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ABSTRACT

Soft robots are inherently compliant and manoeuvrable manipulators that can passively adapt to
their environment. However, in order to fully make use of their unique properties, accurate con-
trol should still be maintained when affected by external loading. Commonly used model-based
approaches often have low tolerance to unmodelled loading, resulting in significant error when
acted on by them. Therefore, in this study we employ a nonparametric learning-based method that
can approximate and update the inverse model of a redundant two-segment soft robot in an online
manner. The primary contribution of this work is the application and evaluation of the proposed
framework on a redundant soft robot. With the addition of redundancy, a constrained optimization
approach is taken to consistently resolve null-space behaviour. Through this control framework, the
controller can continuously adapt to unknown external disturbances during runtime and maintain
end-effector accuracy. The performance of the control framework was evaluated by tracking of a 3D
trajectory with a static tip load, and a variable weight tip load. The results indicate that the proposed
controller could effectively adapt to the disturbances and continue to track the desired trajectory
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accurately.

1. Introduction

The introduction of robots constructed from hyper-
elastic materials and embedded with fluidically driven
chambers have given rise to a new class of robots [1,2].
These soft robots are inherently compliant, manoeu-
vrable and are able to passively adapt to dynamic and
unstructured environments. As a result, their preva-
lence in specialized applications like surgical intervention
[3-6] has grown, and has drawn interest from other fields
such as underwater manipulation [7] and search and
rescue [8,9].

Subsequently, the growth of soft robotics field has
sparked research focused on modelling the behaviour of
soft continuum robots [9-13]. Analytical models capable
of offering the forward mapping from robot actuation to
its task space generally provide the basis for accurate and
dexterous control of conventional, rigid robots. However,
the analogue for modelling soft continuum robots can
be prohibitively complex due to the non-linear elasticity,
compliance and fluidic actuation of the robot body.

Approximations like the piecewise constant curva-
ture (PCC) approach is commonly used to approximate
the kinematic mapping of soft robots [9,10,14,15]. The
PCC assumption provides a simplified representation of

serial-link continuum robots by assuming their segments
are smoothly connected with circular bending profiles.
Although the use of PCC still remains predominant due
to its obtainable and closed-form solutions [16,17], any
loading to the robot that results in non-circular bending
invalidates the PCC assumption, resulting in significant
inaccuracies.

In contrast, other modelling techniques, including
those based on the Cosserat rod theory, can take into
account external loading such as gravity [18] as well as
buoyancy and drag loading due to movement in water
[19]. However, these approaches are still too computa-
tionally complex to apply in real-time robot control. Fully
utilizing the conformability and manoeuvrability of soft
continuum robots while also maintaining end-effector
accuracy is still technically challenging.

A stepping stone towards this goal is through learning-
based approaches [11], which have gained popularity in
soft robotics because of their ability to bypass the dif-
ficulties in modelling uncertain internal and external
dynamics. Model-free learning approaches that are adap-
tive to dynamics present in the robot itself can avoid
determining the material and geometrical specifications
of the controlled soft robot, as they can be made implicit
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in the obtained data they learn from. Not only does this
allow greater freedom in modifying the robot’s structure,
but it also provides leeway during construction of the
robot, as material inconsistencies within segments and
joints can affect bending symmetry and further introduce
unmodelled dynamics.

Previously, machine learning-based methods have
been used with conventional rigid-link robots, and have
been able to approximate their inverse models [20-22],
producing results comparable to analytical model-based
solutions [23,24]. Relating to soft continuum robots, a
neural network (NN) was applied in [25] to control a 1-
DOF planar soft robotic manipulator, with the study out-
lining the adaptability of machine-learning approaches
to mechanical discrepancies that analytical approaches
do not possess. The study provided a useful preliminary
application of machine-learning for soft robots, however
the adaptability of the algorithm to external loading was
not addressed. Another NN-based control was applied
to the Festo Robotino” XT hyper-redundant robot [26],
with kinematic redundancies taken into account by con-
sidering both of the robot’s section trajectories. In that
study, two NNs were used in tandem to adapt to hys-
teresis and other modelling uncertainties. However, the
kinematic control was computationally intensive, mak-
ing useful real-time control unfeasible at that stage. A
number of other NN-based approaches have been used
to learn the inverse kinematics of soft continuum robots
[27-29], however the presence of external disturbances
were not accounted for in these studies.

Recently, Lee et al. [30] proposed a generic control
framework based on [23,31] that is able to directly learn
the inverse model of a soft continuum robot for task-
space control in an online manner, without knowing the
robot’s geometric parameters. The study applied locally-
weighted models in order to estimate the inverse kine-
matics and control the tip orientation (pitch and yaw)
of a single-segment soft manipulator, and was able to
maintain tip orientation accuracy even in the presence of
unknown loading on the robot body. In contrast to NN
methods, where the model structure is typically deter-
mined before the training process, nonparametric regres-
sion allows for the optimal model structure to be deter-
mined from the training data. Furthermore, the use of
such an online learning algorithm allows for rapid updat-
ing of the individual local inverse models, which in turn
enables adaptation to any change in external loading.

