
 
 

 

  

Abstract—This paper presents a novel brush stroke 
generation scheme based on Genetic Algorithms (GA) 
and  pre-defined brush template models. The work is part 
of an endeavor to attempt imitating master works of 
famous past calligraphers. The concept is to parametrize, 
in some computational sense, the writing styles and 
techniques of certain calligraphers and then executes the 
results in a robot drawing platform developed in our 
laboratory. The present work describes the algorithmic 
development, simulation studies and experimentation of 
the GA-based stroke generation scheme upon given 
certain calligraphic characters. To further study the 
effectiveness of calligraphic writing with the robot 
platform, the Cross-Entropy method of the Traveling 
Salesman problem is incorporated to determine the 
sequence of stroke execution.  

I. INTRODUCTION 
hinese characters are made up of basic strokes. As such, 
the artistic values of a piece of Chinese calligraphy 

depend highly on the quality of the execution and control of 
its composing strokes. With due consideration of the 
thickness and absorptivity of the paper, and expert controlling 
of the ink concentration and brush flexibility, an artist has the 
freedom to produce infinite variety of styles and forms 
[1].Unlike other visual art techniques, Chinese calligraphic 
strokes are permanent and incorrigible once after execution. 
Careful planning and confident manipulation are hence the 
keys to the producing a work of high artistic level. Fig.1 
highlights the stroke trajectory for executing a basic stroke in 
the formation of the Chinese character “中” (means center or 
middle). 

In recent years, numerous works on simulation of Chinese 
calligraphies and paintings have been reported, e.g., Chu, et 
la. [2]-[3] developed a physically-based 3D brush model with 
spreading bristles and rendering strokes in real time. The 
users are able to create much aesthetic brushworks with this 
virtual brush. Also, Lee [4] and Chu [5] proposed a method to 
simulate real-time dynamic of ink diffusion in absorbent 
paper for art creation. Additionally, Xu, et la. [6] proposed an 
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intelligent system to create calligraphy artwork of various  
styles through an interpolation process using input samples of 
trained font style as knowledge sources. The work, however, 
did not deal with brush manipulation to create artistic strokes. 

In this paper, we propose a brush stroke generation scheme 
based on Genetic Algorithms (GA) and pre-defined brush 
template model. We describe the brush stroke trajectory by 
Bézier curve and take as chromosome the Bézier curve 
control points which are the coordinates (x, y) and brush 
painting z-depth. A painting scheme is then generated 
through evolutionary computing process via the minimization 
of a properly defined objective function. Upon generation of 
the brush strokes, however, we still have to decide the 
sequence by which the strokes are executed. In this work, we 
attempt the use of the Traveling Salesman problem (TSP) 
solver, specifically, the Cross-Entropy (CE) method, to 
automatically determine the sequence. Comparison of the 
TSP-CE method with the traditional way of assigning the 
sequence is also discussed. 
 

 
(a)                  (b)                           (c) 

Fig.1.  (a) One of the stroke trajectories for the Chinese character 
“中”;  (b) The resulting full stroke upon execution of the trajectory 
of (a);  (c) The character “中” is completed when all stokes are 
executed. 
 
 

While previous works on Chinese brush strokes cited 
above mainly confined themselves in simulation case studies 
only, our generated brush strokes are intended for robot 
execution. In this regards, we have designed and constructed 
in our laboratory a robot drawing platform [7]-[8] aimed at 
studying Chinese painting and calligraphy. Referring to Fig.2, 
the platform and the gripper together provides a total of 5 
degrees of freedom (DOFs) (consists of x, y, and z translation, 
z-rotation, and pitch) for the brush pen to emulate the hand 
and wrist movement need in fine execution of brush strokes. 
The results of the present work on GA-based stroke 
generation and TSP-CE sequence assignment will be put to 
execution on the robot platform. The results will be reported 

Genetic Algorithm-Based Brush Stroke Generation      
   for Replication of Chinese Calligraphic Character 

  Ka Wai Kwok, Sheung Man Wong, Ka Wah Lo, and Yeung Yam, Senior Member, IEEE  
 

C 

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

1057



 
 

 

in a future work. 

