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Abstract² This paper introduces a gaze contingent controlled 

robotic arm for laparoscopic surgery, based on gaze gestures. 

The method offers a natural and seamless communication 

channel between the surgeon and the robotic laparoscope. It 

offers several advantages in terms of reducing on-screen clutter 

and efficiently conveying visual intention. The proposed 

hands-free system enables the surgeon to be part of the robot 

control feedback loop, allowing user-friendly camera panning 

and zooming. The proposed platform avoids the limitations of 

using dwell-time camera control in previous gaze contingent 

camera control methods. The system represents a true 

hands-free setup without the need of obtrusive sensors mounted 

on the surgeon or the use of a foot pedal. Hidden Markov 

Models (HMMs) were used for real-time gaze gesture 

recognition. This method was evaluated with a cohort of 11 

subjects by using the proposed system to complete a modified 

upper gastrointestinal staging laparoscopy and biopsy task on a 

phantom box trainer, with results demonstrating the potential 

clinical value of the proposed system. 

I. INTRODUCTION 

In recent years, µkH\KROH¶� �ODSDURVFRSLF�� VXUJHU\� has 

established itself as the gold standard for treating a wide 

variety of surgical conditions. The advantages of the 

technique include diminished post-operative pain, reduced 

blood loss, fewer adhesions, shorter hospitalisation and a 

faster return to normal activities. However, this technique 

requires a distinctive set of complex surgical skills and 

advanced training.  

To perform laparoscopic surgery, the surgeon typically 

needs an assistant to orientate and navigate the laparoscope. 

Compared to open surgery, the field-of-view (FOV) of 

laparoscopic surgery is narrow, thus the entire surgical 

workspace cannot be viewed simultaneously. Providing 

optimal visualization and orientation of the surgical field 

remains a significant challenge for the human assistant, as 

verbal communication of the visual intention is not always 

easy. For example, failure of the assistant to maintain the 

non-insulated tool tips in the FOV can lead to unrecognized 

electrosurgical injuries [1]. These visualization challenges 

can place a greater mental workload on minimally invasive 

surgeons [2]. The recognized importance of good camera 

handling and navigation is clear from its recent inclusion in 

training curricula for surgical residents [3]. Despite these, 

overcoming problems with assistant fatigue, tremor and close 
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proximity to the surgeon for certain procedures cannot be 

avoided with training alone. 

To address these problems, robotic assisted camera control 

systems have been commercially developed to assist the 

surgeon during an operation. These include the voice 

controlled Automatic Endoscope Optimal Position (AESOP) 

system from Computer Motion Inc. [4]; the EndoAssist [5] 

which is controlled by a head-mounted infrared emitter on the 

XVHU¶V� KHDG��which later was redesigned to have a smaller 

form factor (FreeHand system, from Prosurgics); and the 

finger joystick controlled SoloAssist from AktorMed [6]. 

The purpose of this paper is to introduce a gaze contingent 

robotic camera control system based on real-time gaze 

gestures. The main challenge in using gaze contingent control 

is the difficulty to design an intuitive control interface that 

enables the user to convey their intention without being 

affected by aberrant or idiosyncratic saccadic eye 

movements. The eyes are traditionally used as an information 

gathering function [7] rather than an input source, for 

example to control a robotic laparoscopic arm, and it is a 

challenge to distinguish solely from their Point-of-Regard 

(PoR) whether they want the camera to zoom, pan, or remain 

stationary. To overcome this problem, one could use an 

external input source such as a button press or a pedal switch 

[8]. However in an operating theatre with potentially several 

pedals, introducing more foot-switches can lead to instrument 

control clutter. When reverting to gaze only methods, 

previous research has utilized dwell-time on fixed regions of 

the screen to convey panning [9]. Unfortunately, such 

methods can result in the use of large amounts of screen 

coverage and further screen area would be needed to 

introduce zoom functionality. Blink detection, which was 

previously used in gaze typing [10], could be another method 

to capture user intention during camera control. However 

requiring the surgeon to close their eyes for a fixed amount of 

time could be dangerous for the patient. 