In this paper, we extend the control framework in [30]
to a multi-segment soft continuum robot, also address-
ing the over-actuated and redundant nature of multi-
ple bending segments. In contrast to the previous study
where only the orientation of a single segment actuator
was controlled, this study applies 3D positional control

to a two-segment actuator. This extension presents the
opportunity for more dexterous soft robot tasks, e.g.
intraluminal endoscopy, where views behind or around
soft-tissue bodies may be otherwise impaired with sin-
gle segment robots. Workspace exploration is required
to train the learning algorithm, with the collection of
generated offline pre-training data necessary to learn the
proposed controller. Validation of the learned controller
is performed through 3D positional trajectory tracking
of the soft robot. The primary contributions of this work
are as follows:

e Design and implementation of a general learning-
based framework, which enables robust control of a
multi-segment soft continuum robot by adapting to
unmodelled loading via online learning.

e Consistent resolution of null-space behaviour, which
can resist variable distributions of sampled learning
data.

e Experimental validation of the proposed controller,
which evaluates how a six-chamber continuum robot
performs a task of 3-D trajectory following with the
addition of an unmodeled, variable weight tip load.

2. Methods
2.1. Design of two-segment soft manipulator

The soft robot used in this study is constructed from
moulded RTV (Room Temperature Vulcanization) sil-
icone rubber (Dragon Skin 10, Smooth-on Inc.) seg-
ments and 3D printed joining components. Each segment
comprises of three cylindrical fluidic chambers spaced
120° apart around the section perimeter, with a total
of six chambers. Each chamber is constrained radially
by a helically wound fibre in order to limit the cham-
ber expansion to only the axial direction. This facilitates
omnidirectional bending of the robot segments when dif-
ferent inflation pressures are provided to each chamber.
Each segment can achieve a maximum bending angle
of approximately 100° in any direction. Two segments
were connected in series by a 3D printed (Stereolitho-
graphic) coupling, which enables each air tube of the
distal (relative to the robot base) segment to feed to the
centre cavity of the proximal segment. By using a two-
segment soft robot, we have a system with greater dex-
terity which allows for improved 3D positional control of
the tip and presents an opportunity to employ the null-
space behaviour to meet a secondary goal. A 3D printed
tip is attached to the top of the distal segment to allow
mounting of the positional tracking sensor. The bottom
of the robot is fixed to a 3D printed base that remains sta-
tionary. The outer diameter of the robot is 27 mm and has
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Figure 1. (a) Plug-in tip allows easy switching to other tip types
for experimental validation: (b) 14.2 g weighted tip, (c) fluid tip
weighing 14 g when empty, with maximum weight of 32 g when
full of water. (d) Soft robotic continuum robot with SLA 3D printed
coupling and mounts.

a total length of 155 mm. An overview of the soft robot is
shown in Figure 1(d).

2.2. Robot parameter definition

To mathematically describe the motion of the robot, we
let uy € U be the chamber volumes at time step k where
U denotes the control space. The distal tip position of the

Apk+1,x
Pi+1 = P + [APr+1y
Apk+1,z
Aug 21
Ups12 = Uz + |DUk22
Auy o3
Auk,ll

U1 = U + |DUg 12
Auk,13
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soft robot at equilibrium of the fluidic chambers is repre-
sented by the task space coordinate pi € R. The discrete
time transition between robot tip states and chamber vol-
umes within the time step k to k + 1 is pxy1 = px + Apk
and g4 = ug + Aug, respectively. Figure 2 is an illus-
tration of this motion transition between two robot con-
figurations. To describe the new robot tip position after
a change of chamber volume from the previous tip posi-
tion, a forward transition model of the soft robot can be
defined as:

Pi+1 = f (Ppr> Aug) (1)

The inverse transition model we aim to estimate deter-
mines the required change in chamber volume for a
movement of the robot tip Apy:

Aup = ¢ (Apg, uk) (2)

Note that due to the redundancy of the system, the map-
ping between the forward and inverse model is not one-
to-one, which makes it challenging to find a consistent
inverse transition model.

2.3. Overview of online learning algorithm

The objective is to control the soft robot accurately in
the task space motion transition coordinate Asy, while
under unknown loading. For this reason, an online learn-
ing algorithm based on the work found in [23] is adapted
for usage on our redundant two-segment soft continuum

Figure 2. Labeled illustration of the robot motion transition for a two-segment soft robot. Pictured is the transition from state (py, ux) —
(Pk-+1, Uk+1)- Inflation of the fluidic chambers of the first and second segments are labeled uy 1 and uy ,, respectively.