II. BÉZIER CURVE STROKE TRAJECTORY REPRESENTATION 
The study of Bézier curve falls under the general topic of 

curve fitting. Its true value lies actually not in scientific 
studies but in artistic purposes. Originally used by car 
designers to create pleasant looking curves, the Bézier curve 
is now used by graphic artists in many fields where the 
generation of curved shapes is necessary. In our case, it 
provides us with a simple model for representing stroke 
painting trajectory. Mathematically, Bézier curve is 
expressed in the following form: 
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where 1...0 −= nkP  is the sequence of control point position. 
 
 

 
(a)  

 
(b) 

Fig.2.   (a) The robot drawing platform with the Gripper;  (b) The 
gripper holding a drawing pen. 
 
 

The advantages of choosing Bézier curve to represent the 
painting trajectory rather than B-spline or spline curve are 
that: 1) It relaxes the stringent requirement on the painting 
trajectory – it does not pass though any of the control points 
except the first and the last; 2) We need not to input any 
“knots” as B-spline for determining the degree of curve 
polynomial. In Bézier curve, degree(B(u)) < the number of 
control points, n; 3) It allows easier generation of stroke with 
“better” appeal – multiple control points clustered at a region 

in space will add more weight to those points “pulling” the 
Bézier curve towards them. 

Fig.3(a) depicts the Chinese number character one “一” in 
Running Script style “行書”, which is one of the major 
categories of Chinese calligraphy.  Fig.3(b) depicts the 121 
manually assigned control points gathered in 23 groups 
distributed along the length of the stroke. The selection of a 
control point from each of these 23 groups determines a 
Bézier spine curve, a few of which are shown in Fig.3(c). 
Counting all the combination of possible selections, there is 
an astronomical sum of 1.9508×1016 of 2D trajectories that 
can be generated for the example. Obviously, the exhaustive 
search method to pick the best Bézier curve is not desirable. 
This motivates the use of GA-based technique.  
 

 
 (a) 

  
(b) (c) 

Fig.3.  (a) The Chinese character “一” in Running Script style “行

書”;  (b) The 121 assigned control points in 23 groups along the 
length of the line segment;  (c) A bundle of Bézier curves represent 
various painting trajectories. 
 
 

   
(a)           (b) 

Fig.4.  (a) Spray paint templates under different painting depth 
descending from left to right;  (b) another brush templates in water 
drop shape with front direction defined which is shown by the arrow 
 
 

 
Fig.5.  The brush templates chopped tangentially along and centered 
at the Bézier curve under different z-depth applied 
 

III. GA-BASED BRUSH STROKE GENERATION 
Besides the trajectory, the brush stroke model is another 

vital factor to achieve good painting result. To illustrate our 
approach, we use the two simple, pre-defined 2D brush pen 
models as shown Fig.4, the spray paint template and the water 
drop template. Here, the simple kinematics model of the 
brush tuft is utilized as starting point for rendering the artistic 
stroke. For each, it is assumed that the footprint will be 
enlarged proportionally as the writing z-depth increases. 
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Fig.5 shows some brush templates in different sizes due to 
their applied z-depths along a known trajectory.   

The question remains that there is no standardized method 
for determining the stroke trajectory. In what follows, we use 
GA to determine the (x, y) trajectory and z-depth altogether 
upon a given brush stroke. GA serves to effectuate a simple 
search process rather than the need to go into detail studies of 
the brush geometry.  

The models we attempted in the present work as depicted 
in Fig.4 are simple ones. In time, we may attempt more 
realistic 2D brush templates and study how they would affect 
the corresponding stroke generation and resulting artistic 
quality. In this regards, we have initiated a process to capture, 
model, and parametrize the resulting 2D brush stroke 
footprints during actual execution, which will be presented in 
later works. 

A. GA Chromosome for Stroke Painting 
The GA chromosome Ci can be regarded as the kinematics 

brush execution that uses Pj=0,…,n-1 as the Bézier curve control 
point genes and Zj=0,…,m-1 as the z-depth (in direction 
perpendicular to the paper) manipulation genes, see Fig.6, 
where n is the number of control point group and m is the 
number of z-depth quantization. 
 