One area that has not been explored in surgical camera 

control is the use of gaze gestures. Gaze gestures can use 

characteristic eye movements to trigger multiple camera 

control modes, e.g., panning and zooming. To our 

knowledge, this is the first time gaze gesture recognition has 

been used to control a robotic arm for minimally invasive 

surgery. One significant advantage of gaze gestures is their 

robustness to eye tracker calibration shifts. Gaze gestures 

have been previously used for gaming [11], eye typing [12] 

and Human Computer Interaction (HCI) [13]. In this paper, 

we have used Hidden Markov Models (HMMs) for gaze 

gesture recognition. Based on this, multiple input commands 

can be learned to empower the surgeon to maintain full 
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control of the camera, whilst simultaneously enabling both 

hands to focus on the operation. With laparoscopy, the 

VXUJHRQ¶V� YLVXDO� FRQWURO� DQG� IHHGEDFN� LV� UHPRYHG�� ,Q� the 

proposed V\VWHP�� WKH� LPSRUWDQW� UROH� RI� WKH� VXUJHRQ¶V� H\HV��

(i.e., localizing, tracking and orienting) are restored back into 

WKH�µFRQWURO�ORRS¶�RI�WKH�FDPHUD�  

In the following section, the HMM based gaze gesture 

training and recognition algorithm will be explained 

(subsections A-C), followed up by the robot control 

(subsection D). In section III, the experimental setup, the 

system user interface (UI) and the experimental protocol will 

be delineated. Section IV discusses the results and the paper 

finishes with the conclusion and further work discussed in 

Section V. 

II. METHODS 

The overall setup of the gaze contingent camera control 

system is illustrated in Fig. 1. Standard subject-specific eye 

calibration is performed so that accurate PoR is attainable. 

Afterwards, the remote center of motion (RCM) for the 

laparoscope is set, which is then inserted into the phantom, 

and the surgeon can promptly start using the robotic 

laparoscopic system afterwards. In order to move the camera, 

one of the two gaze gestures is performed: ³pan´ or ³zoom´. 

The use of gaze gestures eliminates the need to have an 

external input mechanism such as a button or foot pedal, 

whilst enabling the operator to perform a bimanual task 

simultaneously without the need for a camera assistant.  

 
Fig. 1: A surgeon using the gaze contingent camera system. The operator is 

able to simultaneously navigate and perform a bimanual surgical task. 

A. Gaze Gestures: Using Hidden Markov Models 

HMMs represent stochastic sequences where the states, 

rather than being directly observed, are associated with a 

probability [14]. An HMM is typically represented by a set of 

N states ^ `1
,...,

N
S s s , which are interconnected to each 

other, and a number of k discrete symbols ^ `1,
,...,

k
V v v . 

It is described by an observation sequence ^ `1
,... ,,

M
O O O  

a transition matrix ^ `ijE e , which represents the transition 

probability from state i to state j as 

� �1
|  ,

ij t ij t
P q Se q S�    where d1 i , j Nd and 

t
q is 

the state at time ,t  and the emission probability matrix 

^ `jkF f , where 
jk
f  is the probability of generating the 

symbol 
k
v from the state ,

j
q  with 

� �  | , 
jk k t j
P v at t qf S  where 1 j Nd d and 

1 .k Md d  The initial state probability distribution is 

denoted by ^ `,i j
P p where 1,2,..., .j N  The learning 

part of HMMs consists of defining an initial state probability 

P and specifying the optimal state transition and emission 

probabilities, given a set of observations O .  The parameters 

that most probably describe the set of observation are 

iteratively defined by using the Viterbi algorithm. Given the 

trained model and an observation sequence, the probability 

that the given observation sequence is described by the model 

is calculated by the Forward-backward algorithm. 

A single HMM represents a single gesture and as many 

HMMs can be added as necessary depending on the number 

of gestures that need to be incorporated into a given system. 

For the system design presented here, two gestures need to be 

utilized, but extending the system to add more gestures would 

be straightforward. The two gestures here are modelled using 

µOHIW-to-ULJKW¶�+00V��D�type of HMM that is often applied to 

dynamic gesture recognition as the state index transits only 

form the left to right as time increases [14]. 7KH�³]RRP´�JD]H�

gesture is defined by the following sequence of eye 

movements; gaze at the center of the screen, then to the 

bottom left corner, back to the center, and finally back to the 

bottom left corner. This effectively is a three-stroke gesture 

[11]��&RQYHUVHO\��WKH�³SDQ´�JD]H�JHVWXUH�LV�WKH�VLPLODU�WR�WKH�

³]RRP´�JD]H�JHVWXUH�EXW�LQVWHDG��WKH�XVHU�LV�UHTXLUHG�WR�ORRN�

at the bottom right corner of the screen. Gaze gestures 

towards the corner of the screen were chosen to minimize 

obstruction of the camera view, minimize occupying screen 

real-estate and reduce detection of false gaze gestures. The 

WZR�JHVWXUH¶V�WUDMHFWRULHV�DUH�LOOXVWUDWHG�in Fig. 2. 
 