4 J.D.L.HO ET AL.

robot. The underlying goal of the algorithm is to estimate
the global inverse mapping of the soft robot by combining
a large set of localized linear controllers. This technique
is based on the key idea that in a localized region of robot
configuration, a valid inverse solution can be obtained
because the inverse kinematics mapping forms a convex
function with respect to the variables {Ap, p, Au, u}.

The proposed control framework is split into two
main phases: (1) incremental learning of the local for-
ward models, followed by (2) batch learning of the lin-
ear inverse controllers that are only valid within a local
region.

The first phase aims to acquire an appropriate
local linearization of the forward motion mapping
(x> Aug, ux) — Apx, which is nonlinear in general. Such
local linearization can determine how many linear mod-
els are required to approximate the motion mapping, as
well as the valid region of each linear model. Thus, a
localized regression method, namely Locally Weighted
Projection Regression (LWPR) [32], is employed to learn
the forward motion mapping. LWPR provides a piece-
wise linear function approximation of the nonlinear
mapping and automatically determines the valid local
regions that each models should affect. The learnt piece-
wise linear models are in the form:

Apk = [pr> Aug, ug] Pigc (3)

where ,BAI’;K are the linear parameters of the local forward
models.

For a non-redundant robotic system, direct usage of
the locally learnt forward models is possible due to the
one-to-one mapping between the configuration space
and operation space, meaning that linear combinations
of the locally learnt models will be consistently resolved.
However, for a redundant system, invalid solutions would
arise from non-convex training data, which brings the
need to consider the spatial localisations of the learnt
models. Therefore, for each piecewise linear model in the
LWPR forward model, we assign a linear controller to
approximate the global inverse mapping, using the same
local valid regions. We wish to determine the local inverse
transition models also positioned in py and uy space; this
can be described by the following linear controller:

Aty = [Apret i Pro k) Bl (4)

where B is the parameter of the local inverse model, for
which its calculation will be described in further detail in
the following sections.

2.4. Algorithm implementation

2.4.1. Combining the local controllers

To construct a global controller, such that the required
actuator transition Auy can be found for a desired tip
transition Ap;.sx, a weighted linear combination of the
local inverse transition models is solved in the form:

Y W (k> Ur) [APref ko Pio i Bk
Doy WPk ur)

Auy (5)

In the first step of the proposed control framework, the
local forward models are learnt through LWPR, which
determines an appropriate number of models as well as
their locally valid region. Each local model and its region,
also known as a receptive field (RF), is governed by a
Gaussian kernel, and is weighted to each training data
point based on the robot configuration variables py and
uy, calculated by the following equation:

T
i _ Litpe|
-
i|Pk i

(B @

where i denotes the RF being weighed against, ¢’ is the
RF’s centre in py and u space, and D' is the distance
matrix which governs the shape of the RF. Besides the
weighted mean of Auy, the weighting w(pg, uy) is also
employed to determine relative influence of each data
point to the RFs when calculating the global inverse
solution.

2.4.2. Selecting null-space behaviour with
constrained optimization
When solving for a global controller, there is no guarantee
that a consistent inverse solution is found among differ-
ent local controllers due to the infinite possible solutions
in a redundant system. In [23], two particular methods
are outlined to overcome the redundancy problem: the
first is by biasing the original training data to only allow
a single inverse solution, and the second is to introduce
a reward/cost function to draw the system to a desired
solution. Although the first approach can be useful for
simplified tasks, the benefits of using a redundant actua-
tor are mostly lost when restricted to a single solution and
can result in the task not being accomplished properly.
Therefore, to ensure consistent null-space behaviour
through the second approach, the task is formulated as
a constrained optimization problem, where we aimed to
minimize the cost function below:

Cr(Aug) = (Aug — Aug ) 'N(Aug — Augg) — (7)



where Aug = v(px, ux) is the actuator-space attractor
that draws the robot to a desired configuration, and
N > 0 is a positive definite weighting matrix. The cost
function in (7) assigns cost to each incoming training
data point. It assigns higher cost for incoming Auy, val-
ues that are further away from the desired pose, as defined
in the function v(px, ux). This enables systematic resolu-
tion of the redundancy problem, while allowing a flexible
definition of the user-desired null-space behaviour. A
secondary control objective can hence be achieved by
associating the null-space attractor Augy to the robot
characteristics or the task’s requirement. One typical
example of the null-space behaviour is to attract the robot
configuration towards a rest pose u, as defined in (8). For
a fluid-driven robot, a reasonable choice of rest position
is to minimize the overall inflated chamber pressures:

Aug = Ka(ug — uo) (8)

where K is the attractor gain. Thus, all the training data
is given a cost that is based on the configuration space
variables uy, pi, and Auy, with the result that all robot
configurations will converge to a consistent solution.