 

P0 P2 … … Pn-1 Z0 Z2 … … Zm-1

Control point genes     Manipulation genes 
Fig.6.  Chromosome structure of brush stroke represented by Bézier 
curve control point genes and manipulation genes 
  
 
The chromosome structure above allows future inclusion into 
the manipulation genes additional DOFs to be constructed 
into the robot hardware or virtual brush painter in [3]. For 
example, as Fig.7 indicates, the manipulation genes can be 
expanded to include the tilted motion angles s

ai 1..0 −=θ  and 
e

bi 1..0 −=θ , respectively, at the start and end region of painting 
trajectory, with a+b<m. 
 
 

s
0θ  … s

a 1−θ  Z0 … Zm-1 e
0θ  … e

b 1−θ
Manipulation genes 

Fig.7.  Manipulation genes consist of brush painting depth and title 
angle 
 

B. Objective and Fitness Evaluation 
The objective function is defined to measure how the 

individuals performed in stroke generation. In the case of a 
minimization problem, the most fitted individual will have 
the lowest numerical value of the associated objective 
function. The selection of objective function is dependent on 
the specific problem at hand. Consider the sample stroke in 
Fig.3(a) depicting the character “一”. Under our criteria, the 
stroke to be generated should resemble closely the stroke as 

shown.  We hence design the overall objective function to 
include the following three sub-objectives. 

 
Sub-objective 1: Painting to be within stroke boundary.  
 Thinning Algorithm is a procedure to iteratively remove 
boundary pixels from a given sample image [9]. With 
repeated applications of iterative removal, the thinner the 
remaining image would become.  Using such procedure, one 
can divide the sample stroke into two regions.  Region 1, as 
shown in Fig.8(a), is the sample stroke thinned iteratively 
until the remaining number of pixels is about 35% of the 
original number of pixels. Region 2, as shown in Fig.8(b), is 
obtained by truncating region 1 from the given sample stroke. 
The sub-objective 1 of the cost function is thus to minimize:  

22111 pwpwObjV += ,           (2) 
where pi is the number of unpainted pixels within the region i, 
and wi is the corresponding cost weighting of the region i. As 
the goal is to have the painting inside the stroke boundary as 
much as possible, we usually set w1 > w2 during the GA 
evolution. 
 

  
(a) 

 
(b) 

Fig.8.  The sample stroke is divided into two regions in white: (a) 
inner region, (b) outer region, those are inside the stroke 
 
 

 

  
(a) 

 
(b) 

Fig.9.  There are two regions outside the sample stroke in 
white: (a) skin region;  (b) out-of-skin region 
 
 
Sub-objective 2: No painting outside stroke boundary 
 On the other hand, dilation is a morphological operation to 

Region 1 

Region 2 

Region 3 

Region 4 
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expand image object. The procedure effectively sticks a pixel 
“layer” on the image object. Fig.9(a) shows the sample stroke 
being dilated iteratively until the added “layer” constitutes 
greater than 85% area of the sample stroke. This added layer 
is labeled as region 3. The remaining region beyond region 3 
as depicted in Fig.9(b) is labeled as region 4. Both region 3 
and 4 are outside the stroke boundary. The sub-objective 2 of 
our cost function is thus to minimize: 

44332 '' pwpwObjV += ,          (3) 

where ip'  is the number of painted pixels within the white 
region i. Similarly, we set w4 > w3  to impose the desire of not 
painting in region 3 and even less so in region 4. 
 
Sub-objective 3:  Smooth painting depth change 
 Fig.10(a) and (b) depicts one example of the z-depth values 
distributed along the trajectory. The actual applied depth over 
the whole Bézier curve is the linear interpolation over the 
z-depth values at the manipulation points. In real calligraphy 
painting, the force applied on the brush pen usually increases 
or decrease gently for smooth painting. It is thus necessary to 
have a penalty scheme for abrupt z-depth change along the 
trajectory. Sub-objective 3 is hence to minimize: 
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where Zi is the z-depth values applied on the ith  control 
points.  
 