 
Fig. 2: Example illustration of the (a)³]RRP´� DQG� (b)³SDQ´� JD]H� JHVWXUHV 

used for this study. 

B. Gaze Gestures:  HMM Training 

One of the challenges in a gaze gesture recognition system 

is to enable the system to recognize the different intended 

gestures accurately (i.e. high recognition accuracy) and 

discriminate against natural visual search activity (i.e. low 

false positive rate). Hence, both intentional and unintentional 

gaze gesture data were used to define the model parameters. 

300 intentional gaze gesture sequences for the two gaze 

gestures were collected from ten engineering students. From 

the same ten subjects, unintentional gaze gesture data was 

collected during a five minute web browsing task. 

In order to train the HMMs, a discrete codebook that 

captures the relevant features for the gaze gestures of interest 

needs to be specified. To achieve this, gaze gesture trajectory 

data are clustered using a k-means algorithm. The optimal 

number of clusters for the two gestures is set to 5. The 

codebook consists of the symbol number, centroid 

coordinates of each cluster and the radius of each cluster. 

Symbol numbers are assigned by using the distance between 
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b b c

f c f
p T pª º ª º ¬ ¼ ¬ ¼        (7) 

Equations (3)-(7) provide a smooth point-to-point motion 

[19, 20] in the -x y  plane of the reference frame ^ `C  in Fig. 6 

(a) with respect to base frame^ `B . With reference to Fig. 6 

(b), during a minimally invasive laparoscopic procedure, the 

access trocar provides a fixed insertion point that acts as a 

RCM. Therefore the motion planning of the camera tool 

orientation can be constrained by evaluating the following 

rotation matrix by means of angle/axis technique [18]: 

� �
2

2

2

e,

e e e e e e e(1 ) (1 ) (1 )
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E  

ª º� � � � � �
« »

� � � � � �« »
« »� � � � � �« »¬ ¼

 (8) 

where E  is the rotation angle around the axis 

e e e e[ , , ]T
x y z

a a a a   in the base frame. 

The rotation matrix � �e,R aE  describes the rotation of the 

camera tool around RCM constraint in order to plan the 

camera movement from point 
b

i
p  to point b

f
p . Given the 

vector b b

f G
p pU  �  in Fig. 6(b), with 

b

G
p  position with 

respect the base frame ^ `B  of the point G  where the RCM is 

placed, the axis e e e e[ , , ]T
x y z

a a a a  and the angle E  in (8) are 

tan2 ,
T

c c

f

z z
a

U U
E

U U

§ ·u �
¨ ¸ 
¨ ¸
© ¹

  , e c

c

z
a

z

U

U

u
 

u
,   (9) 

where 
c
z  is the -z axis unit vector of frame ^ `C . 

Therefore, the homogeneous transformation matrix of the 

camera frame, with respect to the base frame in the initial and 

final configuration respectively 
i b

c
T , f b

c
T will be:  

0 1

i b b

c ii b

Tc

R p
T

ª º
 « »
« »¬ ¼

, 
e( , )

0 1

i b b

c ff b

Tc

R a R p
T

Eª º
 « »
« »¬ ¼

,     (10) 

where 
i b

c
R  is the rotation matrix of the frame ^ `C  at the 

instant time 0t   . The timing law (4) has been also assigned 

to E with 
0

( ) 0
t

tE
 
 

 

and ( )
f

t t f
tE E

 
 in order to 

simultaneously translate (3)-(7) and rotate (8)-(10) the frame 

^ `C  in compliance with RCM constraint. The procedure 

described thus far addresses the motion modality of camera 

panning in Section III B. 

With reference to TABLE I, three different camera 

velocities based on the normalised Euclidean distance r of 

the gaze from the centre of the screen have been selected for 

WKH� ³SDQ´�PRGH� DFFRUGLQJ� WR� FOLQLFDO� UHTXLUHPHQWV� DQG� WKH�

aforementioned assumption of small movements.  

