-pyramids obtained ﬂl:(), 12 C(pé’Op t)
for SRO(S_Z?'J) are shown in Figs. 1(a) and 2(a), and the
bounding hyper-pyramids ﬂ1=0,1,2 C(pll’()pt) for N I(QT,I) are
shown in Figs. 1(b) and 2(b). Furthermore, the boundaries
Ui:O,l(ml:O,l,z C(pﬁ’om)) for the reachable set f)ix(S_Ztl) are
shown in Figs. 1(c) and 2(c). The system state under exoge-
nous disturbances wr = (1 — ¢) X &, ¢c=001,...,09
(w e S_ZT!I), is also presented in Figs. 1 and 2.

B. Example 2
Consider system (1) with two modes
0.1 03 0.2
4o = [0.2 o.o]’ Buo= [0.1}
0.2 0.1 0.1
Ar= [0.1 0.3]’ Bo1 = [0.3}'
As A; >> 0, B, >> 0, for i = 0,1, the above system
is positive. Then, the bounding hyper-pyramids can be deter-
mined for the reachable set of the system with exogenous
disturbances w € Q;“O’l by the proposed methods.
By optimizing o; with a fixed step size of 0.0001 and solv-
ing the MVP and SMAP in regard to Theorem 2, the following

solutions are obtained.
When minimizing the capacity of C(po)

ap = 0.1378, poP' = [1-6144],

oD

0.8988 ©2)

The optimal capacity of C(pg) is 0.3446. When minimizing
the capacity of C(p1)

ar = 0.1106, p) ™ = [}gfgﬂ 93)
The optimal capacity of C(p;) is 0.2062.
When minimizing (1/po1)
ap = 0.3044, py " = [3:312(9)3]' (94)
When minimizing (1/pg2)
ap = 0.1958, po = [(1):28(5)431]' 95)
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(©

Fig. 1. Bounding hyper-pyramids obtained by Theorem 1. (a) 9?0(5_2?’1).
(0) N1 (Q] - (©) Re(R .

When minimizing (1/p11)

o1 =0.1674, p; "' = [(1)?47‘42‘;] ©
When minimizing (1/p12)
aoasw i =[553] e

For Theorem 4, GA is employed to seek an optimal solu-
tion. The chromosome size is chosen to be 16, the generation
number is chosen to be 200, rate of crossover is chosen to be
0.6, mutation rate is chosen to be 0.01, and elitist selection is
not employed. By employing GA and solving the MVP and
SMAP in regard to Theorem 4, the following optimal solutions
are obtained.

When minimizing the capacity of C(po)

ao = 0.3905, a; = 0.3150
0.opt [ 2.3320 _ [1.9591
Po = 15058 |" P = | 2.1757 |

The optimal capacity of C(pp) is 0.1424.

(98)
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(©)

Fig. 2. Bounding hyper-pyramids obtained by Theorem 3. (a) SRO(S_?TI).
ORSTCHINORINGHINE

When minimizing the capacity of C(p;)
ap = 0.3535, a1 = 0.3459
_|2.2162 0,0pt _ | 1.6984
PO= 114415 P10 T 130675
The optimal capacity of C(p;) is 0.0960. When minimizing
(1/po1)

99)

ap = 0.5986, a1 = 0.4740

Lopt _ [3.07677 14518
Po _[0.7277 S BRI ¥ (100)
When minimizing (1/pg2)
o = 0.5592, o = 0.3264
2opt _ [0.94787  [1.1720
Po —[1.9293 P 2.0038 | (101
When minimizing (1/p11)
ap = 0.4312, aj = 0.4319
(111737 rope_ [2.1863
po= [1.5211}’ P = [1.3153]‘ (102)
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(a) (b)

Fig. 3. Reachable set boundary obtained by Theorem 2. (a) wj 1.

(b) wy = rand(k).

When minimizing (1/p12)

ap = 0.4321, a1 = 0.6332
_ 1 2.1090 2,0pt | 0.7483
Po= [0.5196}’ Pr = [4.1823]
Moreover, the bounding hyper-pyramids can be decided by
Corollaries 2 and 3. Taking Corollary 3, for instance, by opti-
mizing o with a fixed step size 0.0001 and solving the MVP
and SMAP in regard to Corollary 3, the following solutions

are obtained.
When minimizing the capacity of C(p)

o =04221, p*P = [}ggéﬂ'

(103)

(104)

The optimal capacity of C(p) is 0.2185. When minimizing
(1/p1)

B
When minimizing (1/p2)
o = 03733, pPoP = [}éggj] (106)

The obtained bounding hyper-pyramids for ?RO(S_Z;'O,I) (the
solid line) and ml(s'z;]) (the dotted line) and boundaries
Uizo0.1(Mi=0.1.2 C(pﬁ’om)) for the reachable set mx(fl;,l)
are presented in Figs. 3 and 4. The system state under
exogenous disturbances w; = 1 (0w € Q;‘o’l) is shown
in Figs. 3(a) and 4(a). The system state under exogenous
disturbances wy = rand(k) (v € S_Z;roql) is presented in
Figs. 3(b) and 4(b), where rand(.) is a random number
picked from a uniform distribution over [0, 1]. Moreover, the
conservatism of Corollary 3 is also presented in Fig. 4.