 
(a) 

 
(b) 

Fig.10.  (a) Linear Interpolation of z-depth values along the control 
points;  (b) 20 circles depicting the manipulation points distributed 
along the trajectory 
 

The total objective cost function of the present study is the 
sum of three sub-objectives as introduced: 

 
ObjV(Ci) = ObjV1(Ci)+ ObjV2(Ci)+ ObjV3(Ci)  (5) 
 
 The fitness function serves to transform the objective 
function value into a measure of relative fitness. This 

mapping is necessary as the objective function is to be 
iteratively reduced in the quest of a “fitter” individual in the 
next generation. In this case, a non-linear fitness assignment 
is adopted to prevent premature convergence. Individuals are 
assigned fitness value according to their rankings in the 
population rather than their raw performance as, 
 
Ranking: ))(( ii CObjVrankingx = ,       (6) 
where xi is the position in the ordered population of the ith  
individual according to its objective cost in (5), i=1,…,Nind, 
and Nind is a population size in each generation. Thus, the 
chromosome with lower objective cost implies higher integer 
ranking xi in the population. The fitness of an individual in the 
population is calculated as,  

Fitness: 
1

1
)1(22)(

−
−

−+−=
ind

i
i N

x
PRSPRSxF . (7) 

As suggested in [10], the parameter PRS is typically chosen 
within the interval [1.1, 2.0]. The fitness assignment ensures 
that each individual has a probability of reproducing 
according to its relative fitness. 

C. Evolutionary computing parameter settings 
The following genetic parameters and operations which are 

tested and tuned in many concrete brush stroke cases before 
are adopted for stroke generation problem in the following. 
 
1) No. control point groups defined: n, the control points 

are grouped into line segment drawn inside the stroke 
manually. The control points are located on the line 
segment in every inv pixels. For example of Fig.3(b), 
inv=3 pixels. 

2) No. of control points in group i: n_cpi=0…n-1  
3) Total no. of control points inside the stroke: 

∑
−

=

=
1

0

n

i
in_cpcpn                (8) 

4) No. of points interpolated over the curve: n_pt 
5) No. of pressure level applied: There are m motion points 

and the value usually is ranging from 1 to 50, i.e., 
z-depth value are defined [Zmin , Zmax]=[1, 50] 

6) Stroke region division: the area of region 1, 2 and 3 
occupy the sample stroke in percentage Ri =[35, 65, 
85]% 

7) Objective value weighting: wi =[ w1 , w2,…, w5] 
8) Chromosome length in binary coded:  

⎡ ⎤ ⎡ ⎤)1(log)_(log minmax2
1

2 +−+= ∑
=

ZZncpnl
m

i
ibit

  (9) 

9) Crossover method: Multi-point crossover with 
probability pc  

10) Mutation method: New individuals are generated by 
taking the current population and mutating each element 
with probability pm=0.7/lbit 

11) Selection method: Stochastic University Sampling with 
population selection ps   
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12) Replacement: Fitness-base reinsertion to current 
population 

13) Population size Nind : between 40-100, depending on the 
length of the chromosome 

14) Number of generation past: Ngen  
15) Initial population: randomly generated within the 

groups of control points and range of painting depth 

IV. EVOLUTIONARY CALLIGRAPHY PAINTING RESULTS 
The GA stroke generation is performed on a notebook PC 

with Centrino (1.6G) CPU, 512MB RAM, using Windows 
XP. The computation time for generating one solution is 
roughly 20-35mins. This computation time (average by 
multiple runs) is for reference only since the program is 
running in the debug mode of MATLAB environment. The 
actual speed should be much faster. The following results are 
chosen as the best upon a few trials. 

The evolutionary painting results for the sample stroke of 
Fig.3(a) is shown in Fig.11. Fig.11(a) presents the results 
using the circular spray paint template of Fig.4(a). The 
parameters are set as: inv=3, n_pt=200, Nind=60, Ngen=151, 
ps=70%, lbit=182, pm=3.8462e-3, pc=0.7, m=23, n=20, 
cpn=121, [Zmin , Zmax]=[1, 50], wi=[3, 1, 1, 3, 3], and the 
computation time is 25mins 43sec. Fig.11(b) presents the 
same using the water drop templates of Fig.4(b). The 
corresponding objective cost as a function of the generation 
number is depicted in Fig.12. By comparing the two 
experimental results, it can be seen that the water drop 
template performed better. Some shapes of templates like the 
circular spray paint templates cannot paint the calligraphy 
stroke well in nature since they are much different from the 
painting footprint of real brush tuft. Fig.13 shows the best 
painting trajectory resulted using the water drop templates. 
 