Without a loss of generality, the same motion generation 
DSSURDFK�ZDV�DSSOLHG�WR�³]RRP´�PRGH�E\�FRQVLGHULQJ 

b b

f f c d
p p z L r �  ,  

f b i b

c c
R R      (12) 

where the r  was used to zoom out and in respectively. The 

variables 
d
L and 

f
t  have been fixed to 5.0 mm and 0.500 s 

respectively for zooming action. 

TABLE I. MOTION PARAMETERS FOR EACH ROBOT MOVEMENT 

 Planner parameters Avg. speed Condition 

Region 1 
d
L =0.0 mm  

f
t = 0.010 s 0.00 mm/s 

1
Å ����rr  �  

Region 2 
d
L =5.5 mm  

f
t = 0.325 s 16.9 mm/s 

21
Å ����rr r  d �  

Region 3 
d
L =7.0 mm  

f
t =0.300 s 23.3 mm/s 

2
r r!  

III. IMPLEMENTATION 

A. Experimental Setup 

The experimental platform which is illustrated in Fig. 1 

includes a Tobii 1750 eye tracker, a 10mm zero degree Stortz 

laparoscope, a Storz Tele Pack light box, a Kuka Light 

Weight Robot (LWR) [16] and an upper gastrointestinal 

phantom with simulated white lesions. 

Both the robot and the HMM gaze gesture recognition 

algorithms have been implemented in C++ and run at 200 Hz 

and 33.3Hz respectively. All experimental data including the 

HMM gaze gestures, the camera-view video, the PoR and 

camera position in Cartesian space obtained from the robot 

forward kinematics, were recorded at 33.3Hz with respective 

time stamps. The bi-directional communication and 

synchronization between the devices was achieved using the 

UDP protocol via an Ethernet cable. 

B. Gaze Contingent Control Modes and UI 

During the experiment, three control modes were to be 

used, namely; 1) Gaze gesture control; 2) Pedal activated 

control, where the user activates the camera control with a 

foot pedal but directs the camera with their PoR; and 3) 

Camera assistant mode, the assistant controls the camera for 

the participant. The experimental participant would need to 

communicate to the assistant how they would like the camera 

to be moved. 

The gaze gesture control UI shown in Fig. 7 is designed to 

enable the user WR� LQWXLWLYHO\� VZLWFK� EHWZHHQ� WKH� ³SDQ´��

³]RRP´�DQG�VWRSSLQJ�RI�WKH�FDPHUD��$W the outset, the camera 

system is stationary and is waiting for a gesture input from the 

user. The user will be observing a camera view as in Fig. 7(a) 

where there are guidance ³]RRP´�DQG�³SDQ´� WH[W� LQ� WKH� OHIW�

and right bottom corner respectively. Whilst using the 

system, the user is able to see their PoR on the screen in the 

form of a white dot. They also have the option to turn this off. 

If a ³]RRP´� JD]H� JHVWXUH� LV� WULJJHUHG� WKHQ� WKH�8,� VZLWFKHV�

from Fig. 7(a) to Fig. 7(b) and the user will be able to zoom in 

by looking anywhere above the horizon and zoom out by 

looking below. Guidance text is also overlaid on the camera 

view and the camera can be stopped by looking into the white 

circle in the centre for 750ms. ,Q� FRQWUDVW�� LI� D� ³SDQ´� JD]H�

gesture is inputted by the user, the UI switches from Fig. 7(a) 

to Fig. 7(c) where the camera pans in the vector direction of 

the gaze from the screen center. 
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Fig. 7: Gaze gesture controlled robotic laparoscopic UI. (a) The UI waits for 

WKH�XVHU�WR�SHUIRUP�D�³]RRP´�RU�³SDQ´�JD]H�JHVWXUH��,I�D�³]RRP´�JD]H�JHVWXUH�
LV�GHWHFWHG�WKHQ�WKH�XVHU�ZLOO�EH�WDNHQ�WR��E���RU�LI�D�³SDQ´�JHVWXUH�LV�GHWHFWHG�LW�

will take them to (c). While in (b) or (c) the camera can be stopped by looking 

into the white circle for 750ms. After the camera stops, the user is taken back 

to (a). (d) Illustration of the camera velocity and respective regions under 

³SDQ´�FDPHUD�FRQWURO�PRGH� 

,I� WKH� XVHU¶V�PoR is within a region of 0.1r d  from the 

screen center, then the camera will stop after 750ms. ,Q�³SDQ´�

mode, the screen area is separated in three radial regions 

where gazing within each region would prompt the camera to 

move at a different velocity. This region separation is 

illustrated in Fig. 7(d) with respective radial region values 

described as in TABLE I. If the PoR is within region 1, the 

camera will remain static. This region was introduced to 

enable the surgeon to have a stable working area to operate 

ZKLOVW� PDLQWDLQLQJ� DQ� DFWLYH� ³SDQ´� PRGH�� If the PoR falls 

within region 2 and region 3, the camera pans in a medium 

and fast velocity set at 16.9 mm/s and 23.3 mm/s respectively. 

The different speed regions were introduced to enable an 

intuitive control of the camera whilst maintaining a known 

maximum velocity that would be safe for the patient. 

In order to address the potential safety issue when the eye 

WUDFNHU�ORRVHV�WUDFNLQJ�RI�WKH�XVHU¶V�H\HV��DQ�HIIHFWLYH�VDIHW\�

mechanism was introduced where the robotic laparoscopic 

holder would immediately stop under lost gaze tracking 

FRQGLWLRQV��,I�WKH�XVHU¶V�JD]H�LV�UH-detected, then the robotic 

laparoscope would resume in the same user control mode. 

The pedal activated control mode is similar to the UI of the 

gaze gesture control except that the onset camera screen view 

shown in Fig. 7(a) ZRXOG�QRW�KDYH�WKH�³]RRP´�DQG�³SDQ´�WH[W�

in the corner as a foot pedal was being used to activate the 

camera arm. During pedal activation control mode, a 2-lever 

foot pedal is XVHG��7R�DFWLYDWH�WKH�³]RRP´�RU�³SDQ´�PRGH�WKH�

user is required to step on the left or right pedal respectively. 

Navigation of the camera is conducted using gaze with the 

same UI as in Fig. 7(b) and Fig. 7�F��IRU�³]RRP´�DQG�³SDQ´�

mode respectively. During camera assistant mode, an 

operator manually controls the laparoscopic camera using the 

method explained in Section II D. 

C.  Experimental Protocol 

Eleven surgical residents with a postgraduate year between 

3-7 (PGY3-7, male=10, female=1) were consented to 

participate in this study. The laparoscopic experience was 536 

(+/- 315) cases). All subjects were initially trained on use of 

both the gaze gesture and pedal activated systems on an 

abstract navigation task. This was done to mitigate the 

potential confounding effects of learning when performing 

the subsequent study task. 

The abstract training task involved navigating the robotic 

laparoscope within a conventional box trainer to find 

numbers on a 4x5 grid in ascending magnitude. The numerals 

were of differing font sizes, necessitating zooming and 

panning to successfully complete the task. Training was 

completed when they had met a minimum baseline 

proficiency task completion time, when there was no further 

improvement in completion time and they could reproduce 

their best time on three consecutive occasions. 

A modified upper gastrointestinal staging laparoscopy 

phantom was used in an immersive laparoscopic box trainer. 

7KH� VXEMHFWV� ZHUH� WDVNHG�ZLWK� LGHQWLI\LQJ� DQG� ³ELRSV\LQJ´�

(i.e. removing) a set number of randomly placed lesions on 

the phantom. Importantly, this simulated task required 

subjects to use a bimanual technique, with one instrument 

either manipulating or retracting tissue, whilst the other 

removes the lesion. 

 The sequence in which subjects performed the various task 

modes was randomized to mitigate the learning effects on the 

phantom. The three modes were: i) conventional human 

assistant, ii) gaze gesture, and iii) foot pedal activation. The 

same human camera assistant was used throughout the study 

for all subjects. The assistant was experienced in control of 

the robotic laparoscope arm. 

Each task was assessed quantitatively, with task time 

measured in seconds and camera path length in meters. Each 

subject performed the task with each modality twice. 

Following each task they completed the National 

Aeronautical Space Agency±Task Load Index (NASA-TLX) 

questionnaire. This is a well validated subjective 

questionnaire comprising of six variably weighted parameters 

that contribute to task workload [21]. 

At the end of the trial, subjects completed a questionnaire 

providing their laparoscopic experience and rated how 

difficult it was to learn to use a) the gaze gesture system and 

b) the foot pedal activation system on a visual analogue scale. 