To solve the constrained optimization problem in (7),
we first define:

min  Cg(Aug)
A 9)
subjectto  Aug = [Apref .o Pho k) Bk

The constrained optimization problem can be solved by
converting the cost function into an immediate reward:

r(ug) = o exp[—0.50i2Ck(Auk)] (10)

where aiz is the mean cost for a particular local model,
used to increase learning speed:

n n
of =Y wWpruw)C/ Y Wpnuw) (1)
k=1 k=1
where 7 is the total number of training samples. By
changing to an immediate reward, we can find a solution
which minimizes the following sum:
n
D W ok ) (Aug — [Apret o pio uklBi) - (12)
k=1
The local model parameter in (4) is found by the reward-
weighted regression formula, for each local controller
model, i:

Bix = XTWix)~IxTwiy (13)
where Xy = [Apref i Pk- k] and Yy = [Auy] are rows
of the training datasets X and Y, respectively, and
W' = diag(r(u)w},...,r(u)w;,). The  weighting
coefficient matrix, W', is a diagonal matrix that applies
weighting between each local controller, i, to each train-
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ing sample. For each local controller, the corresponding
weighting coefficient matrix is determined by multiply-
ing the reward of each training data point by the weight-
ing of that point relative to the local controller. The
reward as shown in (10) regulates the redundancy of the
system by giving more importance to training data that
exhibits the desired null-space behaviour as defined in
(8). The weighting function defined in (6) more strongly
considers the weights of training points closer in py, 1y
space to the local controller. Finally, a consistent global
controller is derived from the weighted average of all the
learnt local inverse models as in (5). The pseudo-code for
the online learning process of the controller is detailed in
Algorithm 1.

Algorithm 1: Algorithm for online learning of consistent inverse motion
mapping.
For each new training sample [Ape i, pi, Aug, Ukl
Add (px, Aug, ug) — Aprefk to the forward model through LWPR
Update no. of forward models m and their local weightings w/ (py, uy)
Evaluate actuator-space attractor:
Aug = Ka(ug — uo)
5 Compute cost:
C(Aup) = (Aug — Aug) N(Aug — Augg)
6 Foreachmodeli =1,2,3,...,m

AwnN —

7 Calculate mean cost:
n . n .
o? =3 wpkuC/ Y W (pr, ug)
k=1 k=1

8 Calculate reward of each data point:

r(u) = o7 exp(—0.502Cy (ug))
9 Solve the following weighted regression problem with steps 10-14:

n

3 (W (pr, uk) (Aug — [APref ki, pio il Bl)
k=1

10 Add sample point to weighted regression so that:
Xic = [APref s Pir Uk

11 Yk‘= [Aug] i )

12 W' = diag(r(un)wy, ..., run)wp)

13 Update inverse mapping parameter by reward-weighted regression:
Bl = XTWX)~IXTwiy

14 end

15 end

3. Experiments, results & discussion
3.1. Experimental platform

The two-segment robot was actuated pneumatically by a
set of stepper-motor driven linear actuators. Each linear
actuator consisted of a stepper motor coupled to a lead-
screw, which controlled the stroke of a pneumatic cylin-
der. The robot has 6 input degrees-of-freedom (DOFs),
with each of the 6 chambers of the soft robot paired with
a single linear actuator.

The soft robot was actuated volumetrically, with the
stepper motor positions used as a proxy for the actual
cylinder volume. Each chamber was pre-pressurised to
0.040 MPa to improve the bending response of the soft
robot to input pressure change. An omnidirectional
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Tip EM coil

Base frame EM coil __

Figure 3. EM positional tracking coils mounted at the robot tip
and base. The 6-DoF coil at the base offers a static frame of
reference for all the measured tracking data in real time.

bending angle of up to 100° was attainable by each seg-
ment of the soft robot. The tip position of the robot
was tracked by an electromagnetic (EM) tracking system
(NDI Medical Aurora Tabletop Field Generator). Two 6-
DOF tethered sensor (0.8 mm diameter x 9 mm length)
were attached to the robot: one at the robot tip, and
another at the base of the robot as illustrated in Figure 3.
The EM tracking system provides a tracking accuracy
of 0.80 mm for position, and 0.70° for orientation at an
update rate of 40 Hz. It provides the necessary positional
data for feedback control and also online learning of
the controller. The local online learning algorithm was
implemented in the Matlab environment, and applied the
open-source library for LWPR [33].

3.2. Training data acquisition and model
pre-training

In order to effectively generate a functional global con-
troller, pre-training data that sufficiently characterizes
the robot’s workspace and possible configurations should
be obtained.