 

 

  

  

  
(a)            (b) 

Fig.11.  Samples of results from stroke generations using GA: (a) 
using circular spray paint templates of Fig.4(a);  (b) using water drop 
templates of Fig.4(b) 

 
Fig.12.  The objective cost (in log scale) of the best individual vs the 
number of generation past 
 

 
Fig.13. The best stroke trajectory under generated by GA using 
water drop template brush model 
 

 
(a)             (b) 

 
(c) 

Fig.14.  (a) A 636× 570 image Chinese calligraphy character “天” 
from Lan Ting Xu “蘭亭序” (source: [11]);  (b) Water drop 
templates with spraying effect; (c) Corresponding control points set 
inside the extracted four strokes 
 

For another demonstration, we conduct stroke generation 
for the Chinese character as depicted in Fig.14(a). The 

1 2 3 4
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character “天” (means Sky) came from Wang Xianzhi (王羲

之)’s well known masterpiece called Lan Ting Xu (蘭亭序). 
Fig.14(c) shows the four stroke elements extracted manually 
using image editor software. Corresponding control points in 
groups distributed along the individual strokes are also shown. 
This time around, another kind of brush templates combining 
the effects of two previous templates in Fig.4(a) and (b) is 
adopted. As shown in Fig.14(b), the new templates exhibit  
some spraying effects on its boundary. Fig.15 shows some 
results of the GA-based evolution processes for the four 
strokes. Finally, the evolutionary strokes recomposed to form 
the given character of Fig.14(a) is shown in Fig.16(a), and 
corresponding painting trajectories in Fig.16(b). The 
resulting depth values Zi are also given as follows: 
 
Stroke 1: m=27, Zi=[2, 30, 26, 32, 36, 31, 41, 32, 36, 32, 36, 
32, 49, 41, 32, 39, 34, 29, 29, 18, 25, 10, 11, 11, 8, 5, 1] 
Stroke 2:  m=15, Zi=[5, 7, 11, 12, 6, 5, 7, 7, 32, 42, 24, 24, 33, 
49, 42, 46, 30, 31, 33, 26, 18, 14, 13, 5] 
Stroke 3:  m=20, Zi=[8, 11, 11, 17, 16, 26, 28, 40, 42, 48, 48, 
50, 50, 48, 30, 33, 23, 14, 8, 3] 
Stroke 4:  m=20, Zi=[3, 16, 14, 14, 31, 32, 33, 45, 44, 45, 49, 
44, 47, 46, 45, 42, 47, 40, 16, 13] 
 
 

 
Fig.15.  Evolutionary processes of four element strokes in Fig.14 
 

V. STROKE PAINTING ORDER ASSIGNMENT BY TSP SOLVER 
When a beginner was learning to write, he/she was 

probably taught to write the letters in a certain order and 
direction. For example, it is the convention to write western 

languages from left to right. For Chinese characters, it is very 
important that the strokes are written in a certain defined 
order. As a baseline, a simple rule is adopted which is 
consistent with most Chinese calligraphy: from Up to Down 
and Left to Right. Other than that, proper order of execution 
would be extremely difficult to define by any set of rules 
upon a given character. In this work, we attempt to use 
“efficiency” as a rule to determine the stroke ordering. 
Efficiency is in line with our expressed intention to execute 
the generated strokes via a robot platform, in the sense that 
execution would be done in the shortest time, assuming a 
constant speed of execution of all strokes. We will attempt to 
proceed by formulating the problem at hand as a Traveling 
Salesman Problem (TSP). 