C. Example 3

Consider system (54) with two modes
1.1 0.3 1.2 0.3
Ao = [—0.2 1.2}’ Bwo:[os}’ Bw»‘):[o.z}

12 04 11 0.1
A1 = |:0.6 1.1}’ Bu1 = [—0.7}’ Bo1 = [0.4]
(107)

Since the product of Ag and A is not Schur stable, the state of
the open-loop system may diverge to infinity. In the following

(a) (b)
Fig. 4. Reachable set boundary obtained by Theorem 4. (a) w; = 1.
(b) wp = rand(k).

0 01 02 03 04 05 06 07 08 09
x

Fig. 5. State of the open-loop system in Example 3.

0 01 02 03 04 05 06 07 08 09
x

Fig. 6. State of the closed-loop system in Example 3.

text, we will obtain a state-feedback controller for the above
system with disturbances w € Qfl.

Given n = [1 I]T and disturbances w € S_Z‘fl, we can
employ Theorem 5 to design a state-feedback controller. With
Do = 1, the following feasible results are obtained:

_ [7.3366 25860
PO=10.8827 | P = | 0.9739

[ 2.0822 _ [-7.4720
0=1_0.9456 |" 1T | —2.8156 |

The corresponding state-feedback controller is given as

(108)

Ko=[0.6133 —02785], K; =[—1.0026 —0.3778].

(109)

The trajectory of the open-loop system and the closed-loop
system under exogenous disturbances wy = (1 —c¢) x ¢, ¢ =
0,0.1,...,0.9 (w € Qf’l) is shown in Figs. 5 and 6, respec-
tively. From these figures, it is shown that the open-loop
system state cannot be bounded by the given hyper-pyramid,
while the closed-loop system state can be bounded.
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(a) (b)
Fig. 7. State of the open-loop system in Example 4. (a) w; = 1. (b) v =

rand (k).

[——Given nyper-pyramid Given hyper-pyramia
09 +  Systemstate - 08

* _ System state

Fig. 8. State of the closed-loop system in Example 4. (a) wp = 1.
(b) wg = rand(k).

D. Example 4

Consider system (54) with two modes
1.1 03 1.2 0.3
Ao = [0.2 0.2}’ Buo = [0.3]’ Bo.o = [0.2

02 04 11 0.1
Ar= [0.6 0.7}’ Bu1 = [0.7]’ Bo1 = [0.4

The trajectory of the open-loop system under exogenous dis-
turbances w;y = 1 (w € fl;yl) and w; = rand(k) (w € Q:o’l)
is presented in Fig. 7. As can be seen from these figures, the
trajectory of the open-loop system cannot be restricted by the
prescribed hyper-pyramid C(n), where n = [1 I]T

Thus, we have to obtain a state-feedback controller such
that the reachable set of closed-loop systems is covered in the
given hyper-pyramid.

For disturbances w € S_Z;'O’l, Theorem 6 can be used to
obtain a state-feedback controller. With pg = 1, we obtain the
following feasible results:

| IS ) S

(110)

o) = o] = 0.3700
| 1.8038 | 1.2865
PO=11.0036 | 71 = | 12112
| —-1.0772 _ | —0.4881
V=1 03575 1T | —0.9764 |
The corresponding state-feedback controller is designed as

Ko=[—0.5648 —0.1874]
Ki =[—0.1817 —0.3634].

(111)

(112)

Using the determined controller, the trajectory of the closed-
loop system with exogenous disturbances wy = 1 (w € Q;ro D
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and w; = rand(k) (w € Q;’o’]) is presented in Fig. 8. As can
be seen from these figures, the trajectory of the closed-loop
system can be restricted by the obtained hyper-pyramid.

V. CONCLUSION

In this paper, the problems of reachable set estimation
and synthesis for discrete-time periodic positive systems with
two different disturbances have been studied. The lifting
method and the pseudoperiodic co-positive Lyapunov func-
tional approach have been introduced to deduce the reachable
set bounding conditions. Two optimization methods have been
adopted to minimize the bounding hyper-pyramids. In addi-
tion, in light of the reachable set estimation conditions, we
have presented the state-feedback controller design conditions.
The techniques and ideas utilized in this paper can be applied
to other periodic positive systems, such as periodic time-delay
systems with positive characteristics, and periodic positive
systems with uncertainties.
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