Learning of the forward models was first performed
offline with uniformly distributed random waypoints in
actuator-space that were generated and connected by
straight line trajectories. This formed the pre-training
exploration data. For the purpose of this study, 80 ran-
dom waypoints were sufficient to provide a large enough
selection of forward mappings so that consistent inverse

controllers could be learnt. An alternative controller ini-
tialization can be achieved by motor babbling, where
small, random movements of the robot are used to learn
the controller online. However, offline pre-training was
favoured in this study to better evaluate the null-space
behaviour of the controller. Additionally, if purely online
learning is used, redundant configurations are less likely
to be observed, limiting the manoeuvrability of the robot
and generality of the system. In this study, the tip posi-
tion, py, is a 3 x 1 vector of the x-y-z Cartesian tip posi-
tion tracked by the tip EM coil as in Figure 3. The cham-
ber volumes, uy, are a 6 x 1 vector which describes the
current inflation state of each chamber of the robot (3
chambers per robot segment).

Validation of the learned forward models was per-
formed by splitting the obtained training data into a
training and test set, at 80% and 20%, respectively. The
root-mean-square error (RMSE) of the predicted for-
ward model outputs, Ap, versus the number of training
iterations (epochs) for the training data, test data, and
combined data is shown in Figure 4. A total of 15 train-
ing iterations were processed, resulting in 139 receptive
fields generated for each output dimension. The RMSE
of all three types of data was lowest at 11 epochs, with
the testing set converging to approximately 1 mm. To fur-
ther validate the pre-trained model, the predicted outputs
of the global inverse model was compared against the
learned forward model using the combined test set. The
resulting regression plots and histograms for each task
space dimension are shown in Figure 5. The error bounds

Training
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= = Al
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©
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o
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o
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o0
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Root- Mean-Square Error (mm)
o
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o
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o
~

10 15
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Figure 4. Validation of the forward model that was trained
through LWPR. The error reached the lowest value at the 11th
epoch. The training and testing data was split 80% and 20%,
respectively, of the original data set. The root-mean-square error
is with respect to the forward model output, Ap. The error of
all three sets of data was lowest at 11 epochs, indicated by the
vertical grey line.
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Figure 5. Regression plots (Left) and histograms (Right) for the tip transition variable Ap in each coordinate axis (x, y, 2).
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for each dimension of the learned inverse model were
under 0.5 mm.

3.3. Controllerimplementation

Evaluation of the proposed control framework is per-
formed on a two-segment soft continuum robot. Two
tracking exercises are presented to assess the accuracy of
the learnt inverse kinematics as well as its ability to adapt
to an unknown disturbance. The trajectory following is
achieved through resolved motion rate control [34], and
the desired task space displacement Asy is defined by the
proportional feedback controller:

Apk = Kp(pl — pp) (14)

where Kp is the proportional gain, p;ef is the desired tip
position, pi is the 3D tip position at the current time-
step. This desired task space displacement is the input to
the learned global controller, which outputs the estimated
stepper motor commands Au. For the accuracy evalua-
tion, the tracking error is calculated by the Euclidean dis-
tance between the desired tip position and the achieved
tip position at each time step. The block diagram of the
implemented control loop is shown in Figure 6.

3.4. Trajectory tracking experiments -static tip load

A comparison between the online-updating controller
and the offline-learned controller was performed by tra-
jectory tracking of a 3D path under two scenarios: (1)
only using the pre-trained model with no online learn-
ing (‘offline’), (2) online learning while an unknown tip
mass is added to the robot.

The goal of these two experiments is to evaluate the
effects of updating the pre-trained model in an online
manner and providing a comparison to only using the
pre-trained model. The test trajectory is a rectangular
shape of sides 25 mm x 100 mm projected to the 3D
workspace of the robot, which was approximated from
the pre-training data. In each test scenario, the controller

was run for 3 complete cycles, which had a total runtime
of 400 s. Initially in each test, the robot was allowed to
track to the first point of the desired trajectory until the
error converged, at which point data acquisition was initi-
ated and the desired trajectory point began to increment.
The same error-proportional gain and pre-trained model
was used for both experiments. In the following exper-
imental sections, offline denotes the absence of online
learning during trajectory tracking, and online denotes
that online learning was enabled.

3.4.1. No tip load - offline

For the first experiment, only the offline pre-trained
model was implemented into the robot controller. Online
learning was disabled, and robot was free to track the tar-
get trajectory with no additional external disturbances.
The tracking performance of the first experiment is pre-
sented in Figure 7. The average error was not observed to
improve between the first and last trajectory cycle, with
a mean absolute error of £4.56, and £+5.53 mm, respec-
tively. A recurring error pattern could be seen in each
cycle, which depicts the repeatability of the learned con-
troller. The tracking error could be attributed to a lack of
densely populated receptive fields in those regions result-
ing in poorly defined inverse solutions. Other controller
errors are also expected due to the hysteretic effects of the
soft robot body which the proportional controller could
not compensate for.