TSP is a deceptively simple combinatorial problem. It can 
be stated very simply: A salesman spends his time visiting n 
cities (or nodes) cyclically. In one tour he visits each city just 
once, and finishes up where he started. The problem is this: in 
what order should he visit the cities to minimize the 
would-be-distance traveled? Translating to our robot drawing 
problem, the robot should be spending least time to draw the 
n strokes, and returning to the homing position near the first 
stroke after completing its drawing. In contrast to TSP, 
however, the strokes here are not zero dimensional nodes, but 
one dimensional length with entrance and exit points. That 
implies in this case the distance matrix is not symmetric. 

 
(a) 

 
(b) 

Fig.16.  (a) The calligraphy character recomposed using the four 
GA-generated strokes;   (b) The painting trajectories as resulted 
from the process 
 

1062



 
 

 

 
Fig.17.   A 875×1011 image Chinese calligraphy character “龍” 
from Kō Fukuji Dampi “興福寺斷碑”, (source: [14]) 
 
 

In the present work, we use a TSP solver called the 
Cross-Entropy Method (CE-Method), which is relatively new 
method for estimating rare-event probabilities (see [12]-[13]). 
In our mechanism, the stroke distance are defined such that 

2/1j
start

i
endij ppd −=  is the shortest Cartesian distance 

from the end point i
endp of stroke i  to the starting point 

j
startp  of stroke j on the drawing plane. For example, given a 

tour path of stroke sequence 5 4 6 7, the cost of the tour 
distance would be Tdist =d54 +d46 +d67. 
 

 
Fig.18.   The character “龍” recomposed with strokes generated 
from beginning of evolution process  
  

To demonstrate our results, Fig.17 shows another more 
complicated calligraphic character “龍” (means Dragon) by 
Wang Xianzhi taken from the Kōfukuji Dampi (興福寺斷碑). 
The character is decomposed manually into 14 strokes, which 
all undergo the GA-based evolution process. Fig.18 shows 
the recomposed character formed by the 14 strokes generated 

from the first generation of the evolution process. The 
evaluated objective cost is 357,975. Upon 151 generations 
later, the objective cost is reduced to 6,224 and the 
corresponding calligraphy stroke results are shown in Fig.19. 
Now, continuing with the CE-Method, we set the number of 
sample to generate at each round as N=1000, the fraction of 
best samples to take as rho=0.05, and the smoothing 
parameter of alpha=0.8.  Moreover, node placement setting is 
adopted. The stroke execution sequences as resulted is 
depicted as Fig.20, with the “x” and the “o”, respectively, 
indicate the start and the end points. The tour cost is reduced 
to Tdist =815 pixels. For comparison, Fig.21 depicts the same 
but according to traditional and accepted stroke ordering of 
the character. The corresponding cost Tdist =1,120 pixels. 
 

 
Fig.19.   The character “龍” recomposed with strokes obtained after 
151 generations of evolution process  

VI. CONCLUSION 
Good painting trajectory and stroke thickness control are 

essential for high artistic values in Chinese calligraphy. In 
this paper, a novel scheme for stroke generation using GA is 
presented. We model the brush stroke as composed of 2D 
brush template along a painting trajectory described by 
Bézier curve. Depending on the z-depth values, templates of 
different sizes would be applied along the brush trajectory the 
union of which would form the stroke. The application 
GA-based algorithm for stroke generation enhances the 
flexibility and freedom for matching a given stroke sample 
through the use of objective function, rather than having to 
analyze the detail geometric information. The results as 
produced and shown in this work are promising and indicate 
that GA is able to generate a full stroke with the adoption of 
appropriate brush template. The given calligraphy can be 
replicated quite closely in our simulation.  The present work 
also tackled the problem of stroke ordering for future 
calligraphic execution by a robot platform. We formulate the 
problem as a TSP and apply the CE-Method to yield the 
appropriate stroke drawing sequence. Simulation results are 
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presented with a rather complicated Chinese character “龍”. 
The present work contributes to our eventual objective in 
automatic analysis, decomposition, stroke trajectory 
generation, execution sequence determination, and robot 
replication of Chinese calligraphy, and ultimately, Chinese 
painting. 
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Fig.20.   Stroke ordering for the character “龍” obtained from TSP 
solver -- CE-Method 
 

 
Fig.21.   Traditional and established stroke ordering for the character 
“龍”  
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