IV. RESULTS AND ANALYSIS 

In order to assess the performance of the new gaze contingent 

laparoscopic camera control system we looked at the 

following combination of quantitative and qualitative system 

and usability performance measures; 

x Recognition accuracy of the HMM gaze gestures 

x Camera path length ± to assess efficiency and ability 

to use the system. 

x Task completion time ± to assess usability. 

x NASA TLX questionnaire ± validated measure of 

subjective workload for each of the three control 

modes. 
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x Visual Analogue Score ± rating difficulty of system 

skill acquisition. 

Statistical analysis was performed using IBM
©
 SPSS

©
 v19. 

Normality tests were initially performed, followed by Mann 

Whitney U test for nonparametric continuous variables 

EHWZHHQ� PRGDOLWLHV�� $� µS� YDOXH¶� �0.05 was considered 

significant. Results are represented as medians with 

interquartile ranges in parentheses, unless otherwise stated. 

A. Accuracy of Online HMM implementation 

Occurrence of false positive (i.e. when the user does not 

perform a gaze gesture, but the algorithm triggers a gaze 

gesture) and false negative (i.e. when the user performs a gaze 

gesture, but it is not recognized by the algorithm) gaze 

gestures during the experiment were counted via post-hoc 

observation of the recorded camera-view videos. The 

recognition accuracy is calculated by dividing the number of 

true positive gaze gestures by the sum of the true positive and 

false negative gaze gestures. The false positive rate is 

obtained by dividing the number of false positive gaze 

gestures by the sum of the number of true negative and false 

positive gaze gestures during the gaze gesture control mode 

of the experimental task. The results are summarized in 

TABLE II. 

TABLE II. RECOGNITION ACCURACY AND THE FALSE POSITIVE RATE OF 

THE HMMS DURING THE EXPERIMENTAL TRIAL 

 Recognition Accuracy False Positive Rate 

+00���³3DQ´� 95.6% 2.2 % 

+00���³=RRP´� 98.3% 0.6 % 

 

Low recognition accuracy would cause frustration for the 

surgeon, as his/her gaze gestures are not being accepted, 

resulting in an experiential delay in being able to move the 

camera. A high false positive rate would lead to the camera 

starting to move without the surgeon intending, resulting in 

the need to correct the camera position. These factors, if 

significant, would lead to a poor uptake of our system. The 

average recognition accuracy for the HMMs was 97.0% 

whilst the average false positive rate was 1.4%. This 

demonstrates that the use of HMMs for gaze gestures has the 

potential to be both user-friendly and safe to be used during 

camera control of the robotic laparoscopic arm. 

B. Quantitative Analysis - User performance tables 

For this study, each of the eleven subjects met the baseline 

proficiency and training requirements. Two of the subjects 

wore glasses and three wore contact lenses. 

The camera path length was measured in order to assess 

how efficient and user-friendly our system is compared to the 

other two modes. As illustrated in Fig. 8(a), a significantly 

shorter camera path length for the gaze gesture modality 

compared to the assistant was observed with median and 

interquartile range values of (0.896m [0.87] vs. 1.710m 

[1.26]; p=0.037). The pedal activation control mode also 

showed statistically significant shorter camera path length 

when comparing it to the camera assistant (1.076m [0.88] vs. 

1.710m [1.26]; p=0.031). Fig. 9 illustrates an example camera 

path of a single subject during the gaze gesture based control 

of the camera (left) and the camera assistant on the (right). It 

is clear that the camera assistant shows a more volatile 

camera trajectory. In contrast, the camera path during the 

gaze gesture based gaze contingent control mode is smooth 

and still offers the same navigational workspace of an 

assistant. An unexpected observation was the statistically 

insignificant difference (p=0.690) in comparative task 

completion times across the three modalities. This indicates 

that our gaze contingent system is as competent as using a 

camera assistant, which is the current gold standard. 

 

Fig. 8: (a) Camera path length (m), (b) the NASA TLX scores for all control 

modes. Significant p values shown with a * mark above bar charts. 

Our system was also assessed for its contribution to the 

workload of the surgeon with the NASA-TLX questionnaire, 

in which cognitive workload is an assessed factor. It is 

desirable that any surgical innovation does not add to the 

cognitive burden of the surgeon. Importantly, there was no 

statistically significant difference in NASA-TLX scores for 

the gaze gesture modality versus the human assistant 

(p=0.972) or the foot pedal (p=0.217) as shown in Fig. 8(b). 