3.4.2. Static tip load - online learning

For the second experiment, an additional tip mass was
added to the robot tip, as illustrated in Figure 1(b). The
total additional mass was 14.2 g and was not previously
presented to the model during pre-training. The same
pre-trained model applied in experiment 1 was used as a
baseline for the online learning in this experiment. When
online learning, a fixed number of training points are
used to weight the influence of the local models. For
this experiment, a maximum of 425 incoming training
points was used in a first-in-first-out basis, where the

ref H 1
Heborance Bk Proportions Ap,| Online Learning Au || Robot
T R Controller Inverse Model » Controller and
rajectory Au, = (D(Apk >Px s“k) Actuator

Receptive field [¢/, D] 1

Forward model updated by LWPR
(A“k 7uk 7pk ) —> Apk

p; | EM Position
Tracker [€= |Robot

Processing System

Soft Robotics Control System

Figure 6. Schematic showing the proposed control system architecture that facilitates online updating of the learned controller. The
controller is constantly updated with incoming real-time data provided by the EM position tracker.



ADVANCED ROBOTICS 9

No tip load, OFFLINE

— — Desired Trajectory
—— Tracked Trajectory

Z (mm)

(b)

52 54

Tracking error (mm)

| 1 | |

0 50 100 150

200 250 300 350 400
Time (s)

Figure 7. Experimental results for trajectory tracking with no additional tip loading using the pre-trained model with no online learning.
(a) The actual tracked trajectory overlaid on the desired trajectory. (b) Close-up view of the corner tracking. (c) The Euclidean tip tracking
error over time. The dotted lines indicate the start and end of each trajectory cycle.

oldest data points were removed first when exceeding the
maximum of 425. For each cycle of trajectory tracking,
approximately 400 new training points were accumu-
lated. The average online update frequency was 23 Hz.
With the additional tip weight, the starting tracking error
increased from approximately 2 mm as seen in the first
experiment to 5 mm. By the inclusion of online learning
in this controller, the real-time data obtained from the
tracked tip position and actuator volumes could be input
to the online learning algorithm, enabling incremental
improvements to the overall learned inverse model. This
could be observed in the results presented in Figure 8
and Table 1. The mean absolute tracking error of every
cycle could be seen to decrease significantly, starting at
£4.42mm in the first cycle and reducing to +1.63 mm
in the third cycle.

Overall, online learning of the original pre-trained
model could be seen to improve the tracking perfor-
mance through continuous online updating of the inverse
model, even in the presence of a previously unknown
external disturbance.

3.5. Trajectory tracking experiments - varying tip
load

To further investigate the control framework’s behaviour,
a series of trajectory following tasks were performed
while a variable fluid tip load as in Figure 1(c) was added
to the robot tip. The fluid tip has an empty weight of
14 g, and has a maximum weight of 32 g when full (corre-
sponding to an internal volume of 18 mL). Three exper-
iments were performed for 3D trajectory tracking with
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Figure 8. Experimental results for trajectory tracking with additional tip loading, using the pre-trained model and updated with online
learning. The algorithm is able to adapt to the tip disturbance in real-time, providing improved tracking performance. (a) The actual
tracked trajectory overlaid on the desired trajectory. (b) Close-up view of the corner tracking. (c) The Euclidean tip tracking error over
time. The error can be seen to consistently decrease over the 3 cycles.

Table 1. Summary of trajectory tracking performance for no tip load (offline) and tip load (online) scenarios.

Error absolute mean and standard

deviation (mm)

Maximum absolute error (mm)

Controller setting 1st cycle 2nd cycle 3rd cycle 1st cycle 2nd cycle 3rd cycle
No tip load +4.56 +5.72 +5.53 +9.02 +8.34 +8.07
OFFLINE (o0 = 1.99) (0 = 1.18) (o =1.12)

Static tip load +4.42 +3.33 +1.63 +7.90 +6.87 +3.55
ONLINE (o = 1.08) (o = 1.14) (o = 0.54)

the varying tip load: (1) only the empty (0% filled) fluid
tip container added to the robot tip with no online learn-
ing, (2) increasing fluid load with no online learning, (3)
increasing fluid load with online learning enabled.

For this set of experiments, the test trajectory is a
rectangular shape with sides 40 mm x 60 mm that was
projected on the workspace of the robot. The robot was
allowed to run for 4 cycles. The same control parameters

were used in the three scenarios, with only the option
of online learning differing between them. The training
data used for the pre-trained model were based on 320
random waypoints, which resulted in 352 receptive fields
generated. A tabulated summary of the tracking results is
shown in Table 2, and the actual tracked trajectories and
absolute Euclidean tracking errors over time are shown
in Figure 10.



ADVANCED ROBOTICS 11

Table 2. Summary of trajectory tracking performance for experiments with variable fluid tip load.

Error absolute mean and standard deviation (mm)

Maximum absolute error (mm)

Controller setting 1st cycle 2nd cycle 3rd cycle 4th cycle 1st cycle 2nd cycle 3rd cycle 4th cycle
Empty fluid load +6.01 +7.19 +7.08 +6.94 +9.73 +11.16 +11.23 +11.19
OFFLINE (o0 = 1.77) (o0 = 2.17) (0 = 2.12) (o = 2.09)

Increasing fluid +5.82 +7.24 +10.36 +12.84 +9.47 +11.22 +12.88 unstable
OFFLINE (o = 1.64) (o = 2.00) (o =1.22) (o = 2.20)

Increasing fluid +4.16 +3.10 +1.07 +0.98 +9.72 +8.01 +2.19 +2.44
ONLINE (6 = 2.19) (o0 = 1.94) (0 = 0.24) (0 = 0.26)

3.5.1. Empty fluid container tip - offline
In the first scenario, only the pre-trained model was used,
with no online updates made during the experiment.
This ‘offline’ controller setting is akin to implementing a
model-based kinematic model, e.g. PCC, where no online
updates are made to the model during runtime. The fluid
container tip was empty for all four cycles of trajectory
tracking, weighing approximately 14 g. Overall, the track-
ing performance for each cycle was seen to be relatively
periodic as seen in Figure 10(a), with the mean absolute
error remaining around the 6-7 mm range. No notable
improvement could be seen between each cycle, how-
ever the mean absolute and max absolute error increased
between cycle 1 and 2. This is likely because the robot was
allowed to track to the first point until error converged
before data acquisition began and the remainder of the
trajectory was tracked. The primary source of error in
the trajectory tracking can be attributed to the additional
unmodelled tip load due to the empty fluid container tip.
The tip load induces unmodelled loading to the entire
robot body, creating a large disparity between the original
pre-trained kinematic model’s estimation, and the actual
robot configuration.

Unlike the static tip load experiment in Section 3.4.2.
where the tracking error would reduce over each cycle

Cycle 1 &2
14 g (0% filled)

Cycle 3

Water level

24 g (56% filled)

due to the online learning, we can see a consistent offset
of the tracked trajectory versus the desired trajectory.

3.5.2. Increasing fluid load - offline

For the second scenario, a varying tip load was applied to
the robot tip by increasing the fluid volume in the fluid
tip. To fill the fluid tip, water was injected through the
‘water in’ tube labelled in Figure 9 at a rate of approx-
imately 0.6 mL/s. For the first two cycles of trajectory
tracking, the fluid tip was empty (0% filled), which is
the same conditions as the first two cycles of the previ-
ous experiment in Section 3.5.1. In cycle 3 and 4, the
fluid levels were increased in accordance to Figure 9:
from the beginning of cycle 3, an additional 10 g of water
was added to the fluid tip at a rate of ~0.6 mL/s, with
a total tip load of 24 g. This corresponds to 56% of the
entire fluid tip cavity filled. At the start of cycle 4, an
additional 6 g of water was added to the fluid tip, corre-
sponding to a total additional tip weight of 30 g, or 89%
filled. At 30g, the fluid tip is an additional 72% of the
robot body mass (41.71 g), presenting substantial loading
to the robot tip. Depicted in Figure 9 is the deforma-
tion caused by the fluid load when the robot is at the
neutral, unactuated position. When tracking the trajec-
tory, the moment caused by the load is larger due to

Cycle 4
30 g (89% filled)

Figure 9. Variable fluid tip load used for experiments. The tip load is varied by injecting water at an approximate rate of 0.6 mL/s at
the beginning of cycle 3 and 4. The empty fluid tip is 14 g, and has a maximum weight of 32 g when full. For the trajectory tracking
experiments under varying tip load, 10 g is added to the tip load in cycle 3, and 6 g is added in cycle 4.
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Figure 10. Experimental results for trajectory tracking with different controller and tip load conditions. The robot was allowed to follow
the trajectory for 4 cycles, as indicated by the vertical dotted lines. (a) Offline trajectory tracking with empty fluid container tip weighing
14 g. A repeating error pattern is observed due to the static load. (b) Offline trajectory tracking with fluid tip load increased by 10g in
cycle 3, and 6 g in cycle 4. The tracking error increased with fluid load, becoming unstable in the 4th cycle. (c) Trajectory tracking with
online learning enabled. The fluid tip load was increased by 10 g in cycle 3 and 6 g in cycle 4. Instability was avoided and error was also
reduced.



the robot bending, and induces significant unmodelled
deformation.

In the first two cycles, it can be seen that the track-
ing error and path taken was very similar to the results
in Section 3.5.1. This is because the controller setting
and tip load are the same between the two experiments
in the first two cycles. When fluid level was increased in
the tip load in cycle 3, the errors also increased, eventu-
ally leading to instability in the 4th cycle which is seen
in the left-hand side of the tracked trajectory path in
Figure 9(b). A major source of the instability can be
attributed to the inability of the offline controller to track
the desired trajectory due to large corrective overshoot
from the error induced by the tip load. Also, the fluid tip
is only partially filled, leading the centre of mass to con-
stantly change as the robot configuration changes, further
amplifying any instability.