Visual analogue scores for rating subjective difficulty in 

skill acquisition between our gaze gesture system and the 

pedal activation control system were not significantly 

different (0.853 [0.15] vs. 0.884 [0.14]; p =0.178). 100% of 

VXUJHRQV� UDWHG� ERWK� V\VWHPV� DV� µHDV\¶� WR learn. Pedals are 

considered commonplace in the operating theatre. Thus, for 

gaze gestures to be as easy to learn as the foot pedal is a 

measure of the intrinsic ergonomics of gaze gestures. The 

user performance statistics are presented in TABLE III. 

 
Fig. 9: Camera path for a given subject during gaze gesture based gaze 

contingent (left) and assistant (right) control of the laparoscope. 

In the questionnaire, the subjects were asked to state their 

preferred mode and 91% of surgeons (10/11) documented 

they would use the gaze gesture system in clinical practice 

and also recommend it to their surgical colleagues. 
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TABLE III. USER PERFORMANCE TABLE. MEDIAN AND INTERQUARTILE 

RANGE IN PARENTHESES 

 

Task 

Time 

(sec) 

NASA 

-TLX 

Score 

Cam Path 

Len.(m) 

Subj. 

Skill Acq. 

'LIILFXOW\� 

Gaze Gesture 
281.0 

[172] 

41.33 

[39.08] 

0.896 

[0.87] 

0.853 

[0.15] 

Pedal Activation 
265.0 

[160] 

27 

[28.32] 

1.076 

[0.88] 

0.884 

[0.14] 

Assistant 
297.3 

[181] 

43.33 

[23.34] 

1.710 

[1.26] 
- 

p value 

Gaze vs Assistant 
0.690 0.972 0.037* - 

p value 

Pedal vs Assistant 
0.460 0.133 0.031* - 

p value 

Gaze vs Pedal 
0.842 0.217 0.814 0.178 

*p<0.05, �Visual analogue scale score: 1=very easy, 0=very difficult 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have provided a novel approach to 

HUJRQRPLFDOO\�FRQWURO�D���'R)�FDPHUD�WKURXJK�WKH�VXUJHRQV¶�

PoR (i.e. 2 DoF) as the control input via the use of real-time 

HMM gaze gestures to pan and zoom in the Cartesian space. 

The ability to reproducibly complete a surgical navigation 

task has been demonstrated with the gaze gesture modality. 

The efficiency of the system was demonstrated by the 

significantly shorter camera path length compared to the 

current gold standard. Thus, surgeons obtained the desired 

FOV more accurately and required less fine-tuning. 

Validation of the HMMs showed that HMMs are effective in 

recognizing gaze gestures with mean experimental 

recognition accuracy and false positive rate of 97.0% and 

1.4% respectively. 

From the results derived, the proposed gaze contingent 

robotic camera system with built-in safety mechanisms has 

shown to be ergonomic with no statistically significant 

difference in cognitive burden when compared to using a 

camera assistant or when compared to using a foot pedal 

activated camera system. This means that the participants did 

not feel that the gaze gestures and gaze control as a complex 

user modality. This was also reflected in the subjective visual 

analogue scores. Additionally, the system has the desirable 

feature of enabling the surgeon to achieve comparable 

performance without the need of additional foot pedals. 

In future work, the surgical task videos will be rated for 

µTXDOLW\¶�RI� VXUJHU\�E\� LQGHSHQGHQW�EOLQGHG�H[SHUWV�XVLQJ� D�

validated rating system. This will provide information 

regarding whether the system has an impact on tool accuracy, 

efficiency and the number of surgical errors. We also plan to 

PRGLI\� WKH� ³]RRP´�PRGH� WR� HQDEOH� VLPXOWDQHRXV� ]RRPLQJ�

and panning. To this end, more gaze gestures would have to 

be added to separate zooming in and out. In addition, through 

adding more gaze gestures we can create an immersive 

environment for the surgeon to switch on and off a number of 

surgical applications intra-operatively, for example, 

augmented reality visualizations to help localize tumors. 

Further work to recognize spatially invariant gaze gestures is 

another area under research as well as to implement 

safety-boundaries for the robot workspace inside patient's 

abdomen based on pre-operative model of the anatomical site. 
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