3.5.3. Increasing fluid load - online learning

In the third scenario, online learning was enabled dur-
ing trajectory tracking while the fluid load was increased
in accordance to Figure 9. The same pre-trained model
use in the previous two scenarios was also used here. For
online learning, the maximum number of data points was
set to 550. For each cycle of trajectory tracking, approx-
imately 300 new training points were accumulated. Sim-
ilar behaviour to the online static tip load experiment
in Section 3.4.2. can be seen, with the error reducing
in each cycle. Over the four cycles, the average tracking
error reduced from +4.16 to £0.98 mm. In contrast to
the independent test in Section 3.5.2. that demonstrates
offline tracking with increasing fluid load, the online
learning controller was able to avoid instability, and even
reduce the overall tracking error. The tracked trajectory
and errors can be seen in Figure 9(c) and Figure 10(c),
respectively.

In this third scenario, the update rate was limited
to approximately 7Hz, i.e. each online update took
~0.143 s to complete. A notable limitation of the online
learning is that the update speed is directly tied to the
number of stored training data points and local mod-
els, because the weighting of each data point to each
local controller must be made at each update, in accor-
dance to the weighting function (6). The online update
rate for this controller was significantly lower than that
in Section 3.4.1. because 352 local controllers were used
in the pre-trained model, compared to 139 local con-
trollers. This extensive computation time is a bottleneck
for the online learning framework, as too many local
models or stored data points would cause the update rate
to slow to impractical speeds. A potential method for
easing the computational intensity is through the use of
training data sparsification. This would involve limiting
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and selectively processing training data obtained online
so that only the ‘most important’ training points would
be used.

In general, the online learning experiments performed
in this study highlight the difficulties of using a stan-
dard, non-adaptive controller for control of a soft robot
under external disturbance. High unmodelled morpho-
logical change can cause typical feedback controllers uti-
lizing Jacobians to exhibit inaccurate or unstable trajec-
tory tracking because they assume low error configura-
tions, which is not true for soft robots under any notable
levels of loading. However, through online learning the
robot configuration error can be minimized by effectively
updating the Jacobian to adapt to disturbances based on
real-time tracking data. For more extreme cases of defor-
mation, the controller can potentially fail to track the
target trajectory. This could be caused by the robot con-
figuration lying far outside of the pre-trained local linear
models, or due to limitations of the robot actuation (e.g.
upper pressure limit of the robot chambers).

4, Conclusions & future work

In this study, we proposed and validated an online
learning-based control framework to control a hyper-
redundant two-segment soft robot in a 3D positional
task space. The use of an online data-driven learning
approach enables high adaptability to unmodelled char-
acteristics both internal and external to the soft robot,
while resolving consistent redundancy behaviour. A pre-
trained inverse model was learned for the two-segment
soft robot and applied in a proportional motion rate
controller. For the static tip load case with online learn-
ing, the robot controller was able to adapt quickly to an
unknown static tip weight/load, with the average absolute
error reducing from £4.42 to +1.63 mm over three cycles
of the tested 3D trajectory. A more demanding trajectory
tracking task was also performed with a varying fluid tip
load. Without online learning, the robot became unstable
and was unable to compensate for the maximum weight
by the 4th cycle. However, with the addition of online
learning the robot was not only able to avoid instability,
but was also able to reduce the mean absolute tracking
error to <1 mm.

Our future work includes further extension of the
proposed control framework to three or more segments
of a soft robot and incorporation of a greater num-
ber of task space variables to improve the manipula-
bility of the robotic system. In the future experimen-
tal settings, we would also aim to replace the teth-
ered EM tracking system with a self-contained sensing
modality, such as a camera [35] or a fibre optic sys-
tem [36] such as those based on fibre Bragg gratings
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[37]. This would allow evaluation of the proposed learn-
ing algorithm in application-based scenarios. Addition-
ally, secondary objectives can be incorporated into the
algorithm’s cost calculation, such as obstacle avoidance,
and could provide customizability for task-specific per-
formance. Improvement to the computational speed of
the learning framework can also be made, with a possi-
ble solution being sparsification, which could be used to
select training data so that only the most relevant data is
used.

In terms of application, soft manipulators are inher-
ently non-ferromagnetic and have more easily dispos-
able bodies which present interesting opportunities to be
used in harsh environments where traditional robots are
unable to be used. An example of this is under magnetic
resonance imaging (MRI), where the strong magnetic
field involved disallows any traditional robots. Towards
MRI-guided robotic interventions [38], the integration of
the proposed online learning algorithm and a soft robotic
manipulator could enable safe and adaptive navigation in
surgery.
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